
J. Austral. Math. Soc. (Series A) 68 (2000), 104-125

HAHN-BANACH TYPE THEOREMS FOR LOCALLY
CONVEX CONES

WALTER ROTH

(Received 25 September 1998; revised 18 May 1999)

Communicated by P. G. Dodds

Abstract

We prove Hahn-Banach type theorems for linear functionals with values in R U {+oo) on ordered cones.
Using the concept of locally convex cones, we provide a sandwich theorem involving sub- and superlinear
functionals which are allowed to attain infinite values. It renders general versions of well-known extension
and separation results. We describe the range of all linear functionals sandwiched between given sub-
and superlinear functionals on an ordered cone. The results are of interest even in vector spaces, since
we consider sublinear functionals that may attain the value +00.
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1. Introduction

A cone is a set & endowed with an addition (a, b) H» a+b and a scalar multiplication
(or, a) *->• aa for real numbers a > 0. The addition is supposed to be associative and
commutative, and there is a neutral element O e ^ 1 . For the scalar multiplication the
usual associative and distributive properties hold, that is a(fia) = (a0)a, (a + fi)a =
aa + fia, and a(a + b) = aa + ab for all a, b € 3? and or, ft > 0. We have \a = a
and 0a = 0 for all a € P.

The cancellation law, stating that a + c = b + c implies a = b, however, is not
required in general. It holds if and only if the cone & may be embedded into a real
vector space.

In addition we assume that & carries an order, that is a reflexive transitive relation
< such that a < b implies a + c < b + c and aa < ab for all a, b,c e & and a > 0.
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[2] Hahn-Banach type theorems 105

Since equality in &* is obviously such an order, all our results will apply to cones
without order structures as well.

A linear functional on a cone & is a mapping /x : P -*• R = IR U {+00} such
that ix(a + b) = fj.(a) + fi(b) and fi(aa) = a(i(a) for all a, b 6 £? and a > 0. In IR
we consider the usual algebraic operations, in particular a + 00 = +00 for all a e IR,
a (+00) = +00 for all a > 0 and 0(+oo) = 0. The functional fi is called monotone
if a < b implies ^.(a) < fi(b).

In various places the literature deals with linear functionals on cones which take
values in IR U {—00} ([4,6]) instead. The difference between those two points of view
is essential and not just a question of reversing the order on IR. In vector spaces both
approaches coincide, since linear functionals can take only finite values on invertible
elements, but in applications for cones the value +00 arises more naturally. Moreover,
allowing sublinear functionals with values in IR in connection with Hahn-Banach type
theorems leads to more satisfying results which include investigations of hypolinear
functionals on vector spaces as in [1].

In Section 2 we formulate a sandwich theorem for ordered cones which improves
the result given in [4]. In Section 3 we turn to locally convex cones, which pro-
vide topological structures on cones that generalise locally convex topological vector
spaces. In this context we prove a generalisation of our first result. Section 4 contains
our main extension and separation theorems. In Section 5 we look at the range at
a given element of a cone of all linear functionals which are sandwiched between a
sub- and a superlinear functional. Our main result generalises the well-known Sup-Inf
Theorem ([2,5,7]) for subharmonicity with respect to a subcone.

2. A Sandwich Theorem

In the following let & be an ordered cone. A sublinear functional on & is a
mapping p : &> -*• IR such that

p(aa) = ap{a) and p(a + b) < p(a) +p(b)

holds for all a, b € & and a > 0. Likewise, a superlinear functional on &* is a
mapping q : & —• IR such that

q(aa) = aq(a) and q{a + b) > q(a) + q(b)

holds for all a, b e £* and a > 0. Note that superlinear functionals can assume only
finite values in elements a € & such that — a € 9 as well. The following Hahn-
Banach type sandwich theorem is the basis for the duality theory of ordered cones.
It improves the result in [4], since we only require the involved sub- and superlinear
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functionals to comply with the order structure in an obvious way. None of them needs
to be monotone.

It is convenient to use the pointwise order relation for functions / , g on &; that is
we shall write/ < g to abridge/ (a) < g(a) for all a € &>.

THEOREM 2.1 (Sandwich Theorem I). Let & be an ordered cone and let p :£?>-+
R.be a sublinear and q : & -» Ra superlinear functional such that

< p{b) whenever a < b for a,b € &.

There exists a monotone linear functional /A :£?—>• R such that q < /x < p.

PROOF. We denote by X the set of all monotone sublinear functionals s : &> —> K
such that q < s < p. As the functional

s{a) = inf [p(b) \a<b,be &>} for all a € &

is obviously contained in X, we see that X is not empty. We consider the pointwise
order on X and apply Zorn's Lemma in order to show that X contains a minimal
element: Let C be a totally ordered subset of X. and set

so(a) = inf {s(a) | s e C] for all a e &.

It is straightforward to check that s0 is sublinear, monotone, and that q (a) < so(a) <
p (a) holds for all a 6 <0?. Therefore s0 is a lower bound for C in X. Following Zorn's
Lemma, X contains a minimal element /x, and all left to show is that n is indeed a
linear functional: For an arbitrary fixed element OQ € & set

a0 = sup{q(c) — fj.(b) \ b,c € {?, fi(b) < +oo, c < a® + b}.

We observe that for any such c and b as in the definition of a0 we have

q{c) < ix{c) < fi(ao + b) < fx(ao) + fx(b),

hence q(c)—/j,(b) < ^(a0) and q(ao) < a0 < IA(OQ). NOW we define a functional jx by

fl(a) = inf{ix(b) + ka0 \ b e &>, k > 0, a < b +

In order to prove that q(a) < jx(a) holds for all a 6 ^ w e have to show that a <
implies q(a) < /x(b) + ka0. The latter is obvious if fx(b) = +oo or if k — 0 since
is monotone. Otherwise, we have (a/k) < ao + (b/k) and by the definition of ao

«o > q(a/k) - ix(b/k), or ka0 > q(a) -
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Clearly, jx is sublinear and monotone, and since /i </xwe conclude that jx — /x by
the minimality of /x. Thus

/x(ao) = a0 = sup{<7(c) — /x(b) \ b, c e &, //(&) < +00, c < ao + b}.

