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Abstract

On Shimura varieties of orthogonal type over totally real fields, we prove a
product formula and the modularity of Kudla’s generating series of special cycles in
Chow groups.

1. Introduction

On a modular curve X0(N), Gross et al. prove [GKZ87] that certain generating series of Heegner
points are modular forms of weight 3/2 with values in the Jacobian as a consequence of their
formula for Néron–Tate height pairing of Heegner points. Such a result is the analogue of an
earlier result of Hirzebruch and Zagier [HZ76] on intersection numbers of Shimura curves on
Hilbert modular surfaces, and has been extended to orthogonal Shimura varieties in various
settings:

• cohomological cycles over totally real fields by Kudla and Millson [KM90] using their theory
of cohomological theta lifting;

• divisor classes in the Picard group over Q by Borcherds [Bor99] as an application of his
construction of singular theta lifting;

• high-codimensional Chow cycles over Q by one of us, Wei Zhang [Zha09], as a consequence
of his modularity criterion by induction on the codimension.

The main result of this paper is a further extension of the modularity to Chow cycles on
orthogonal Shimura varieties over totally real fields. For applications of our result, we would
like to mention our ongoing work on the Gross–Zagier formula [GZ86] and the Gross–Kudla
conjecture on triple product L-series [GK92] over totally real fields. Our result is also necessary
for extending the work of Kudla et al. [KRY06] to totally real fields.

Different from the work of Gross et al. and Borcherds, our main ingredients in the proof are
some product formulae and the modularity of Kudla and Millson. In the codimension-one case,
our result is new only in the case of Shimura curves and their products, as the Kudla–Millson
result already implies the modularity in Chow groups where the first Betti numbers of ambient
Shimura varieties vanish. Both the modularity and product formulae for certain special cycles
were proposed by Kudla [Kud97, Kud04]. In the following, we give details of his definitions and
our results.

Let F be a totally real field of degree d= [F : Q] with a fixed real embedding ι. Let V be a
vector space over F with an inner product 〈·, ·〉 which is non-degenerate with signature (n, 2)
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on Vι,R and signature (n+ 2, 0) at all other real places. Let G denote the reductive group
ResF/QGSpin(V ).

Let D ⊂ P(VC) be the Hermitian symmetric domain for G(R) as follows:

D = {v ∈ Vι,C : 〈v, v〉= 0, 〈v, v̄〉< 0}/C×,

where the quadratic form extends by C-linearity, and v 7→ v̄ is the involution on VC = V ⊗F C
induced by complex conjugation on C. Then, for any open compact subgroup K of G(Q̂), we
have a Shimura variety with C-points

MK(C) =G(Q)\D ×G(Q̂)/K.

It is known that, for K sufficiently small, MK(C) has a canonical model MK over F as a quasi-
projective variety. In our case, MK is actually complete if F 6= Q. Let LD be the bundle of lines
corresponding to points on D. Then LD descends to an ample line bundle LK ∈ Pic(MK)⊗Q
with Q coefficients.

For an F -subspace W of V with positive definite inner product at all real places of F , and an
element g ∈G(Q̂), we define a Kudla cycle Z(W, g)K represented by points (z, hg) ∈D ×G(Q̂),
where z ∈DW is in the subset of lines in D perpendicular to W , and h ∈GW (Q̂) is in the
subgroup of elements in G(Q̂) fixing every point in Ŵ =W ⊗ Q̂. The cycle Z(W, g) depends
only on the K-class of the F -subspace g−1W of V̂ := V ⊗F F̂ .

For a positive number r, an element x= (x1, . . . , xr) ∈K\V (F )r, and an element g ∈G(Q̂),
we define a Kudla Chow cycle Z(x, g)K in MK as follows: let W be the subspace of V generated
by the components xi of x, then

Z(x, g)K :=

{
Z(W, g)Kc1(L∨K)r−dimW if W is positive definite,
0 otherwise.

For any Bruhat–Schwartz function φ ∈ S(V (F̂ )r)K , we define Kudla’s generating function of
cycles in the Chow group Ch(MK , C) with complex coefficients as follows:

Zφ(τ) =
∑

x∈G(Q)\V r

∑
g∈Gx(Q̂)\G(Q̂)/K

φ(g−1x)Z(x, g)KqT (x), τ = (τk) ∈ (Hr)d,

where Hr is the Siegel upper-half plane of genus r, and T (x) = 1
2(〈xi, xj〉) is the intersection

matrix, and

qT (x) = exp
(

2πi
d∑

k=1

tr τkιkT (x)
)
,

where ι1 := ι, . . . , ιd are all real embeddings of F . Note that Zφ(τ) does not depend on the choice
of K when we consider the sum in the direct limit Ch(M)C of Ch(MK)C via pull-back maps of
cycles. Since the natural map Ch(MK)C −→ Ch(M)C is injective with image being the subspace
of K-invariants of Ch(M), we see that the identities among Zφ as generating series of Ch(M)
are equivalent to identities as generating series of Ch(MK) once φ are invariant under K.

Theorem 1.1 (Product formula). Let φ1 ∈ S(V (F̂ )r1), and φ2 ∈ S(V (F̂ )r2) be two Bruhat–
Schwartz functions. Then, in the Chow group,

Zφ1(τ1) · Zφ2(τ2) = Zφ1⊗φ2

((
τ1

τ2

))
.
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For a linear functional ` on Chr(MK)C, we define a series with complex coefficients:

`(Zφ)(τ) =
∑

x∈G(Q)\V r

∑
g∈Gx(Q̂)\G(Q̂)/K

φ(g−1x)`(Z(x, g)K)qT (x).

