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Abstract

Medicine, including fields in healthcare and life sciences, has seen a flurry of quantum-related
activities and experiments in the last few years (although biology and quantum theory have
arguably been entangled ever since Schrödinger's cat). The initial focus was on biochemical and
computational biology problems; recently, however, clinical and medical quantum solutions
have drawn increasing interest. The rapid emergence of quantum computing in health and
medicine necessitates amapping of the landscape. In this review, clinical andmedical proof-of-
concept quantum computing applications are outlined and put into perspective. These consist
of over 40 experimental and theoretical studies. The use case areas span genomics, clinical
research and discovery, diagnostics, and treatments and interventions. Quantum machine
learning (QML) in particular has rapidly evolved and shown to be competitive with classical
benchmarks in recent medical research. Near-term QML algorithms have been trained with
diverse clinical and real-world data sets. This includes studies in generating new molecular
entities as drug candidates, diagnosing based onmedical image classification, predicting patient
persistence, forecasting treatment effectiveness, and tailoring radiotherapy. The use cases and
algorithms are summarized and an outlook on medicine in the quantum era, including
technical and ethical challenges, is provided.

Introduction

Quantum computing hardware and software have made enormous strides over the last years
(Gill et al., 2022). Questions around quantum computing’s impact on research and society have
changed from “if” to “when/how”. The 2020s have been described as the “quantum decade”
(Sieger et al., 2023), and the first production solutions that drive scientific and business value are
expected to become available over the next years. Thus, a cross-industry race has begun to secure
quantum talent, build quantum skills, map real-world problems to quantum algorithms, capture
quantum application intellectual property (IP), and prepare for quantum advantages. Certain
types of applications gathered research interest right from the start; for instance, simulating
nature through enhanced chemistry and physics calculations (Daley et al., 2022) and solving
finance problems (Herman et al., 2022).

In healthcare and life sciences, the initial focus was on biochemical and computational
biology problems (Emani et al., 2021; Outeiral et al., 2021; Fedorov andGelfand, 2021;Marchetti
et al., 2022; Cordier et al., 2022; Baiardi et al., 2022). Recently, the possibilities of quantum
computing have increasingly sparked research interest in other fields as well. This is evidenced
by clinical and medical proof-of-concept studies, which have seen a remarkable growth over the
last years in conjunction with the exploration of use cases in healthcare (Flöther et al., 2022a),
medicine (Maniscalco et al., 2022), and life sciences (Flöther et al., 2022b).

Defined by the characteristics of the algorithms and the types of problems for which the
algorithms are used, three primary quantum algorithm application categories can generally be
distinguished:

1. Simulating nature – including chemistry, materials science, and physics
2. Processing data with complex structure – including artificial intelligence / machine

learning (AI/ML), factoring, and ranking
3. Search and optimization – including pricing, risk analysis, and sampling

Note that a given quantum algorithm may be part of more than one category. For example, the
variational quantum eigensolver (VQE) algorithm (Tilly et al., 2022) has been applied to
strongly correlated systems in chemistry (“Simulating nature”) as well as finding the optimal
configuration of nonquantum systems (“Search and optimization”).

A common misconception about quantum computing is that the hardware and software are
very similar to their classical counterparts. This is not the case. In fact, quantum algorithms
leverage the principles of quantum mechanics, including quantum entanglement, interference,
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and superposition, in order to tackle problems in novel ways. For a
classical computer, the computational power is closely related to
the number of transistors. On the other hand, for a quantum
computer the number of quantum basis states that can be explored
and manipulated in a calculation doubles with the addition of each
qubit, thus growing exponentially. This exponential growth
underlies the power of quantum algorithms and enables a range
of use case-dependent benefits, which may include one or more of:

• Accuracy (e.g., of an AI/ML model)
• Calculation speed
• Energy efficiency
• Input data requirements (quality, volume)

Results

The studies are grouped into three main use case areas:

1. Genomics and clinical research
2. Diagnostics
3. Treatments and interventions

The connection strengths between the use case areas and the
algorithm application categories are illustrated in Figure 1; these
were assigned based on the number of proof-of-concept studies
associated with each category as well as the applicability of each
category to problems typical for a given use case area. It is evident
that the category “Processing data with complex structure” is
particularly relevant to health and medicine; most of the proof-of-
concept studies in this review are based on quantum AI/ML
methods.