But the mapping Oo •-*• <*o : <̂ * —• R is obviously superlinear. This shows that fi is
linear and completes our proof. •

Note that the condition for q and p in Theorem 2.1 is fulfilled if q < p and if one
of these functionals is monotone. The superlinear functional q however, may not be
omitted altogether (or equivalently, replaced by one that allows even the value —00)
without further assumptions. We shall demonstrate this in the following example:

EXAMPLE 2.2. Let & be the vector space of all sequences in OS with only finitely
many non-zero elements. For a = (or,),€N € & set n(a) = max{/ e N | a, ^ 0}, if
a •£ 0 and rc(0) = 0. We define a functional p on & by

+oo if at least one a, > 0,

P ' n(a) 2 J a, if a, < 0 for all i e N.

Sublinearity for p is easily checked, and p is even monotone if we consider the
canonical (pointwise) order on &. But-we do not provide a superlinear functional q
as required in the assumption of the preceding Sandwich Theorem 2.1, and we shall
show that there is no linear functional / / o n ^ which is dominated by p in this case.
Assume to the contrary that there is such a functional /x and set en = /x(—en) where en

denotes the n-th unit sequence in &. For any n > 2 and X > 0 set an = —{Xe\ + en).
Then (x(an) = A.£[ + en, and as /x(an) < p(an) — —n(k + 1), we conclude that
Xei +en < —n(k + 1), that is en < —X(£i +n) — n. But for an n > —Si, this can not
hold true for all k > 0.

This example shows that even on a vector space & for a non-finite sublinear
functional p (those functionals are sometimes referred to as hypolinear functionals in
the literature, see [1]) there may not be a single linear functional dominated by p . Our
example may be slightly modified in order to demonstrate that the same may hold true
even for a finite sublinear functional p if &^ is only a cone. Let & be the cone of
all such sequences from Example 2.2 which have only non-positive components, and
define the functional p as above. Then p is finite on &, and the same argument as
before shows that there is no IR-valued linear functional an £? that is dominated by p.

For Hahn-Banach type extension and separation results a sandwich-type theorem
which allows the functional q to attain the value —oo clearly seems desirable. The
remainder of this paper will be largely devoted to clarify the additional conditions
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which are required in this situation. To prepare our results, let us generalise the notion
of a superlinear functional. We set

1 = K U {+oo,-oo}

and further extend the addition and the multiplication by non-negative reals to W
through a + (—oo) = —oo for all a e W (thus we set +oo + (—oo) = —oo in
particular), a(—oo) = —oo for all a > 0 and 0(—oo) = 0. The order of W is
canonical.

An extended superlinear functional on & is a mapping q : 8? -> W such that

q(aa) = ceq(a) and q(a + b) > q(a) + q(b)

holds for all a, b e <^anda > 0. A sandwich theorem involving extended superlinear
functionals is best formulated using the concept of locally convex cones.

3. Neighbourhoods and locally convex cone topologies

A subcone of an ordered cone & is a non-empty subset which is closed for addition
and multiplication by non-negative scalars.

A subset ^ of 0* is convex if kcx + (1 — k)c2 e tf whenever ci, c2 € ^ and
A. € [0, 1]. It is called increasing, or decreasing if a € & whenever c < a, or a < c
for a € & and some c e ^ , respectively.

Because subtraction and multiplication by negative scalars are generally not avail-
able in a cone, a topological structure should not be expected to be invariant for
translation and scalar multiplication. The approach to locally convex cones via con-
vex quasiuniform structures was developed in [5] and uses the following motivation:
With every K-valued monotone linear functional \x on & we may associate a subset

v = {(a, b)e&>2\ n(a) < fi(b) + 1}

of &2 with the following properties:

(Ul) vis convex;
(U2) if a < b for a, b 6 &>, then (a, b) 6 v;
(U3) if (a, b) € kv and (b, c) e pv for k, p > 0, then (a, c) e(k + p)v;
(U4) for every b e & there is k > 0 such that (0, b) e kv.

Any subset v of &2 with the above properties (Ul) to (U4) merits being called a
uniform neighbourhood for ^*, and any family "V of such neighbourhoods fulfilling
the usual conditions for a quasiuniform structure (see [8]), that is

(U5) for M, v e "V there is w € "V such that w C u n u;
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[6] Hahn-Banach type theorems 109

(U6) kv e "V for all v e V and A. > 0,

generates a locally convex cone (&, Y) as elaborated in [5]. More specifically, Y
creates three hyperspace topologies on &, and every v e Y defines neighbourhoods
for an element a e & by

v(a) = [b € t? | (b, a) e kv for all A. > 1} in the upper topology,

(a)v = {b € & | (a, b) € kv for all A. > 1} in the lower topology,

v(a)v = v(a) D (a)v in the symmetric topology.

It is convenient to think of a locally convex cone {&, Y) as a subcone of a full
locally convex cone &, that is a cone which contains the neighbourhoods v as positive
elements (see [5, Chapter I]). Referring to the order in &, the relation a e v(b) may
be reformulated as a < b + v. This leads to a second and equivalent approach to
locally convex cones that uses the order structure of a larger full cone in order to
describe the topology of &* (see also [8]). Let us indicate how this full cone & may
be constructed (for details, see [5, Chapter 1.5]). For a fixed neighbourhood v e "Y set

^ = {a 0 av | a € &, 0 < a e R).