Theorem 1.2 (Modularity). Let ` be a linear functional on Chr(MK)C such that the generating
function `(Zφ(τ)) is convergent. Then `(Zφ(τ)) is a Siegel modular form of weight n/2 + 1 for

Spr(F ) with respect to a Weil representation on S(V̂ r).

Let us explain the meaning of the last sentence in Theorem 1.2 in more detail. For each
place v, we have a double cover Mpr(Fv) of Spr(Fv):

1−→ {±1} −→Mpr(Fv)−→ Spr(Fv)−→ 1.

If v is non-archimedean, Mpr(Fv) has a Weil representation on S(V r
v ) with respect to the standard

additive character ψ
F̂

of F̂ . The subgroup {±1} acts as the scalar multiplication. If v is real and
induces an isomorphism Fv ' R, then Mpr(Fv) consists of pairs (g, J(g, τ)) where g ∈ Spr(Fv)
and J(g, τ) is an analytic function of τ ∈Hr such that

J(g, τ)2 = det(cτ + d), g =
(
a b
c d

)
.

For any half integer k, the group Mpr(Fv) has an action of weight k on the space of functions
on Hr by

(f |kg)(τ) = f(gτ)J(g, τ)−2k.

The global double cover Mpr(A) of Spr(A) is defined as the quotient of the restricted product
of Mpr(Fv) modulo the subgroup of ⊕v{±} consisting of an even number of components −1:

1−→ {±1} −→Mpr(A)−→ Spr(A)−→ 1.

Then the preimage Mpr(F ) of Spr(F ) in Mp(A) has a unique splitting:

Mpr(F ) = {±1} × Spr(F ).

The modularity in the theorem means the following identity for each γ ∈ Spr(F ):

`(Zω(γf )φ)|1+n/2γ∞ = `(Zφ), γ ∈ Spr(F ),

where (γ∞, γf ) ∈
∏
v Mpr(Fv) is one representative of γ.

Remarks. (1) We conjecture that the series `(Zφ) is convergent for all `. A good example
is the functional derived from a cohomological class as follows. For a cohomological cycle
α ∈H2r(Mk,Q), we may define a functional `α by taking the intersection pairing between the
cohomological class [Z] of Z ∈ Chr(MK) and α:

`α(Z) := [Z] · α.

In this case, the generating series `α(Zφ) is convergent and modular by a fundamental result of
Kudla and Millson [KM90].

(2) Let N r(MK)Q and Chr(MK)0Q be the image and kernel, respectively, of the class map
Chr(MK)Q −→H2r(MK). We expect that there is a canonical decomposition of modules over
the Hecke algebra of MK :

Chr(MK)Q ' Chr(MK)0Q ⊕N r(MK)Q.
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In this way, for any α ∈ Chr(MK)0Q, we can define a functional `α by taking (a conjectured)
Beilinson–Bloch height pairing between the projection Z0 of Z ∈ Chr(MK) and α:

`α(Z) := Z0 · α.

The convergence problem is reduced to estimating the height pairing.
(3) Beilison and Bloch have conjectured that the cohomologically trivial cycles Chr(MK)0 ⊗Q

will map injectively to the rth intermediate Jacobian. Thus, when H2r−1(MK ,Q) = 0, a
combination of this conjecture with Kudla and Millson’s work implies the modularity of the
generating series `(Zφ).

For Kudla divisors, we have an unconditional result.

Theorem 1.3 (Modularity in codimension one). For any φ ∈ S(V̂ ), the generating function
Zφ(τ) of Kudla divisor classes is convergent and defines a modular form of weight n/2 + 1.

Remark . The Shimura variety MK has vanishing Betti number h1(MK) unless MK is a Shimura
curve or the product of two Shimura curves. In this case, Ch1(MK)0Q = 0 and the modularity
in the Chow group Ch1(MK)⊗Q follows from Kudla–Millson modularity for the cohomology
group H2(MK ,Q).

Now we would like to describe the contents of this paper. In § 2 we prove some intersection
formulae for Kudla cycles in Chow groups and then some product formulae for generating
series. The modularity Theorems 1.2 and 1.3 will be proved in § 3. For modularity of divisors
(Theorem 1.3), we use Kudla–Millson modularity for generating functions of cohomological
classes and an embedding trick that relies on the vanishing of the first Betti number of our
Shimura varieties by results of Kumaresan and Vogan and Zuckerman [VZ84]. For modularity
of high-codimensional cycles, we use an induction method described in [Zha09].

2. Intersection formulae

Our aim in this section is to study the intersections of Kudla cycles Z(W, g)K in the Chow
group Ch∗(MK) of cycles modulo the rational equivalence. We first prove some scheme-theoretic
formulae and then some intersection formulae in Chow groups.

First we need a more intrinsic definition of Kudla cycles. We say that an F -vector subspace W
of V̂ is admissible if the inner product on W takes F -rational values and is positive definite.

Lemma 2.1. An F -vector subspace W of V̂ is admissible if and only if W = gW ′ where W ′ is a
positive-definite subspace of V and g ∈G(Q̂).