In the context of quantum AI/ML, variational quantum circuits
(VQCs) are sometimes considered to be building blocks of
quantum neural networks (QNNs) (Wu et al., 2022), that is, neural
networks where parameterized quantum circuits are introduced in
the hidden layers. In other instances, a VQC is treated as a
synonym for a QNN (along with a parameterized quantum circuit
and quantum circuit learning) (Schuld et al., 2021). In this review,
no hard distinction is made.

An overview of the explored use cases is given in Figure 2 and a
list of the studies and their approaches is provided in Table 1. For
many of the proof-of-concept use cases outlined, the quantum
approaches are already competitive with the classical benchmarks;

while many studies have considered downsized versions of the
problems, there is generally no reason to suppose that these
benefits will not carry over to more realistic problem variants.
Moreover, although an entire “quantum algorithm zoo” exists
(Quantum Algorithm Zoo, 2022), the algorithms are all based on a
limited number of core primitives. Therefore, notwithstanding the
particular characteristics of a given problem, such as the data
structure, success of applying one algorithm/primitive in a certain
field likely bodes well for uses of that algorithm/primitive in other
fields. In the following, each study will now be discussed.

Genomics and clinical research

How can we truly understand an individual at the most granular
level? Clearly, genomics is crucial. Over the past decades, we have
seen milestones such as the sequencing of the human genome as
well as genome-wide association studies (GWAS). It has now
become clear, however, that the function and workings of the
human genome are much more complex than imagined. The
correlations between genomes and outcomes are convoluted and
there are, for instance, generally not one-to-one links between
genes and diseases. Moreover, pattern problems in the study of
haplotypes (groups of genes that are inherited together) and single
nucleotide polymorphisms (genomic variations at single base
positions between people) quickly become very complicated,
reaching nondeterministic polynomial-time (NP) hardness
(Lippert et al., 2002).

As a result, there is great interest to adapt the quantum
techniques that have already been developed for problems such as
string search and matching, for instance, based on Grover’s
algorithm (Niroula and Yunseong, 2021), to genomic problems.
Many experiments have focused on better understanding genomic
patterns, leveraging algorithms from the “Processing data with
complex structure” and “Search and optimization” categories. For
example, DNA sequence alignment was explored with Grover’s
algorithm (Sarkar et al., 2021) and the quantum Fourier transform
(QFT) was applied to pairwise sequence alignment (Prousalis and
Konofaos, 2019; Clapis, 2021). De novo DNA sequence
reconstruction was carried out through a framework involving
the quantum approximate optimization algorithm (QAOA)
(Sarkar et al., 2021). Once (genomic) sequences have been
obtained, it is then of great interest to analyze the algorithmic
information in them; this was explored using Grover’s algorithm
and phase estimation (Sarkar et al., 2021). Note that many of these
early advances in better understanding genomic strings and
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Figure 1. Three key quantum computing use case areas in health and medicine
linked to quantum algorithm application categories. Thewider the connecting line, the
more applicable the category.
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Figure 2. Health and medicine quantum computing use cases that have been
investigated in proof-of-concept studies.
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Table 1. Overview of quantum algorithms applied in clinical and medical proof-of-concept studies grouped by algorithm application category

Quantum algorithms Study focus References

Simulating nature

Quantum phase estimation (QPE),
variational quantum
eigensolver (VQE)

Active space selection and embedding for F2, [Fe]
hydrogenase, and temoporfin

Izsák et al. (2022)

Processing data with complex structure

Quantum Fourier transform (QFT) Pairwise sequence alignment Prousalis and Konofaos (2019), Clapis (2021)

Quantum neural network (QNN) Force fields Kiss et al. (2022)

Quantum generative adversarial
network (QGAN)

Generation of molecular entities as drug
candidates

Li et al. (2021)

Quantum support vector classifier
(QSVC)

Virtual screening in drug discovery Mensa et al. (2023)

QSVC, QNN Classification of molecular descriptor data Batra et al. (2021)

Quantum evolution kernel Toxicity screening Albrecht et al. (2023)

Quantum determinantal sampling Clinical data imputation Kazdaghli et al. (2023)