We use the obvious algebraic operations on & and the order

a®av < b® fiv

ifeithera = /Janda < b,ora < fiand\a, b) € A.vforallA, > /J— a. The embedding
a (-• a © Ov preserves the algebraic operations and the order of &. The procedure
for embedding a locally convex cone ( ^ , V) into a full cone ( ^ , Y) containing a
whole system V of neighbourhoods as positive elements is similar and elaborated in
[5, Chapter 1.5].

In the following we shall use this order theoretical approach. We may always
assume that a given locally convex cone ( ^ , Y) is a subcone of a full locally convex
cone ( ^ , Y) that contains all neighbourhoods as positive elements, and we shall use
the order of the latter to describe the topology of &. The above conditions (Ul) to
(U6) for the quasiuniform structure on £? transfer into equivalent conditions involving
the order relation of & as follows:

(VI) 0< vforalluer;
(V2) for «, v e V there is w e "V such that w < u and w < v;
(V3) kv ef whenever v 6 V and A. > 0;
(V4) for v € V and every a e ^ there is A, > 0 such that 0 < a + kv.

Condition (V4) states that every element a 6 & is bounded below. The quasiuniform
structure of & is generated by the subsets

v = {(a, b) e &1 | a < b + v] C &1

https://doi.org/10.1017/S1446788700001609 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001609


110 Walter Roth [7]

corresponding to the neighbourhoods v e f .
Standard examples for locally convex cones include the extended real line R (the

neighbourhoods are the strictly positive real numbers), cones of convex subsets of
a given locally convex topological vector space (set inclusion defines the order, the
neighbourhoods are neighbourhoods of the origin in the given space), or cones of
IR-valued functions with various choices for the neighbourhood systems. These and
related examples are elaborated in detail in [5, Chapter I].

A linear (sublinear, superlinear) functional (i on & is said to be (uniformly)
continuous with respect to a neighbourhood v if

M a ) < /t(i) + 1 holds whenever a < b + v.

Uniform continuity implies monotonicity and continuity with respect to the upper,
lower and symmetric topologies on & and R.

The set of all uniformly continuous linear functionals fi : & -*• D& with respect
to a certain neighbourhood v e "V is called the polar v° of v. The union of all
polars, that is the set of all linear functionals that are continuous with respect to some
neighbourhood v € V, is the dual cone &* of $*. It is endowed with the pointwise
algebraic operations and the topology w(£?*, &) of pointwise convergence of the
elements of ^*, considered as functions ort~^* with values in K with its usual
topology. The polar of a neighbourhood is seen to be w(&*, <^)-compact and convex
([5, Theorem II.2.4]).

We are now ready to formulate a generalised sandwich theorem.

THEOREM 3.1 (Sandwich Theorem II). Let (&, Y) be a locally convex cone, and
let v 6 V. For a sublinear functional p : & —• R and an extended superlinear
functional q : & -> IE there exists a linear functional fi € v° such that q < fi < p if
and only if

?(o) < p(b) + I whenever a < b + v.

PROOF. The necessity of the condition for p and q is evident, as for any linear
functional fi e v° such that q < n < p, and for a < b + v we infer from the definition
of v° that

q(a) < fi(a) < fi(b) + 1 < p(b) + 1.

For the converse, we assume that our condition for p and q holds for the neighbourhood
v e V and use the full cone & = {a © av \ a € &, 0 < a € K} from above. We
extend the sublinear functional p to & setting

p(a®av) = p(a)
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and define q on !? by

q(a®av) = sup{q(d) — k | d € £?,k > 0 and d < a + kv] + a.

As 0 < a + kv for some A, > 0 by (U4), we observe that

q(a © av) > —A, + or > — oo.

It is straightforward to check that q is superlinear. In order to apply our Sandwich
Theorem I for the functionals p and q on the ordered cone & we need to show that

a®av<b(&f5v implies q(a ®av) < p(b®fiv).

We argue as follows. By definition of the order on & we have either a = /? and a < b,
or a < /?anda < b+(f$ — a)v. For any d < a+kv this shows d <
hence q(d) < p{b) + (A. + 0 - a) and (tf(rf) - k) + a < p(b) + 0, thus

q(a © av) < p(b) + 0 = p(Z> © ^v).

So there is indeed a monotone linear functional \x on & such that q < \x < p. As
A(w) < p(v) = 1, we realise that the restriction (i of p. to the subcone ^ is in the
polar of v. Finally, q(a) < q{a) and p(a) = p(a) holds for all a e £?, hence /u,
satisfies the required properties. ^ •

An interesting special case occurs if we choose the extended superlinear functional
as q(0) = 0 and q(a) = -oo for all 0 ^ a € &. Theorem 3.1 states that for a
sublinear functional p on a locally convex cone (<^\ y) and for v e V there is ix e v°
such that (i < p if and only if p is bounded below by — 1 on the lower neighbourhood
(0)v. For locally convex vector spaces this result is due to [1].

A convex subset S£ of & is said to be left-absorbing if it contains 0 € & and if
for every a € & there is / 6 S£ and k > 0 such that A./ < a. Every left-absorbing set
.£? gives rise to a neighbourhood jj?v defined for elements a,b € ^ by

a ^ f t + j^u if a + l<b for some I € j£?.

Note that for a neighbourhood v e "Y of a locally convex cone (&,V), the lower
neighbourhood (0)u of 0 e ^ is increasing and left-absorbing by (V4), and that
a < b + (0)vv implies a < b + v. If & is a vector space, then the reverse also holds
true, that is both v and mvv define the same neighbourhoods. However, the former
observation demonstrates that the neighbourhoods #v form a basis for the finest
locally convex topology on an ordered cone &. In particular, every monotone linear
functional on &> is uniformly continuous with respect to some neighbourhood of this
type. We shall employ this fact to formulate an algebraic version of Theorem 3.1.
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THEOREM 3.2. Let & be an ordered cone. For a sublinear functional p : & -»• W.
and an extended superlinear functional q : & —>• W there exists a monotone linear
functional fi : & -*• R such that q < /x < p if and only if there is a left-absorbing
convex subset _£? of & such that

l whenever a + I < b

for a,b e & and some I € .if.