Proof. Indeed, for any element w ∈W with non-zero norm, the F -rational number ‖w‖2 is locally
a norm of vectors in Vv for every place v of F . Thus, it is a norm of v ∈ V by the Hasse–
Minkowski theorem (see [Ser73, p. 41, Theorem 8]). Now we apply Witt’s theorem (see [Ser73,
p. 31, Theorem 3]) to obtain an element g ∈G(Q̂) such that gw = v. Replacing W by gW we may
assume that v = w. Let V1 be the orthogonal complement of v in V and W1 be the orthogonal
complement of v in W . Then we may use induction to embed W1 into V1. This induces an obvious
embedding from W to V . 2

For an admissible subspace W = g−1W ′, W ′ ⊂ V and g ∈G(Q̂), we have a well-defined Kudla
cycle Z(W )K := Z(W ′, g)K . For an open subgroup K ′ of K, the pull-back of the cycle Z(W )K
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on MK′ has a decomposition

Z(W )K =
∑
k

Z(k−1W )K′ , (2.1)

where k runs though a set of representatives of the coset KW \K/K ′ with KW the stabilizer
of W .

Proposition 2.2. Let Z(W1)K and Z(W2)K be two Kudla cycles. The scheme-theoretic
intersection is the union of Z(W ) indexed by admissible classes W in K\(KW 1 + KW 2).

Proof. Assume that Wi = g−1
i Vi with Vi ⊂ V . Then the scheme-theoretic intersection is

represented by (z, g) ∈D ×G(Q̂) such that for some γ ∈G(Q), k ∈K,

z ∈DV1 ∩ γDV2 , g ∈GV1(Q̂)g1 ∩ γGV2(Q̂)g2k.

It is easy to see that

γDV2 =DγV2 , γGV2 =GγV2 · γ.
Thus, we can rewrite the above condition as

z ∈DV1 ∩DγV2 =DV1+γV2 , g ∈GV1(Q̂)g1 ∩GγV2(Q̂)γg2k.

It follows that the intersection is a union of Z(V1 + γV2, g)K indexed by γ ∈G(Q) and g ∈G(Q̂)
such that

g ∈GV1+γV2(Q̂)\(GV1(Q̂)g1K ∩GγV2(Q̂)γg2K)/K.

For such a g, we may write

g = h1g1k1 = h2γg2k2

with elements in the corresponding components. Then

g−1(V1 + γV2) = k−1
1 g−1

1 V1 + k−1
2 g−1

2 V2 = k−1
1 W1 + k−1

2 W2.

Thus, the intersection is parameterized by admissible classes in

K\(KW1 +KW2). 2

The following lemma gives the uniqueness of the admissible class with fixed generators when
K is sufficiently small.

Proposition 2.3. Let x1, . . . , xr be a basis of an admissible subspace W of V̂ . Then there is
an open normal subgroup K ′ in K such that, for any k ∈K, the only possible admissible class in

K ′
∖∑

K ′k−1(xi)

is
∑

i k
−1(xi), where (xi) denotes the subspace Fxi of V .

Proof. We proceed with the proof in several steps.

Step 0. Let us reduce to the case k = 1. Assume that K ′ is a normal subgroup. Then we have a
bijection of classes:

K ′
∖∑

K ′k−1(xi)−→K ′
∖∑

i

K ′(xi), t 7→ kt .

Thus, we may assume k = 1 to prove the proposition.
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Step 1: work on a congruence group for a fixed lattice. Choose an OF -lattice VOF
stable under K

and taking integer-valued inner products. Then, for each positive integer N , we have an open
subgroup K(N) of G(Q̂) consisting of elements h such that

hx − x ∈NVOF
for all x ∈ VOF

.

Now we take K ′ =K(N) for large N so that K ′ is a normal subgroup of K. Assume that, for
some hi ∈K(N), the class

∑
i Fhixi is admissible. We are reduced to showing that there is a

k ∈K ′ such that kx i = hixi when N is sufficiently large.

Step 2: reduce to a problem of extending maps. Without loss of generality, assume that x1, . . . ,
xr ∈ VOF

and generate WOF
:=W ∩ VZ. Then we have the following properties for the inner

product of hixi:

• for some ti,j ∈ OF ,

(hixi, hjxj) = (xi, xj) + Nt i,j ;

• the Schwartz inequality (as the pairing on
∑

i Fhixi is positive definite),

|(hixi, hjxj)| 6 ‖hixi‖‖hjxj‖= ‖xi‖‖yj‖.

It follows that for large N , ti,j = 0. In other words, there is an isometric embedding

ξ :W −→ V̂ , xi 7→ hixi.

Thus we reduce to extending this embedding to an isomorphism k : V̂ −→ V̂ by a k ∈K for N
sufficiently large.

Step 3: work with an orthogonal basis. Write W = g−1W ′ and take an orthogonal basis f1, . . . ,
fn+2 of V over F such that f1, . . . , fr is a basis of W ′. Then we can take VOF

in Step 1 to be
generated by fi over OF . Write ei = g−1fi and e′i = ξ(ei) for 1 6 i 6 r. Note that ei is an integral
combination of xi; thus ei − e′i ∈N ′V̂OF

for an integer N ′ which can be arbitrarily large as N
goes to infinity. Thus, we are in a situation of finding an element k ∈K such that kei = ξei = e′i
for i between 1 and m. We reduce this problem to finding a local component of k℘ for each finite
prime ℘ of OF .