Orthogonal QNN Classification of retinal color fundus and chest X-
ray images

Landman et al. (2022)

QFT Image reconstruction Kiani et al. (2020)

QNN, QSCV Classification of ischemic heart disease Maheshwari et al. (2023)

Transfer learning-based QNN Classification of breast cancer Azevedo et al. (2022)

QSVC trained via quantum kernel
alignment

Classification of rheumatoid arthritis with
thermal hand images

Ahalya et al. (2023)

QNN, Quantum distance classifier
(QDC)

Classification of Alzheimer’s disease Kathuria et al. (2020), Shahwar et al. (2022)

QNN, VQC Classification of COVID-19 Sengupta and Srivastava (2021), Yu (2021), Amin et al.
(2022), Houssein et al. (2022)

QNN Classification of standardized biomedical images Cherrat et al. (2022)

VQC Classification of diabetes Gupta et al. (2022)

Quantum random forests, quantum k-
nearest neighbors,
quantum decision trees, quantum
Gaussian Naïve Bayes

Classification of heart failure Kumar et al. (2021)

QDC, QSVC Classification of bone marrow transplant survival,
breast cancer, heart failure

Moradi et al. (2022)

VQC, QNN Classification of states of mind with
electroencephalogram (EEG) signals

Aishwarya et al. (2020)

Quantum k-means Classification of heart disease Kavitha and Kaulgud (2022)

QSVC Classification of medication persistence for
individuals with rheumatoid arthritis

Krunic et al. (2022)

QNN Drug response prediction Sagingalieva et al. (2023)

QNN Treatment effectiveness of knee arthroplasty Heidari et al. (2022)

QNN COVID-19 outbreak prediction Kairon and Bhattacharyya (2021)

Quantum deep reinforcement learning Adaptive radiotherapy Niraula et al. (2021)

Search and optimization

Grover’s DNA sequence alignment Sarkar et al. (2021a)

QAOA (quantum approximate
optimization algorithm)

De novo DNA sequence reconstruction Sarkar et al. (2021b)

Grover’s, QPE Estimation of algorithmic information from DNA
sequences

Sarkar et al. (2021c)

QAOA, VQE, VQC, Grover’s Protein structure for lattice model-based systems Fingerhuth and Babej (2018), Robert et al. (2021),
Chandarana et al. (2022), Khatami (2023)

(Continued)
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sequences may of course also be applied to related problems in
omics in due course, for instance, involving RNA sequences.
Likewise, the pattern and information encoding perspective can
also be complemented with deeper insights at the molecular level
through the application of quantum algorithms from the
“Simulating nature” and “Search and optimization” categories.

In addition to genomics, there are diverse fields of clinical
research in biology and biochemistry that seem poised to benefit
from future quantum advantages. The discovery, and ultimately
development, of new molecular entities and drugs is of central
importance here. While millions of compounds have already been
considered in the literature, the total number of possible carbon-
based compounds whose molecular masses are similar to those of
living systems is around 10^60. Given the large fraction of this
gargantuan chemical space that has not yet been explored, the
significant potential for future breakthroughs is clear (Dobson,
2004). Multiple overviews about quantum opportunities in the
drug discovery space have been published (Cao et al., 2018; Li et al.,
2021; Blunt et al., 2022; Santagati et al., 2023). “Simulating nature”
algorithm applications play a prominent role, but the other two
categories have also been investigated in this context. A general
theme is to reduce the need for lengthy and expensive experiments
through better simulations of biology, thus creating in silico
laboratories. The biological molecules and systems that can be
modeled with quantum computing today are still relatively small,
but these are expected to continually scale as quantum hardware
and software further mature.