If again we choose the extended superlinear functional as q (0) = 0 and q (a) = —oo
for all 0 7̂  a e &, Theorem 3.2 states that for a sublinear functional p on an ordered
cone &* there is a monotone linear functional [i such that /x < p if and only if p
is bounded below on an increasing left-absorbing subset of &. Choose the left-
absorbing set _£? as in the theorem, and replace it by % = {/ e & | / < / for / € JSf},
which is increasing and again left-absorbing.

If for every a 6 & there are c, d 6 ^ with ^(c) > —oo and p(cf) < +oo such
that c < a + d, then we may choose the left-absorbing set

Jf = {l€0>\c<l + d for c,de£> withp(d) e R, p(d) < q(c) + 1}.

With this insertion, the requirement on p and q in Theorem 3.2 reduces to

q (a) < p{b) whenever a < b

for a,b 6 £?. This situation arises in particular if the superlinear functional q is
not extended (choose c = a and d = 0 in the above condition), or if & is a vector
space and p is finite (choose c = 0 and d = —a). Theorem 3.2 thus is seen to
recover our first Sandwich Theorem 2.1, as well as the classical sandwich version of
the Hahn-Banach theorem for vector spaces.

The following corollary to Theorem 3.1 concerns the case that the sublinear func-
tional p is continuous with respect to some neighbourhood of a locally convex cone.
It generalises Theorem II.2.8 from [5].

COROLLARY 3.3. Let (&, y) be a locally convex cone, and let v e "f. For a
sublinear functional p : & —* R the following are equivalent:

(i) p is continuous with respect to v;
(ii) for every extended superlinear functional q : & —• W such that q < p there

exists a monotone linear functional n € v° such that q < fi < p;
(iii) p(a) = max{^.(a) | fi € v° and (i < p] for alia e £?.

PROOF. If (i) holds and if q is an extended superlinear functional such that q < p,
then for any a < b + v we have q(a) < p(a) < p(b) + 1 by the continuity of p.
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Theorem 3.1 guarantees the existence of a linear functional fi as in (ii). If, for a given
element a € &, we choose the extended superlinear functional q on & such that
q(b) — kp(a) for b = ka with k > 0, and q(b) = —oo otherwise, then it is evident
how (iii) follows from (ii). Finally, if (iii) is valid, then for a < b + v there is /z e u°
such that fi < p and fi(a) — p(a). Thus p(a) = ix(a) < (i(b) + 1 < p(b) + 1, and
p is continuous with respect to v, indeed. D

Note that a monotone sublinear functional p on an ordered vector space £? is
continuous with respect so some neighbourhood v if and only if it is finitely-valued:
Indeed, if p is continuous with respect to v, then 0 < (—a) + kv for every a e &
and some k > 0, hence a < kv and p (a) < 0 + k < +oo. If on the other hand p is
finitely-valued, choose the left-absorbing convex set .i? = {/ e & \ p(—l) < 1}, and
p is seen to be continuous with respect to & v.

As an application of our last corollary we shall generalise a result for vector spaces
from [11]. For a normed space & with the norm as the sublinear functional p it states
the well-known fact that every weakly bounded subset of & is also norm-bounded.
This is usually derived using the Uniform Boundedness Theorem, hence a Baire
category argument. Conversely, as shown in [11], our following result can be used to
obtain non-Baire proofs of the Uniform Boundedness and Open Mapping Theorems.

THEOREM 3.4. Let (&, V) be a locally convex cone, and letveY
R be a sublinear functional that is continuous with respect to v. If p is unbounded
on a subset s? of @>, then there exists a monotone linear functional /x G v° such that
(i < p, and ix is also unbounded on s/.

PROOF. Following Corollary 3.3 there is at least one \x e v° such that \x < p. If
inf{p(a) | a e &/} = —oo, then the same holds true for every linear functional^ < p,
and our claim is obvious. Thus we may assume that sup{/?(a) | a e #/} = +00 and
that every functional /x e v° satisfying [i < p is bounded below on #/. We shall
show that in this case there is at least one such functional /x which is unbounded above
on si'. To this end we construct sequences of elements an 6 s/, linear functionals
[in € v° such that nn < p and 0 < an < 2~" as follows.

We set ai = 1/2 and select any a{ e s/ such that p{ax) > 2. We choose ix{ e V°
such that fi\ < p and ii\(a{) = p{a\). For n > 2 we choose 0 < an < 2~n such
that 0 < ana{ + 2~nv for all 1 = 1, . . . , n - 1, that is anv(a,) > - 2 " " holds for
every v € v°. Because all the functionals fii,... , ^tn_i are bounded below on s/ but
sup{p(a) I a € s/} = +00, using Corollary 3.3 we can find an e s/ and ixn e v°
such that iin < p and $^"=1 a;/i;(a,,) > n. Finally, we set a = Yl^Li a' — !•

For every c e & we have 0 < c + kv for some k > 0 by (V4), and since
all functionals \in are contained in v° this implies —k < /xn(c) < p(c). The series
n(c) = (I/or) XXi a( Mi (c) is therefore convergent in K and defines a linear functional
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on &. This is the functional which satisfies our claim: clearly fi < p and fi e v°,
since for c < d + v we verify that

. 0 0 1

J ^ A

On the other hand, we compute for the elements an €

This shows sup{/z(a) | a € £/} > sup[fi(an) | « e N) = +00, thus completing our
argument. •

A simple example given in [11] shows that an obvious generalisation of our last
theorem does not hold true. Even in vector spaces ^ , and even for a finite sublinear
functional p and a subset srf of &, the existence of a linear functional / i o n ^ such
that fi < p and

sup{/x(a) I a € a/} = sup[p(a) \ a € &/}

is not guaranteed, whether the supremum on the right hand side is finite or infinite.