Step 4: work with good primes. Let S be a finite set of primes in OF consisting of the factors
of 2N , and the norms of ei. If ℘ is not in S, we claim that one of (e1 ± e′1)/2 has invertible
norm. Otherwise, the sum of their norms, (‖e1‖2 + ‖e2‖2)/2, is in ℘O℘. This is a contradiction
because e1 and e′1 have the same norm. Thus, we may have a decomposition VO℘ into a sum of
O℘(e1 ± e′1)/2 and its complement V ′. We may take k1 which is ±1 on the first term and ∓1 on
the second term. Then k1 ∈GSpin(V℘) such that k1e

′
1 = e1. Now we may replace e′i by k1ei and

then reduce to the case where e1 = e′1. We may continue this process for O℘e⊥1 and so on until
all em = e′m. In other words, we find a k℘ ∈GSpin(V℘) such that k℘ei = e′i.

Step 5: work with bad primes. If ℘ ∈ S, we may replace N by Np` so that the order α of p in N
is arbitrarily large. We define e′i for i > m by induction such that 〈e′i, e′j〉= 〈ei, ej〉 for all j 6 i,
and such that ei is close to e′i. This is done by applying the Schmidt process for the elements

e′1, . . . , e
′
m, em+1, . . . , en+2.
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More precisely, assume that e′1, . . . , e
′
i−1 are defined, and define e′i by

e′′i := ei −
i−1∑
j=1

(ei, e′j)
(e′j , e

′
j)
e′j ,

e′i :=

√
(ei, ei)
(e′′i , e

′′
i )
· e′′i .

Note that when the order of p in N is sufficiently large, e′′i is arbitrarily close to ei and
(ei, ei)/(e′′i , e

′′
i ) is arbitrarily close to one. Thus, the square root is well defined. In summary, we

find a k℘ ∈K(℘β) for β arbitrarily large when ord℘(N) is arbitrarily large. 2

As an application, we want to decompose the cycle Z(W, g)K as a complete intersection after
raising the level.

Proposition 2.4. Let x1, . . . , xr be a basis of W over F . Then there is an open normal
subgroup K ′ in K such that the pull-back of Z(W )K is a (rational) multiple of unions of the
complete intersection ∑

k∈K′\K

∏
i

Z(k−1xi)K′ .

Proof. For an open subgroup K ′ of K, the cycle Z(W )K has a decomposition

Z(W )K =
∑

k∈KW \K/K′
Z(k−1W )K′ .

Here KW is the subgroup of K consisting of elements fixing every element in W .

We want to compare the right-hand side with
∑

k∈K/K′
∏
i Z(k−1xi)K′ . By Proposition 2.2,

the components of
∏
i Z(k−1xi)K′ correspond to the admissible classes in

K ′
∖∑

i

K ′k−1(xi).

By Proposition 2.3, when K ′ is small, the only admissible class in the above coset is
∑
k−1(xi) =

k−1W . Thus, ∏
i

Z(xi)K′ =
∑
j

Z(k−1
j W )K′

for some kj ∈K. Now we translate both sides by k ∈K/K ′ to obtain∑
k∈K/K′

∏
i

Z(k−1xi)K′ = c1
∑

k∈K/K′
Z(k−1W )K′ = c2Z(W )K ,

where c1 and c2 are some positive rational numbers. 2

By comparing the codimensions, we conclude that the intersection of Z(W1)K and Z(W2)K
in Proposition 2.2 is proper if and only if k1W1 ∩ k2W2 is zero for all admissible classes
k1W1 + k2W2. In this case, the set-theoretic intersection gives the intersection in the Chow
group. In the following we want to study what happens if the intersection is not proper. First,
we need to express the canonical bundle of MK in terms of LK .
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Lemma 2.5. Let ωK = det Ω1
K denote the canonical bundle on MK . Then for K small, there is

a canonical isomorphism

ωK ' LnK ⊗ det V ∨.

Proof. We need only to prove the statements in the lemma for the bundle LD on D with an
isomorphism

ωD ' LnD ⊗ det V ∨,
which is equivariant under the action of G(R). Fix one point p on D corresponding to one point
v ∈ Vι,C; then Vι,R has an orthogonal basis given by Re(v), Im(v), e1, . . . , en and Vι,C has a basis
v, v̄, e1, . . . , en. After rescaling, we may assume that 〈v, v̄〉=−2, and 〈ei, ei〉= 1. Then we can
define local coordinates z = (z1, . . . , zn) near p such that the vector v extends to a section of LD
in a neighborhood of p:

vz := v +
1
2

∑
i

z2
i v̄ +

∑
i

ziei.

For a point p ∈D corresponding to a line ` in VC, the tangent space of D at p is canonically
isomorphic to Hom(`, `⊥/`). In terms of coordinates z for `= Cv, this isomorphism takes
∂/∂zi ⊗ v to the class of ei in `⊥/`. In terms of bundles, one has an equivariant isomorphism

TD 'Hom(LD, L⊥D/LD) = L⊥D ⊗ L∨D/OD.

Since ωD = det T∨D, we have an equivariant isomorphism

ωD = (det L⊥D)∨ ⊗ L1+n
D .