Protein folding and design have gained much attention in
recent years through both classical (Callaway, 2022; Lin et al.,
2022) and quantum advances. For instance, lattice model-based
systems were explored using variational quantum algorithms,
including QAOA (Fingerhuth and Babej, 2018), VQE (Robert
et al., 2021), and other variational techniques (Chandarana et al.,
2022), as well as Grover’s algorithm (Khatami, 2023). For the VQE
adaptation (Robert et al., 2021), it was even shown that
the number of physical qubits required scales only as the square
of the number of amino acids (but without a convergence
guarantee), putting structures with 100þ amino acids within reach
as quantum hardware develops over the next years (Gambetta,
2022). Generalization to nonlattice models was investigated through
quantum walk and quantum Markov chain Monte Carlo methods
(Allcock et al., 2022; Casares et al., 2022). Given the classical advances,
it is likely that quantummethods will be particularly advantageous for

those problem variations that are most challenging for classical
methods. For example, this includes trying to predict the structures
of proteins with unnatural amino acids (where classical machine
learning struggles due to a lack of training data) or trying to
understand conformations and behavior in dynamic settings, such as
when proteins interact with water molecules, ligands, and other
proteins. For protein–ligand interactions, symmetry-adapted pertur-
bation theory (SAPT) was combined with VQE in benchmarks for
systems containing the human cancer-relevant protein lysine-specific
demethylase 5 (KDM5A) (Malone et al., 2022), and VQE was also
extended through densitymatrix embedding theory (DMET) in order
to calculate the binding energy differences for β-secretase (BACE1)
inhibitors (Kirsopp et al., 2022). In addition, docking was investigated
through Gaussian boson sampling (Banchi et al., 2020) (a restricted
form of quantum computing (Hamilton et al., 2017)) by predicting
ligand binding to the tumor necrosis factor-α converting enzyme,
which is connected with immune system diseases and cancer.

A variety of further applications to help accelerate the drug
discovery process has been explored. These include estimating
force fields, accurate calculations of which are crucial for scaling
molecular dynamics techniques, through QNNs (Kiss et al., 2022)
and VQE (Mishra and Shabani, 2019). In addition, QPE and VQE
methods were studied for the active space, the limited number of
orbitals that are of primary interest and treated fully quantum
mechanically, of (strongly correlated) chemical systems; F2, [Fe]
hydrogenase, and the photosensitizer temoporfin were considered
(Izsák et al., 2022). Other studies focused on estimating the
quantum (and classical) resources to compute the electronic
structure of cytochrome P450 enzymes (CYPs) via QPE (Goings
et al., 2022) and applying quantum generative adversarial networks
(QGANs) to create new drug candidates (Li et al., 2021). Quantum
machine learning, specifically quantum support vector classifiers
(QSVCs) that enhance calculation of the kernel, also yielded
promising results compared with classical state-of-the-art methods
for virtual screening in drug discovery (Mensa et al., 2023).
In another investigation, cheminformatic molecular descriptor
data sets for COVID-19, as well as whole-cell screening sets
for plague and Mycobacterium tuberculosis, were compressed
and then classified using QSVCs and QNN-like methods
(Batra et al., 2021). Finally, absorption, distribution, metabolism,
excretion, and toxicity (ADMET) studies may be enhanced, as was
demonstrated in a toxicity screening experiment where a quantum
graph machine learning algorithm (quantum evolution kernel)

Table 1. (Continued )

Quantum algorithms Study focus References

Quantum walk and quantum Markov
chain Monte Carlo

Protein structure for nonlattice model-based
systems

Allcock et al. (2022), Casares et al. (2022)

VQE Protein–ligand interactions involving lysine-
specific demethylase 5 (KDM5A)

Malone et al. (2022)

VQE Binding energy differences for β-secretase
(BACE1) inhibitors

Kirsopp et al. (2022)

Gaussian boson sampling* Ligand binding to the tumor necrosis factor-α
converting enzyme

Banchi et al. (2020)

VQE Force fields Mishra and Shabani (2019)

QPE Electronic structure of cytochrome P450 (CYP)
enzyme active sites

Goings et al. (2022)

*Gaussian boson sampling is a nonuniversal quantum computational method.
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was applied to a biochemistry data set with information about
286 molecules and their effects on mice (Albrecht et al., 2023).

Diagnostics

Only when it is possible to accurately assess an individual’s health
status and potential future development in fine detail can tailored
treatments and interventions be properly assigned. As such,
quantum computing may enable the move away from (late)
diagnoses focused on single diseases toward a regime where a
continually updated health status can be determined for each
individual; this will only be possible by building on new insights
from the previous use case area, “Genomics and clinical research.”