4. Extension and separation theorems

An K-valued function / defined on a convex subset ^ of an ordered cone & is
called convex if

/ (Ac, + (1 - k)c2) < Xf (c,) + (1 - A.)/ (c2)

holds for all cx,c2 e'tf and X e [0, 1]. Likewise,/ : if -*• W is called concave if

+ (1 - A)f2) > A/ (c,) + (1 - X)f (c2)

holds for all ci, c2 € ^ and X e [0, 1]. An affine function/ :1f—*- K is both convex
and concave.

Our main extension theorem deals with convex, concave and affine functions on a
convex subset # of & and yields a variety of known special cases. For functions /
and g on ^ we shall say that/ < g ontf iff (c) < g(c) for all c 6 ci.

THEOREM 4.1 (Extension Theorem). Let (&, Y) be a locally convex cone, *& and
non-empty convex subsets of &>, and let v e V. Letp : & -> K be a sublinear and
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q : & -*• W an extended superlinear functional. For a convex function f : *£ —y R.
and a concave function g : & -> W there exists a monotone linear functional fi € v°
such that

^ < / i < p , g 5-M on & and ix<f on'tf

if and only if

q(a) + pg(d) < p(b) + of (c) + 1 whenever a + pd<b + ac + v

e^,c&^,d&9andp,o > 0.

PROOF. The necessity of the condition on p, q, f and g for the existence of a
functional \i € v° with the required properties is evident. For the converse implication,
assume that our condition holds and define functional p and q for x e & by

p(x) = inf[p(b) + of (c) + A. | b e £*, c e # , k, a > 0,
a € &>,d € 9,p >0, and a + pd <x).

Obviously, q(x) < q(x) and p(x) < p(x) holds for all x e 9*. Furthermore, for all
c e # and d e ^ w e have

Foranyjc 6 ^ there is by (V4) some S > OsuchthatO < x+Sv. Thus.x < b+oc+Xv
for some bet?, c e ^ a n d X > 0 , o >0 implies that 0 < b + ac + (S + X)v and
0 < p (b)+of (c) + (S+X) by the condition of the theorem, hence p {b)+of (c)+X >
—8, and p(x) > — 8 > — oo. The functionals p and q are easily seen to be sublinear
respectively extended superlinear on &. All left to show in order to apply Theorem 3.1
with p and q is that q(x) < p{y) + 1 holds for x, y e &> whenever x < y + v. Let
j c < v + v a n d a , bet?, c €<&, d € @, X > 0 and p , a > 0. If a + pd < x and
y < b + oc + Xv, then a + pd < b + oc + (1 + X)v and our condition implies

q(a) + ps(rf) < p (b) + of (c) + (X + 1)

< p(y) + 1. Theorem3.1 yields the existence of a linear functional fi € v°,
and the stated properties follow from q < \x < p . D

If f̂ (respectively ^ ) is even a subcone of & and if/ (respectively g) is a linear
functional, then the condition in Theorem 4.1 obviously needs to be verified only for
o = 1 (respectively p = 1). The same will hold for the upcoming Theorem 4.2
and Corollary 4.3. The generality of our Extension Theorem allows a wide range of
special cases, a few of which we shall mention. If g = —oo, we have to consider
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the condition of Theorem 4.1 only for p = 0, if / = +oo only for a = 0, and if
both g s —oo and / = +oo, then Theorem 4.1 reduces to our previous Sandwich
Theorem 3.1. Another case of interest occurs when tf = @ and / = g is an affine
function, respectively a linear functional if ^ is a subcone of &. For the algebraic
case we shall again use the fact that the neighbourhoods generated by left-absorbing
subsets form a basis for the finest locally convex topology on an ordered cone.

THEOREM 4.2. Let & be an ordered cone, ^ and Q non-empty convex subsets
of &. Let p : & -*• R be a sublinear and q : & -> W an extended superlinear
functional. For a convex function f : ^ -*• K and a concave function g : 9> —>• W
there exists a monotone linear functional fi : & —> K such that

q < M < P, g < A4 on & and fi < f on'tf

if and only if there is a left-absorbing convex subset 1£ of & such that

q{a) + pg(d) < p(b) + of (c) + 1 whenever a + pd + l<b + a

for a,be &,l e^,ce^,de 9 and p,a > 0.

If for every a e {? there are c,d e & with q(c) > —oo and p(d) < +oo such
that c < a + d, then we may again (see the remark following Theorem 3.2) choose
the left-absorbing set

JSf = {/ 6 & | c < I + d for c, d e 9 withp(d) e K,p(d) < q(c) + 1}.

With this insertion, the requirement on p, q,f and g in Theorem 4.2 reduces to

q (a) + pg(d) < p(b) + erf (c) whenever a + pd < b + a

for a, b € &, c € ^ , d e <2) and p, a > 0. Recall that this situation arises in
particular if the superlinear functional q is not extended or if ^ is a vector space and
p is finite.

The special cases when q(a) — —oo or when p(a) = +00 for all 0 ^ a € &> are
of particular interest. They may be obtained from Theorem 4.1 by setting a = 0 or
b = 0, respectively. However, we shall formulate the combination of both cases as
another corollary, to yield a generalisation of the Extension Theorem II.2.8 in [5].

COROLLARY 4.3. Let (£?,y)bea locally convex cone, *€ and Si non-empty convex
subsets of &, and let v e V. For a convex function / : if —• R and a concave
function g : S) —>• K there exists a monotone linear functional n e v° such that

g < (x on @ and fJ- <f on C
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if and only if

pg(d) < af (c) 4- 1 whenever pd <oc + v

fore etf.d € 9 and p, o > 0.