In terms of coordinates z, this isomorphism is given by

dz1 · · · dzn ⊗ (e1 ∧ e2 ∧ · · · ∧ en ∧ v) 7−→ v⊗(n+1).

Note that the pairing 〈·, ·〉 induces an equivariant isomorphism between L∨D and VD/L⊥D which
is represented by Cv̄ in our base of VC. This defines an isomorphism det L⊥D ' LD ⊗ det V
which is given by

e1 ∧ e2 ∧ · · · ∧ en ∧ v 7−→ v ⊗ (e1 ∧ e2 ∧ · · · ∧ en ∧ v ∧ v̄).

Thus, we have a canonical isomorphism

ωD ' LnD ⊗ det V ∨,

which is given by

dz1 ∧ dz2 ∧ · · · ∧ dzn 7−→ vn ⊗ (e1 ∧ e2 ∧ · · · ∧ en ∧ v ∧ v̄).

This completes the proof of the lemma. 2

Now we have a version of Proposition 2.2 in the Chow group. For a positive number r and an
element x= (x1, . . . , xr) ∈K\V̂ r, recall that the Kudla cycle Z(x)K in MK is defined as follows:
let W be the subspace of V (F̂ ) generated by the components xi of x. Then we define

Z(x)K =

{
Z(W )Kc1(L∨)r−dimW if W is admissible,
0 otherwise.

Proposition 2.6. Let Z(W1)K and Z(W2)K be two Kudla cycles. Their intersection in the
Chow group is given as a sum of Z(W )K indexed by admissible classes W in

K\(KW 1 + KW 2).
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Proof. First we treat the case where W2 is one dimensional. Then the set-theoretic intersection
is indexed by admissible classes k1W1 + k2W2 in K\KW 1 + KW 2. There is nothing we need
to prove if this intersection is proper. Otherwise, we may assume k2W2 ⊂ k1W1 and Z1 ⊂ Z2

for some components Z1 of Z(W1) and Z2 of Z(W2). Let Z be a connected component of MK

containing Z2. Let i denote the embedding i : Z2 −→ Z. Then the intersection in the Chow group
has the expression

Z1 · Z2 = i∗(Z1 · i∗c1(O(Z2))).

Let I be the ideal sheaf of Z2 on Z. Then O(Z2) = I−1, and i∗c1(Z(W2)) =−c1(i∗I) is the first
Chern class of the bundle i∗I−1. From the exact sequence

0−→ I/I2 −→ ΩZ |Z2 −→ ΩZ2 −→ 0

we obtain the following isomorphism from the determinant:

i∗(I)⊗ ωZ2 ' i∗ωZ .

Thus, we have shown the following equality in the Chow group:

Z1 · Z2 = i∗(Z1 · c1(ωZ2 ⊗ i∗ω−1
Z )). (2.2)

Now we use the canonical isomorphism in Lemma 2.5,

ωZi ' L
dim Zi
Zi

, LZ |Zi = LZi

to conclude that

i∗L∨ ' ωZ2 ⊗ i∗ω−1
Z . (2.3)

Combining (2.2) and (2.3), we obtain

Z1 · Z2 = i∗(Z1 · i∗c1(L∨)) = Z1 · c1(L∨).

Thus we have proved the proposition when W2 is one dimensional. Now we want to prove the
proposition for the general case. We use Proposition 2.4 to write Z(W2)K as a sum:

Z(W2)K = c
∑

k∈K/K′

∏
i

Z(k−1xi)K′ .

Working on the intersections of Z(k−1xi) with scheme-theoretic components of

Z(W1)
∏
j<i

Z(k−1xi),

we find that the intersection of Z(W1) and Z(W2) in the Chow group in level K ′ is simply the
sum of terms of the form

Z(W )c1(L∨)dimW1+dimW2−dimW

where W runs through admissible classes in∐
k∈K′\K

K ′
∖(

KW 1 +
∑
i

K ′k′(xi)
)
.

In other words, in level K ′, the Chow intersection is the Zariski intersection corrected by powers
of the first Chern class of c1(L∨). As L is invariant under pull-back, and the dimension does not
change under push-forward, we have the same conclusion in level K. 2

Proposition 2.4 still holds for Chow cycles.
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Proposition 2.7. Let x= (x1, . . . , xr) ∈K\V̂ r. Then there is an open normal subgroup K ′

in K such that in the Chow group the pull-back of Z(x)K is a (rational) multiple of a sum of
complete intersections ∑

k∈K′\K

∏
i

Z(k−1xi)K′ .

Proof. By Proposition 2.3, we may choose K ′ such that, for any k ∈K, the only admissible class
in

K ′
∖∑

K ′k−1(xi)

is
∑
Fk−1xi. By Proposition 2.6, the product

∏
i Z(k−1xi)K′ is simply Z(k−1x)K′ . Their sum is

simply Z(x)K . 2

3. Product formulae

In this section, we want to apply the formulae in the previous section to obtain some product
formulae for Kudla’s generating series. The first is the product formula in Theorem 1.1 which
has been conjectured by Kudla [Kud04], and the second is the pull-back formula for embedding
of Shimura varieties.