Quantum AI/ML algorithms are particularly relevant for
diagnostic applications. Not medical care but health-related
behaviors, socioeconomic factors, and environmental aspects are
now believed to contribute up to 90% to health outcomes (Hood
et al., 2016). Hence, it is imperative to understand the quickly
growing and increasingly heterogeneous health-relevant data that
are becoming available, particularly real-world data (RWD) such
as information from electronic health records (EHRs), claims,
disease registries, and fitness trackers (Real-World Evidence,
2022). The many potentially pertinent variables lead to high-
dimensional feature spaces and interactions between the variables
result in complex interdependencies, correlations, and patterns;
quantum AI/ML algorithms can penetrate such data structures in
ways that are beyond the means of purely classical methods.
Furthermore, “Processing data with complex structure” quantum
algorithms can even help with enhancing clinical data. For
example, quantum determinantal sampling circuits based on
Clifford loaders were used to impute a synthetic data set as well as
theMedical InformationMart for Intensive Care (MIMIC-III) data
set, which contains diagnostic and procedural information for
7,214 patients (Kazdaghli et al., 2023).

Analyzing and getting actionable insights from medical images
is a field that has significantly grown in importance over the last
years and decades. As such, a broad array of quantum applications
is being explored in this space, including the enhancement of
processing steps such as image edge detection, segmentation, and
classification (Elaraby et al., 2022). In classifying retinal color
fundus and chest X-ray images, orthogonal QNNs were inves-
tigated, and quantum circuits were also used to accelerate
the training of classical neural networks (Landman et al., 2022).
Based on computed tomography (CT) and positron emission
tomography (PET) data, QFT-based algorithms were developed
for enhancing image reconstruction (Kiani et al., 2020). QNNs and
QSCVs were applied to EHRs to classify ischemic heart disease
(Maheshwari et al., 2023), while transfer learning-based QNNs
were explored in the context of classifying breast cancer (Azevedo
et al., 2022). Rheumatoid arthritis was detected by classifying
thermal hand images with QSVCs trained via quantum kernel
alignment (Ahalya et al., 2023). Alzheimer’s disease was classified
with MRI images using QNNs (Shahwar et al., 2022), and
COVID-19 was classified with QNNs using chest X-ray (Houssein
et al., 2022) as well as CT lung images (Sengupta and Srivastava,
2021; Amin et al., 2022). Finally, quantum transformers were
explored to achieve more efficient neural network architectures
for classifying standardized biomedical images; the quantum
architectures only required thousands of parameters, compared
withmillions for the best classical approaches (Cherrat et al., 2022).

Next to images, diseases and disease risks have also been
classified and predicted in early studies of supervised quantum

AI/ML. Copy number variations (CNVs), differences in the
number of repetitions of a genomic section between individuals, in
neuronal single-cell samples from healthy individuals and those
with Alzheimer’s disease were used as features; building on the
efficiency with which quantum computers can evaluate inner
products, this allowed quantum distance classifiers (QDCs) to
predict whether a given sample is from a healthy or a sick
individual (Kathuria et al., 2020). COVID-19 was diagnosed
through VQCs based on features such as temperature (fever),
fatigue, muscle pain, and coughing (Yu, 2021). VQCs were also
employed to predict diabetes (Gupta et al., 2022). A diversity of
methods – quantum random forests, quantum k-nearest neigh-
bors, quantum decision trees, and quantum Gaussian Naïve Bayes
– was studied for the purpose of classifying heart failure (Kumar
et al., 2021). Conversely, QDCs and QSVCs were applied to assess
multiple conditions in the same study, namely bone marrow
transplant survival, breast cancer, and heart failure (Moradi et al.,
2022). Moreover, VQCs as well as QNNs were even used to predict
states of mind based on electroencephalogram (EEG) signals from
individuals who responded toward a product with a like/dislike in a
neuromarketing experiment (Aishwarya et al., 2020). Finally, in
the same way that unsupervised learning is a younger discipline
than supervised learning for classical ML, the field of unsupervised
quantumAI/ML is younger than supervised quantumAI/ML. Still,
even here there is already early medical work underway – the
quantum k-means algorithm was used for clustering individuals
based on their demographic and laboratory measurement data and
predicting heart disease (Kavitha and Narasimha, 2022).