The following result about the separation of convex subsets by a monotone linear
functional is another immediate consequence of our Extension Theorem 4.1.

THEOREM 4.4 (Separation Theorem). Let {&, "f) be a locally convex cone, *€ and
9 non-empty convex subsets of £?, and let v e "V. For a e R there exists a monotone
linear functional \x € v° such that

/x(c) < a < n(d) for allcztf and d e 9

if and only if

ap < ao + 1 whenever pd < oc + v

force^,d &9 and p,a > 0.

PROOF. We apply Corollary 4.3 with the functions / = c * o n < i f a n d g = a
on 9. •" •

We shall give two immediate corollaries for this separation result.

COROLLARY 4.5. Let *€ and 9 be disjoint non-empty convex subsets of an ordered
cone &, and suppose that for every a € & there are c e "jf, d € 9 and a, p > 0
such that pd < a + oc.

(i) Iftf is decreasing and 0 € ^ , then there exists a monotone linear functional
ix : & - • K such that

M(c) < 1 < M(d) for allcetf and d € 9.

(ii) If 9 is increasing and 0 € 9, then there exists a monotone linear functional
fi : & -+ 1 such that

< - 1 < M(cO far allce'tf and d € 9.

PROOF. We shall use the left-absorbing set

S£ = {I e & | pd < I + oc for c e if, d e 9, a, p > 0, o + p < 1}
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and the corresponding neighbourhood % v, that is

a<b + #v if a + l<b for some / e .if,

in Theorem 4.4. For part (i) we choose a = 1. Let us assume that, contrary to the
condition in Theorem 4.4, pd < oc+&v holds for some c € if, d € f^andp > a + l.
Then pd+l < ac for some/ 6 -£f, that is p' d! < l+a'c1, hence pd+p'd' < oc+o'd
for some d' e ^ , c' e ^ and p' + a' < 1. Using the convexity of the sets ^ and
^ the latter may be reformulated as (p + p')df" < (a + a')c" for some d" e @ and
c" 6 <€. Since CT + a' < a + 1 < p < p + p', we have CT" = (a + ff')/(p + p') < 1
and o"c" e *&. But d" < a"c" contradicts our assumption that ^ is decreasing and
disjoint from Qi. For part (ii) of the corollary we argue in an analogous way with
a = -\. •

Every element of a locally convex cone ( ^ , ~¥) is bounded below, that is contained
in some multiple of every lower neighbourhood (0)v by (U4) (see Section 3). An
element a e & is called bounded (above) if or every v e "¥ there is k > 0 such
that a < X.v, that is a 6 Xv(0). Bounded elements satisfy a modified version of the
cancellation law ([5, Lemma 1.4.3]), and continuous linear functionals take only finite
values there.

COROLLARY 4.6. Let 38 be a non-empty convex subset of a locally convex cone
(&,V) such that Oe B.

(i) If SB is closed with respect to the lower topology on 2?, then for every element
a £ 88 in & there exists a monotone linear functional /A e £?* such that

(J'(b) < 1 < fi(a) for all b € 3S,

and indeed 1 < n(a) if a is bounded above.
(ii) If& is closed with respect to the upper topology on &, then for every element

a £ 31 in & there exists a monotone linear functional fj, e £?* such that

H(a) < - 1 < n{b) for all b € S§.

PROOF. For part (i), since 88 is closed with respect to the lower topology (recall
the introductory remarks of Section 3) on &>, there is a lower neighbourhood (a)u
such that (a)u D 88 = 0. We shall apply Theorem 4.4 with the neighbourhood
v = (1/2)H G y, the convex sets *£ = 88, $ = (a)v and a = 1. Let us assume
that, contrary to the condition in Theorem 4.4, for some b e 88 and a' e (a)v, that is
a < a! + v, there are p > a + 1 such that pa' < ab + v. As 0 € 88 and a/p < 1,
we have b' = (a/p)b e B as well. Thus a' < V + (l/p)i> < V + v, as 1/p < 1.
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Now a < a' + v yields a < V + 2v, hence V 6 (a)v, contradicting our assumption.
Theorem 4.4 therefore guarantees that there is fi e v° satisfying

H(b) < 1 < n(a') for all b e SB and a! e (a)v.

This proves the first part of our statement in (i). If the element a is even bounded
above, then there is s > 0 such that ea < v, hence (1 + e)a < a -f v, and with
a' = (1/(1 + e))a, we realise that a < a' + (1/(1 + e))v <a' + v, that is a' € (a)v.
This shows

1 < M(a') = (1/(1 + £))f*>(a), hence 1 < 1+ e < /z(a),

as claimed. An analogous argument holds for case (ii) using upper instead of lower
neighbourhoods and the fact that every element of a locally convex cone is bounded
below. •

5. The Range Theorem

In this final section we shall investigate the range of linear functionals that are
sandwiched between a given sublinear and an extended superlinear functional on an
ordered cone. In vector spaces, every K-valued sublinear functional p is the pointwise
supremum of all linear functionals that "are dominated by p, but this observation holds
no longer true in general if p attains the value +00 or if we consider cones instead of
vector spaces (see our Example 2.2).

In the following, let ( ^ , ¥) be a locally convex cone, &>* its topological dual.
Recall from Theorem 3.1 that for a sublinear functional p and an extended superlinear
functional qonP there is at least one linear functional /x 6 &* satisfying q < n < p
if and only if there is a neighbourhood v € "V such that

<j(a) < p(b) + 1 whenever a < b + v.

In the following main theorem of this section we shall describe the range at a given
element a e & of all continuous linear functionals \x e &* sandwiched between p
and q. As usual, we set inf 0 = +00 and sup 0 = —00.