3.1 Proof of the product formula
First of all, using Lemma 2.1, we see that the cycle Z(y, g)K depends only on x := g−1y ∈ V̂
which is admissible in the sense that it generates an admissible subspace of V̂ . Thus, we may
write such a cycle as Z(x)K . We extend this definition by setting Z(x)K = 0 if x ∈K\V̂ r is not
admissible. In this way, we can rewrite the generating series in the introduction as follows:

Zφ(τ) =
∑

x∈K\V̂ r

φ(x)Z(x)KqT (x).

Now we return to the proof of the product formula. By the above formula,

Zφ1(τ1) · Zφ2(τ2) =
∑

(x1,x2)

Z(x1)KZ(x2)Kφ1(x1)φ2(x2)qT (x1)qT (x2).

By Proposition 2.6,

Z(x1)KZ(x2)K =
∑
W

Z(W ),

where W runs through the admissible classes in

K\K(x1) +K(x2),

and (xi) denote the subspaces of V̂ generated by the components xij of xi. It is clear that such W
are generated by αx1i and βx2i for some α, β in K. Thus, we write x= (αx1, βx2). On the other
hand, it is easy to see that for such an x,

φ1(x1)φ2(x2)qT (x1)qT (x2) = (φ1 ⊗ φ2)(x)qT (x).

Thus, we have shown the following:

Zφ1(τ1) · Zφ2(τ2) =
∑
x

Z(x)K(φ1 ⊗ φ2)(x)qT (x) = Zφ1⊗φ2

((
τ1

τ2

))
.
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3.2 A pull-back formula

The rest of this section is devoted to proving a pull-back formula for generating functions
for Kudla cycles with respect to an embedding of Shimura varieties. First let us describe the
generating series as a function on adelic points. Recall that Mpr(R) is a double cover of Spr(R).
Let K ′ denote the preimage of the compact subgroup{(

a b
−b a

)
: a+ ib ∈ U(r)

}
of Spr(R). The group K ′ has a character det1/2 := j(·, ir)1/2 whose square descends to the
determinant character of U(n), where ir :=

√
−1 · Ir ∈Hr. Write

Zφ(g′) = Zω(g′f )φ(g′ir)j(g′, ir)−n/2−1.

Then Zφ(g′) has a Fourier expansion

Zφ(g′) =
∑

x∈K\V̂ r

(ωf (g′f )φ)(x)Z(x)KWT (x)(g
′
∞),

where Wt(g′∞) is the tth ‘holomorphic’ Whittaker function on Mpr(R) of weight r/2 + 1; for each
g′ ∈Mpr(R) with Iwasawa decomposition

g =
(

1 u
1

) (
a

ta−1

)
k, a ∈GLr(R)+, k ∈K ′

we have

Wt(g) = |det(a)|n/2+1e(tr tτ) det(k)n/2+1.

Here

τ = u+ ia · ta.
Now the modularity of Zφ is equivalent to the following identity:

Zφ(g′) = Zφ(γg′) for all γ ∈ Spr(F ).

Let W ⊆ V be a positive-definite F -subspace of dimension d and let W ′ be its orthogonal
complement. Then we have a decomposition S(V (A)r) = S(W ′(A)r)⊗ S(W (A)r). Consider the
embedding map

i :MK,W =GW (Q)\DW ×GW (Q̂)/KW →MK =G(Q)\D ×G(Q̂)/K,

where KW =GW (Q̂) ∩K. Then we have a pull-back map

i∗ : Chr(MK)→ Chr(MK,W ).

Now we want to prove a pull-back formula for

i∗(Zφ)(g′) =
∑

x∈K\V (F̂ )r

ω(g′f )φf (x) i∗(Z(x)K)WT (x)(g
′
∞).

Proposition 3.1. Let φ= φ1 ⊗ φ2 ∈ S(V (A)r) = S(W ′(A)r)⊗ S(W (A)r) and suppose that
φ1, φ2 are K-invariant. Then, we have an equality in the Chow group:

i∗(Zφ)(g′) = Zφ1(g′)θφ2(g′), (3.1)
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where θφ1(g′) is the generating function with coefficients in Chr(MK,W , C),

Zφ1(g′) =
∑

y∈KW \W ′(F̂ )r

ωf (g′f )φ(y)Z(y)KWT (y)(g
′
∞),

and

θφ2(g′) =
∑

z∈W (F )r

ω(g′)(φ2 ⊗ φ2∞)(z)

is the usual theta function, where φ2∞ is the standard spherical function on W ′(R).

Proof. Let x ∈K \ V (F̂ )r. By Proposition 2.6, the intersection components of Z(x)K and
Z(W )K are indexed by admissible classes in K \KW + Kx . For an admissible class (W, kx ),
the projection of kx to Ŵ , denoted by z, must lie in W by the definition of admissibility.
Thus, y := kx − z ∈W ′(F̂ )r. Conversely, for y + z ∈W ′(F̂ )r,ad ⊕W (F )r, (W, y + z) must be
admissible.

Therefore, we have in the Chow group of MW the following identity:

i∗Z(x)K =
∑
(y,z)

Z(y)KW
, (3.2)

where the sum is over all admissible y ∈KW \W ′(F̂ )r and all z ∈W (F )r such that

KW (y + z) =KW y + z ⊇Kx .