Treatments and interventions

The applications outlined in the previous two use case areas,
“Genomics and clinical research” as well as “Diagnostics,” form the
foundation for tailored treatments and interventions. As for
diagnostics, quantum AI/ML algorithms lend themselves particu-
larly well to treatment and intervention use cases.

Next to knowing an individual’s health status and disease risks,
it is essential to understand likely adherence, engagement, and
behavior in order to achieve optimal outcomes (Dentzer, 2013).
RWD again plays a central role here. Based on EHRs, for instance,
themedication persistence of individuals with rheumatoid arthritis
was predicted with QSVCs and a general framework to help assess
empirical quantum advantage potential was introduced (Krunic
et al., 2022). Another essential research topic on the road to
precision medicine is treatment effectiveness. In one study, drug
response was predicted by deriving IC50 values (the drug
concentrations where the response is half of the maximum) using
QNNs (Sagingalieva et al., 2023). In addition, for the purpose of
forecasting knee arthroplasty QNNs were applied to clinico-
demographic data from 170 individuals that were treated over two
years. The results were encouraging, but the study also noted that
further validation using unstructured RWD is needed (Heidari
et al., 2022). Optimal measures at the population level require
better models too, for example, regarding outbreak prediction and
disease spread dynamics. Using a COVID-19 time series data set
with confirmed cases, number of deaths, and number of recovered
individuals, different types of QNNs (including continuous-
variable ones) were applied for this purpose (Kairon and
Bhattacharyya, 2021).

As quantum techniques continue to mature and proliferate,
there is hope that they can accelerate the discovery process itself as
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well as enable progress for some of the thorniest medical treatment
and intervention problems. Precision oncology is a case in point.
Currently, only a third of individuals respond to drug-based cancer
therapies (Spilker, 2022). One key challenge is the need to make
sense of terabytes and terabytes of relevant data for an individual
with cancer. Work has already begun on leveraging quantum
algorithms for the purpose of getting actionable insights from such
data and ultimately tailoring cancer treatments to the level of the
individual (Abbott, 2021). One of the early applications showing
promise is adaptive radiotherapy, as was demonstrated by modeling
the clinical decisions as quantum states and applying quantum deep
reinforcement learning to an institutional data set based on 67 stage
III nonsmall cell lung cancer patients (Niraula et al., 2021). Yet
another research frontier concerns the intersection of quantum
algorithms with single-cell technologies with the aim to enhance the
development of cell-centric therapeutics (Basu et al., 2023).

Conclusion and perspective

Ever since the beginnings of medicine thousands of years ago,
medicine has continually incorporated new ideas, knowledge, and
methods to become more effective. Quantum computing is very
young but, as the only known computational model that has
exponential speedups compared with traditional approaches
(National Academies of Sciences, Engineering, and Medicine,
2019), poised to become a mighty tool in healthcare and medicine
with the power to make previously intractable problems now
solvable. Despite its youth, quantum computing has already
achieved a number of general successes, as summarized in Table 2.

For quantum computing to become this powerful enabler for
health and medicine and for a wide range of quantum-enhanced
solutions to go into production, however, a wide range of technical
and ethical challenges must still be overcome (Figure 3). First,
quantum hardware and software need to continue improving,
including more efficient algorithms, decreased error rates, and
increased qubit numbers. Second, there are various challenges
around making quantum computing practical for medicine which
are similar to those in digital health efforts. These include data
accessibility (without which even quantum computing cannot
wield its power), model explainability (essential for obtaining the

support of clinicians, medical practitioners, and individuals), and
patient privacy (critical for developing the long-term trust of
individuals in the technology). Third, new challenges specific to
quantum computing have appeared. Examples are data security,
replicability, and skill development, which will now be discussed
in turn.