THEOREM 5.1 (Range Theorem). Let {&, V) be a locally convex cone. Let p and
q be sublinear and extended superlinear functionals on & and suppose that there is
at least one linear functional 11 € &** satisfying q < fi < p. Then for all a € S?

sup fj.(a) = supinf{p(6) — q(c) \ b,c € &, q(c) €R,a + c<b + v],
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andforalla € & such that fi(a) isfinite foratleast one fi e £?* satisfying q < /x < p

inf /x(a) = inf sup{a(c) - p(b) \ b, c e &, p(b) e K, c < a + b + v}.

PROOF. We use a and a to abbreviate the left-hand and the right-hand sides of the
first equation, and fi and yS in the same way for the second one. From the assumptions
on p and q in the respective cases we know that a > —oo and p" < +00. Let fi e &*
such that q < /J. < p. Given s > 0 there is v e V such that n e ev°. Then for
a + c <b + v, with q(c) e K we have

H(a) + q(c) < n(a) + n(c) < (j,(b) + s <p(b) + s,

hence ii(a) < p(b) — q(c) + e, and

ix{a) < inf{/7(6) - q(c) \b,ce &>, q(c) 6 K, a + c < b + v} + e.

A similar argument yields

/i(a) > sup{^r(c) - p{b) I b, c e &, p(b) e K, c < a + b + v] + s.

But this shows /3 < /x(a) < a and fi < ft < a < a. We proceed to demonstrate that
a > a also holds. For a — +00 there is nothing to prove. Thus we may assume that
or € K, and we shall show that

a > inf [p(b) - q(c) \ b , c € & , q ( c ) e R , a + c < b + v]

holds for all v e "V. Given a fixed neighbourhood v e f and 0 < e < 1/4 there is
fi 6 &* such that q < ii < p and /x(a) > a — e. We find a neighbourhood w e "Y
such that fj. e (l/2)w°. We may assume that w c v. Now we shall use Theorem 4.1
for the convex sets ^ = <& = [a} and the functions / = +00 and g = a + e. Since
there is no linear functional v € &* such that q < v < p and v(a) > a + s, the
condition in Theorem 4.1 must fail for every neighbourhood in V and in particular
for m. There are b, c 6 & and p > 0 such that c + pa < b + w and

s) > p(b) + l.

This implies in particular that p{b) < +00. Since /u, e (l/2)u>°, we also have

q(c) + p(a - £) < /z(c) + PM(«) = Me + pa) < fx(b) + (1/2) < p(b) + (1/2),

implying that q(c) 6 R. Combining the last two inequalities yields

p(b) + l < p(b) + (1/2) + 2pe, hence p > l/(4e) > 1.
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Then multiplying by 1/p < 1 gives c + pa < b + w, which yields d + a <
V + (\/p)w < b' + w with d = c/p and b' = b/p. Furthermore, we realise that
p(b') = (l/p)p(b) € R, q(c') = (l/p)q(c) e R and

p(b') < p(b') + (1/p) = (l/p)(p(b) + 1) < tf(c') + (o

that is p(b') — q(d) <a + £. Summarising, we obtain

a + e > i n f { p ( 6 ) - <?(c) | b , c e &>, q{c) e K , a + c < b + w]

> inf {p(b) - q(c) \ b , c € & , q{c) e R , a + c < b + v),

which yields the first part of our claim. For the second part, we already established
that /3 < fl < +oo holds. The reverse inequality /J < p is trivial if P — -oo. For
P e IR it may be verified using Theorem 4.1 in an analogous argument as in the first
part of our proof. •

The first equation in Theorem 5.1 is not valid in general if we do not require that
there is at least one linear functional /x e &* satisfying q < \i < p. If there is no such
fi, then the left-hand side equals —oo, but an inspection of our Example 2.2 shows that
the right-hand side need not to take the same value. We endow the vector space & of
finite sequences from Example 2.2 with the equality as order and the neighbourhoods
from I00. For p as in Example 2.2 and q{a) = —oo for all 0 ^ a e & we may
check that the right-hand side of the first equation in Theorem 5.1 equals +oo for
all sequences a = (a,-)j€N e £? that have at least one entry or, > 0. Likewise, we
shall demonstrate in Example 5.4 that the existence of a linear functional \i e &*
satisfying q < n < p which is finite on the element a € & is essential for the validity
of the second equation in Theorem 5.1.

Theorem 5.1 lends itself to a variety of special cases, a few of which we shall
mention. An algebraic version of our result may be obtained by considering the finest
locally convex topology on &, that is the system of all neighbourhoods se v, where
££ is any a left-absorbing convex subset of &>. Also of interest are the cases when
q(a) = -oo, respectively p(a) = +oo for all 0 ^ a e &>. They may be easily
obtained from our general result by setting c = 0 or b — 0, respectively in the right
hand sides of the equations. The expressions in Theroem 5.1 may be simplified in
some cases of particular interest. If there is a neighbourhood w e¥ satisfying

(wp) for all a < b + w there is w' e & such that p (u/) < 1 and a < b + w',

then obviously ii < p for a linear functional fi € &* implies that /x € w°, hence
the condition q < \JL < p defines a w(&*, ^-compact subset of 9>*. The infimum
and the supremum on the left hand sides of the equations in Theorem 5.1 therefore
turn into a maximum and a minimum. The right hand sides may also be simplified.
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Clearly,

supinffpO) - q(c) \b,c e &, q(c) e l , a + c < b + v)

< inf{p(b) - q{c) \b,c€ &>, q(c) 6 R, a + c < b)

h o l d s in a n y c a s e . I f ( w p ) h o l d s t r u e , g i v e n e > 0 a n d v < e w , f o r a + c < b + v <
b + ew we have a + c < (b + w') with p(w') < e. Therefore p(b + w') — q(c) <
(p(b) — q(c)) + e. This demonstrates the reverse inequality

M{p{b) - q{c) \ b , c z & , q(c) &R,a + c<b}

< supinf{p(Z>) - q(c) \b,c e 0 » , q(c) € K, a + c < b+ v}.