By the discussion above, we have

i∗Zφ(g′) =
∑

x∈K\V (F̂ )r

ω(g′f )φ(x)i∗Z(x)KWT (x)(g
′
∞)

=
∑

y∈KW \W ′(F̂ )r

ω(g′f )φ1(y)ZW ′(y)WT (y)(g
′
∞)

∑
z∈W (F )r

ω(g′)φ2(z)WT (z)(g
′
∞)

= Zφ1(g′)θφ2(g′).

This completes the proof of the proposition. 2

4. Modularity in Chow groups

In this section, we want to prove the modularity (Theorems 1.2 and 1.3) of generating series for
a linear functional on Chow groups. We first treat the case of codimension one. Quite different
from Borcherds’ proof in [Bor99], our proof does not use Borcherds’ ‘singular theta lifting’, which
is actually unavailable on a totally real field except for F = Q. Roughly speaking, the modularity
for large n follows from the Kudla–Millson modularity for a cohomological class and the vanishing
of the first Betti number of our Shimura varieties. For small n, we use a pull-back trick to deduce
the desired modularity from that of large n.

4.1 Proof of Theorem 1.3
Suppose that φ is K-invariant. The group of cohomologically trivial line bundles, up to torsion,
is parameterized by the connected component of the Picard variety of MK . The tangent of the
Picard is H1(MK ,O). For n > 3, dimC H1(MK ,O) = 0 since it is half of the first Betti number
of MK , which is zero by Kumaresan’s vanishing theorem and Vogan’s and Zuckerman’s explicit
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computation in [VZ84, Theorem 8.1]. Thus, the cycle class map is injective up to torsion and
the theorem follows from the modularity of Kudla and Millson [KM90, Theorem 2] where the
statement extends obviously to the adelic setting by their proof.

Now we assume n 6 2. We can embed V into a higher dimension quadratic space V ′ = V ⊕W
such that dimF V

′ > 5 and with the desired signature at archimedean places. By Proposition 3.1,
for any φ′ ∈ S(Ŵ ) we have

i∗Zφ⊗φ′(g′) = Zφ(g′)θφ′(g′).

Since both Zφ⊗φ′(g′) and the usual theta function θφ′(g′) are convergent and SL2(F )-invariant,
we deduce the convergence of Zφ(g′) and invariance under SL2(F ), provided that, for each g′, we
can choose φ′ such that θφ′(g′) 6= 0. However, we can make such a choice because, otherwise, for
some g′, θφ′(g′) = 0 for all choices of φ′. This would imply that θφ′(g′gf ) = θω(gf )φ′(g′) = 0 for any
gf ∈Mp(F̂ ), which is a contradiction. This completes the proof of the theorem.

Remark . When dimF V = 3, the theorem above generalizes the Gross–Kohnen–Zagier theorem
regarding Heegner points on modular curves to CM points on Shimura curves. The pull-back trick
has already been used, as explained in Zagier’s paper [Zag85] and the introduction to [GKZ87], to
deduce the Gross–Kohnen–Zagier theorem in a special case from the theorem of Hirzebruch and
Zagier [HZ76]. There, a key ingredient is the simple connectedness of Hilbert modular surfaces.

Combining their computation of the Néron–Tate pairing and a result of Waldspurger [Wal81],
Gross et al. also proved in [GKZ87] that eigen-components of Heegner divisors on X0(N) are
co-linear in the Mordell–Weil group. This can be viewed as a ‘multiplicity one’ result. We can
give a representation-theoretic proof of this result along the same lines as in [Zha09]. Let B be
a quaternion algebra over F such that it splits at exactly one archimedean place of F . Let V
be the trace-free subspace of B. Together with the reduced norm, we obtain a three-dimensional
quadratic space, and G=GSpin(V ) =B×. Let MK be the Shimura curve for an open compact
subgroup K ⊆G(Af ). Let ξ be the Hodge class defined as in [Zha01]. Consider the subspaceMK

of Jac(MK)(F ) generated by CM-divisors Z(x)K − deg(Z(x)K)ξ for all x ∈K \ V̂ . Consider the
direct limit M of MK for all K and consider it as a G(Af )-module. For a G(Af )-module πf ,
let σf be the representation of GL2(Af ) associated by Jacquet–Langlands correspondence. Let
σ∞,(2,2,...,2) be the homomorphic discrete series of GL2(F∞) of parallel weight (2, 2, . . . , 2).

Theorem 4.1. For a G(Af )-module πf with trivial central character,

dim HomG(Af )(M, πf ) 6 1.

If HomG(Af )(M, πf ) is non-trivial, the product σ = σf ⊗ σ∞,(2,2,...,2) is a cuspidal automorphic
representation of GL2(A).

Proof. For the first assertion, we sketch the proof and the complete details can be found in
[Zha09, § 6]. Let ρf be the representation of S̃L2(Af ) defined by the local Howe duality for the
pair (SO(V ), S̃L2) as in the work of Waldspurger. Let ρ∞,(3/2,...,3/2) be the homomorphic discrete
series of S̃L2(F∞) of parallel weight (3/2, . . . , 3/2). Note that we have an equivariance of Hecke
actions on the spaceM and the space S(V (Af )). In our case, Theorem 1.3 actually implies that
generating functions valued inM are all cuspidal forms. Then, HomG(Af )(M, πf ) vanishes unless

ρ= ρf ⊗ ρ∞,(3/2,...,3/2) is a cuspidal automorphic representation of S̃L2(A), and the dimension
of HomG(Af )(M, πf ) is bounded by the multiplicity of ρ in the space of cuspidal automorphic

forms on S̃L(2). The ‘multiplicity one’ result for cuspidal automorphic representations on S̃L(2)
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holds by Waldspurger’s work. For the second assertion, the automorphy of ρ implies that of σ,
again by Waldspurger’s work. 2

4.2 High-codimensional cycles
In the following we want to prove the modularity in Theorem 1.2 along the same lines as in
[Zha09]. Now that we have already assumed the convergence of the generating series, we only
need to verify the automorphy.