Some quantum algorithms, specifically Shor’s and Grover’s
algorithm, are able to solve the mathematically hard problems at
the heart of current cryptography significantly faster than
classical methods. All data that are not encrypted with
quantum-safe protocols are thus already at risk due to the
possibility of “harvest now, decrypt later” attacks (Harishankar
et al., 2023); given the sensitivity and long security time value of
medical data, this problem is exacerbated. As a result, cross-
industry quantum-safe standards are already being developed
(NIST Announces First Four Quantum-Resistant Cryptographic
Algorithms, 2022) and will soon be implemented (Migrating to
Post-Quantum Cryptography, 2022). Furthermore, replicability,
required in order to achieve clinical approvals and individual
acceptance, is a challenge for quantum computers. Quantum
computers, by their very nature, are designed to go beyond
traditional means and address classically intractable problems;
for many problems, however, new (quantum) solutions cannot be
efficiently verified. Replicability is further complicated by the
probabilistic nature of quantum computing, the multifarious
architectures, the presence of noise, and the (still) limited access
to quantum hardware. Hence, methodologies and frameworks to
secure regulatory approvals and general support will need to be
developed, as has been done for classical AI/ML (Benjamens et al.,
2020). Finally, there is fierce competition for quantum talent,
particularly practitioners who combine quantum skills with
medical expertise. As a result, talent development needs to be
extended, including the introduction of new roles such as
“quantum translators” (Mohr et al., 2022).

The development of medicine-focused quantum computing
collaborations and consortia is critical with regard to addressing
many of these challenges. Such ecosystems are beginning to emerge
(Zinner et al., 2021a, 2021b; Major investment for developing
Denmark’s first fully functional quantum computer, 2022;
Cleveland Clinic and IBM Begin Installation of IBM Quantum

Table 2. General achievements of quantum computing in healthcare, medicine, and life sciences as well as other fields

Success Description

Competitive results As evidenced by the literature covered in this review, quantum algorithms are on the cusp of providing
benefits (in terms of accuracy, calculation speed, energy efficiency, or input data requirements) for certain
medical applications

Development of innovation ecosystems The commercialization of quantum computing has led to the creation of a multiplicity of quantum hubs and
valleys across the globe, bringing together large and small organizations to drive cutting-edge research and
shaping the future of medicine (Murphy and Douglas, 2023, QuantumBasel brings the first commercially
viable physical quantum computer to Switzerland, 2023)

Improvements based on quantum-related
computing methods

In conjunction with (universal) quantum computing research, quantum annealing (Quantum in Life Sciences:
The Future is Now, 2023) and quantum-inspired (classical) (Buntz, 2023) methods are being enhanced,
enabling additional computational benefits in healthcare and life sciences

Progress of other quantum technologies The principles of quantum mechanics are not just useful for computational purposes but are also employed
to achieve quantum-safe communication and quantum sensors with unprecedented sensitivities, where
securing medical data and measuring biological signals are key applications respectively (Flöther and Griffin,
2023)

Public fascination Quantum computing, with its counterintuitive foundations, has sparked public interest with many people
looking to learn more about and enter the field, schools and universities offering new courses, and medical
fields being reimagined (Flöther, forthcoming)
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System One, 2022; uptownBasel opens first quantum computer
hub for commercial use in Switzerland, 2022) to help practitioners
tackle problems with a quantum state of mind. In healthcare, there
has been much discussion about the journey towards precision
medicine and the quadruple aim (better health, lower costs,
enhanced patient experiences, and improved healthcare practi-
tioner work lives) (Bodenheimer and Christine, 2014). While a
range of technical and ethical challenges remain, quantum
computing is poised to become a key enabler for advancing
towards the holy grail: keeping people healthy through proactive
medical care and guidance at the level of an individual. All of this
will take time and effort, but the significant rewards along the road
toward quantum-enhanced health and medicine make it a highly
worthwhile journey to start sooner rather than later.

Methods

The literature search was conducted primarily through the Google
Scholar and PubMed platforms. The logical operators OR and
AND were combined with search terms such as the following:
AI, algorithm, application, artificial intelligence, biology, chem-
istry, clinical, clinical research, diagnosis, diagnostics, drug,
genomics, health, intervention, machine learning, medicine, ML,
nature, optimization, QML, quantum, quantum AI, quantum
artificial intelligence, quantum computing, quantum machine
learning, search, simulation, and treatment.

Studies were only included if the work explored quantum
computing algorithms for applications within, or closely related to,
health and medicine. Moreover, the focus of this review is on the
quantum circuit model and gate-based quantum computers.
Gaussian boson sampling is briefly touched on, but other
nonuniversal approaches, such as quantum annealing, were
excluded.
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