Similarly the expression in the second equality of Theorem 5.1 may be simplified.
Moreover, the above arguments may be repeated if we replace condition (wp) by

(wq) for all a < b + w there is w" e & such that q(w") > - 1 and a + w" < b.

Using this, we obtain the following corollary.

COROLLARY 5.2. Let(&, 'f) be a locally convex cone, and let p and q be sublinear
and extended superlinear functionals on 3? such that q(a) < p(b) holds whenever
a < b. If either condition (wp) or (wq) holds for a certain neighbourhood w € y,
then

max/i(a) = M{p(b) - q(c) \b,c e &>, q(c) eR,a + c < b],

min n(a) = sup[q(c) - p(b) \ b,c e &>, p(b) e K, c < a + b]
q<n±p

for all a eg*.

PROOF. We still have to verify the additional assumptions of Theorem 5.1. If
q < p, then each of the conditions (wp) and (wq) guaranties that q(a) < p(b) + 1
holds whenever a < b + w. Thus there is at least one /x e &* satisfying q < //, < p.
For the second equation, if /x(a) = +oo for all such fi, then for ^ = [a] C & and
every n e H there is no /j. e w° such that q < n < p and n < n on ^. Following
Theorem 4.1, we find an, bn e & and an > 0 such that an < bn + ana + w and
q(an) > p(bn)+ann+l. The above shows an > 0, and if (wp) holds there are w'n e &
such that p(w'n) < 1 and an < bn + ona + w'n, that is (an/an) < a + (bn + w'n)/an.
Now

q{an/an) -p((bn + w'n)/an) > \/on(q(an) - p(bn) - l) > n

shows that sup{<y(c) — p(b) \ b, c e ^ , p(b) e K, c < a + b} = +oo, and the
second equality holds also in this case. We use a similar argument with (wq). •
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The situation of Corollary 5.2 arises in particular if & contains a certain neighbour-
hood w € y as an element and if p(w) < +00 or if —w 6 & and q(—w) > —00.
Also, if q does not attain the value — 00 and if the neighbourhood w = % v, where
Jzf = {/ e & I q(l) > -1} . is contained in V, then (wq) holds. Similarly, if &
is a vector space and if p does not attain the value +00, we may consider the neigh-
bourhood w = #v, where S£ = {/ € & \ p(-l) < 1}. If w e Y, then (wp) holds.
As an application of Theorem 5.1 we shall derive a well-known characterisation of
super- and subharmonicity (see [2,5,7]) relative to a subcone. If 'tf is a subcone of
the locally convex cone {&, Y), an element a e & is said to be *4'-superharmonic
in (i if for every v € &*

v(a) < ix{a) holds whenever v(c) < /x(c) for all c e ^ .

Similarly, a e & is said to be ¥-subharmonic in fi if for every v e &>*

v(a) > n(a) holds whenever v(c) > yn(c) for all c e ^ .

Theorem 5.1 yields.

COROLLARY 5.3. Lef ( ^ , ^ ) ie a Zoca//y convex cone, /x 6 J21*, and let <€ be a
subcone of 2?. An element a 6 & is tf-superharmonic in \x if and only if

Similarly, the element a € 9* such that /x(a) is finite is *£-subharmonic in /x if and
only if

/x(a) = inf sup{/x(c) \ c etf, c < a + v}.
vey

PROOF. We shall argue only the superharmonic case. Let /x e v°, and set p(a) —
H(a) if a G ^ and p(a) = +oo otherwise. With q{a) = -oo for all 0 ^ a € ^ ,
the functionals p and <? satisfy the hypothesis of Theorem 5.1. For a linear functional
v e ^ * we have q < v < p if and only if v(c) < /x(c) for all c e ^ . Following
Theorem 5.1 an element a e & is therefore ^-superharmonic in /x if and only if

supinf{/x(c) | c e ^ , a < c + u}< /x(a)-

But the reverse inequality holds in any case. •

The additional requirement for the second part of Corollary 5.3, namely that n(a)
should be finite, results from the corresponding condition in Theorem 5.1. It may not
be omitted, as the following example will demonstrate.
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EXAMPLE 5.4. Let & be the cone of all sequences a = (or,),6N in K with only
finitely many negative elements at, endowed with the pointwise algebraic operations
and order. Let the neighbourhood system V consist of all positive multiples of
the element v = (l/2'~l)ieN e &. The linear functional //. on & defined by
/j,(a) = (1/2) ]T^i ai 1S clearly continuous with respect to v, since /x(u) = 1. Now
let us consider the subcone <€ of £? consisting of all decreasing finite sequences
c — (y,-)/€N. that is yt > yi+\ > 0 for all / e M, and only finitely many of the
Yt are non-zero. Let a = (—1,1,1,1,...) e &. Then fi(a) = +oo, and for all
c = (Yi)ieN € tf such that c < a + v we have yx = 0, hence c = 0. This shows

inf

But the element a is nevertheless ^-subharmonic in fi. Let v e &* such that v > fi
on ^ . Since v is continuous with respect to some positive multiple of v, we realise
that v(v) is finite. For any n e N choose c = (/,),,=* e *€ such that y, = 1 for
/ = 1, . . . ,2n and yt = 0 otherwise. Then c < a + 2v, hence

n = M(c) < v(c) < v(a) + 2v(v).

This holds for all n e N, and since v(v± < +00, we conclude that v(a) =
fi(a) = +00.

If the additional assumptions of our Corollary 5.2 apply, then the right hand sides
of the conditions in Corollary 5.3 simplify to plain infima respectively suprema. For
the superharmonic case this holds true in particular if the neighbourhood system V is
contained in the subcone ^ of &>. For the subharmonic case, -Y C ^ suffices.
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