Step 0: modularity when r = 1. When r = 1, the assertion is implied by Theorem 1.3. We actually
know that generating functions converge for all linear functionals `.

Step 1: invariance under the Siegel parabolic subgroup. It is easy to see that the series Zφ(g) is
invariant under the Siegel parabolic subgroup of Spr(F ). Indeed, it suffices to consider γ of the
form

n(u) :=
(

1 u
1

)
, m(a) =

(
a

ta−1

)
.

By definition, we have

ω(n(u)g′f )φ(x)WT (x)(n(u)g′∞) = ω(g′)φ(x)WT (x)(g
′
∞).

Thus, every term in Zφ(g) is invariant under n(u). Also, by definition,

ω(m(a)g′f )φ(x)WT (x)(m(a)g′∞) = ω(g′f )φ(xa)WT (xa)(g
′
∞).

Since Z(x)K = Z(xa)K , the sum does not change after a substitution x→ xa.

Step 2: invariance under w1. We want to show that Zφ(g) is invariant under w1, the image of
( 1
−1 ) under the embedding of SL2 into Sp2r. This is the key step of the proof.

First, we can rewrite the sum as

Zφ(τ) =
∑

y∈K\V̂ r−1

∑
x∈Ky\V̂

φ(x, y)Z(x, y)KqT (x,y),

where Ky is the stabilizer of y. One can write

Z(x, y)K =
∑
x1,x2

iy ∗Z(x1)Ky ,

where
iy :MK,y→MK

and the sum is over all

x1 ∈ y⊥ := {z ∈ V̂ : 〈z, yi〉= 0, i= 1, 2, . . . , r − 1}

and x2 ∈ Fy :=
∑r−1

i=1 Fy i satisfying Ky(x1 + x2) =Kyx (see also (3.2)).
Thus, the sum becomes

Zφ(τ) =
∑

y∈K\V̂ r−1,ad

∑
x1∈Ky\y⊥

∑
x2∈Fy

φ(x1 + x2, y)iy∗(Z(x1)Ky)qT (x1)
1 ξ〈x2,y〉q

T (y)
2 ,

where

ξ〈x2,y〉 = exp
(

2πi
d∑

k=1

r−1∑
i=1

(zk,i〈x2, yi〉)
)
,
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and we have a natural decomposition

qT (x) = q
T (x1)
1 ξ〈x2,y〉q

T (y)
2 , τk =

(
τk,1 zk
tzk τk,2

)
, k = 1, . . . , d

where τk,1 ∈H1, zk ∈ Cr−1, τk,2 ∈Hr−1. Here, we simply write Z(x, y), Z(x1), etc., to mean cycle
classes shifted by appropriate powers of tautological line bundles on ambient Shimura varieties.
However, all of these tautological bundles are compatible with pull-backs (with respect to various
compact subgroups K, Ky), or restrictions (from MK to MK,y). We therefore suppress them in
the following exposition to avoid messing up the notation.

For fixed y, applying the modularity for divisors (proved in Step 0) to φ(x1 + x2, y) as a
function of x1, we know that under the substitution τ 7→ w−1

1 τ ,∑
x1∈Ky\y⊥

φ(x1 + x2, y)Z(x1)Kyq
T (x1)
1

becomes ∑
x1∈Ky\y⊥

φ̂ 1(x1 + x2, y)Z(x1)Kyq
T (x1)
1

where φ̂1(x1 + x2, y) is the partial Fourier transformation with respect to x1. Note that we here
implicitly used the convergence of this partial series (by Theorem 1.3). By the Poisson summation
formula, we also know that, under the same substitution,∑

x2∈Fy

φ̂ 1(x1 + x2, y)Z(x1)Kyξ
〈x2,y〉q

T (y)
2

becomes ∑
x2∈Fy

φ̂ 1,2(x1 + x2, y)Z(x1)Kyξ
〈x2,y〉q

T (y)
2 .

Note that ω(w1)φ(x, y) = φ̂x(x, y) is the partial Fourier transformation with respect to the
first coordinate x. It is easy to see that for x= x1 + x2, also φ̂1,2(x1 + x2, y) = φ̂x(x, y). This
proves that

Zφ(w−1
1 τ) = Zω(w1)φ(τ).

This proves that Zφ(g′) is invariant under w1.

Step 3: invariance under Sp2r(F ). We claim that the Siegel parabolic subgroup and w1 generate
Sp2r(F ). In fact, SL2(F )r and the Siegel parabolic subgroup generate Sp2r(F ). Obviously, one
needs just one copy of SL2(F ) since others can be obtained by permutations which are in the
Siegel parabolic subgroup. Furthermore, one copy of SL2(F ) can be generated by w1 and
the Siegel parabolic subgroup. This proves the claim. Thus, we have finished the proof of
Theorem 1.2 by Steps 0, 1 and 2.
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