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Abstract
Let 𝑓 : 𝑋 → 𝐵 be a relatively minimal fibration of maximal Albanese dimension from a variety X of dimension
𝑛 ≥ 2 to a curve B defined over an algebraically closed field of characteristic zero. We prove that 𝐾𝑛

𝑋/𝐵
≥ 2𝑛!𝜒 𝑓 .

It verifies a conjectural formulation of Barja in [2]. Via the strategy outlined in [4], it also leads to a new proof of
the Severi inequality for varieties of maximal Albanese dimension. Moreover, when the equality holds and 𝜒 𝑓 > 0,
we prove that the general fibre F of f has to satisfy the Severi equality that 𝐾𝑛−1

𝐹 = 2(𝑛 − 1)!𝜒(𝐹, 𝜔𝐹 ). We also
prove some sharper results of the same type under extra assumptions.
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1. Introduction

The Severi inequality states that

𝐾𝑛
𝑋 ≥ 2𝑛!𝜒(𝑋, 𝜔𝑋 )

for an n-dimensional minimal variety X of general type and maximal Albanese dimension. It was
originally stated for surfaces by Severi [21] and was proved by Pardini [20]. Later, it was generalised
to arbitrary dimension by Barja [2] as well as the second author [25]. From now on, we refer to this
inequality as the absolute Severi inequality in order to distinguish from the result in the current paper.
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The goal of this paper is to establish a relative version of the absolute Severi inequality. More
precisely, we prove that

𝐾𝑛
𝑋/𝐵 ≥ 2𝑛!𝜒 𝑓

for a relatively minimal fibration 𝑓 : 𝑋 → 𝐵 of maximal Albanese dimension from an n-dimensional
variety X to a curve B. This inequality was conjecturally formulated by Barja in [2, §1]. The 𝑔(𝐵) = 0
case of this relative inequality can be applied to give a new proof of the above absolute Severi inequality.
Moreover, the above relative inequality is sharp, and if 𝐾𝑛

𝑋/𝐵
= 2𝑛!𝜒 𝑓 > 0, we prove that the general

fibre F of f has to satisfy the absolute Severi equality that

𝐾𝑛−1
𝐹 = 2(𝑛 − 1)!𝜒(𝐹, 𝜔𝐹 ).

We also use our method to deduce some sharper relative results of the same type under extra
assumptions. As an upshot, the corresponding 𝑔(𝐵) = 0 case implies the recent geographical results of
absolute Severi type obtained by Barja, Pardini and Stoppino [6].

Throughout this paper, we work over an arbitrary algebraically closed field k of characteristic zero.
All varieties are assumed to be projective.

1.1. Albanese dimension of fibrations and 𝜒 𝑓

We start with some notation. In the study of irregular varieties, a major tool is to consider the Albanese
map. For an irregular variety X, the so-called Albanese dimension albdim(𝑋) of X is one of the most
important invariants of X. In the following, we consider its relative version.

Let 𝑓 : 𝑋 → 𝑌 be a fibration between two normal varieties X and Y with a general fibre F. Let
𝑎 : 𝑋 → Alb(𝑋) be the Albanese map of X.
Definition 1.1. The Albanese dimension of f, denoted by albdim( 𝑓 ), is defined to be dim 𝑎(𝐹), namely
the dimension of the image of F under the Albanese map of X. We say that f is of maximal Albanese
dimension, if albdim( 𝑓 ) = dim 𝐹.

It is easy to check that the following properties hold:
(1) When f is the structural morphism (i.e., 𝑌 = Spec(𝑘)), then

albdim( 𝑓 ) = albdim(𝑋).

Thus the Albanese dimension for fibrations is indeed a generalisation of that for varieties.
(2) In general, we have

albdim( 𝑓 ) ≤ albdim(𝑋) − albdim(𝑌 ).

In particular, if f is the Stein factorisation of the Albanese map of X, then albdim( 𝑓 ) = 0.
(3) If both Y and f are of maximal Albanese dimension, so is X.

Another important invariant associated to f is the relative Euler characteristic

𝜒 𝑓 := 𝜒(𝑋, 𝜔𝑋 ) − 𝜒(𝑌, 𝜔𝑌 )𝜒(𝐹, 𝜔𝐹 ).

Regarding this invariant, the first interesting case is when 𝑓 : 𝑋 → 𝑌 is a surface fibration: that is, X is
a smooth surface and Y is a curve. In this case, it is well known that

𝜒 𝑓 = deg 𝑓∗𝜔𝑋/𝑌 .

In particular, by [11, Main Theorem], we know that 𝜒 𝑓 ≥ 0. There are a number of important results
related to 𝜒 𝑓 , such as the Arakelov inequality [1] (see [22] for a survey together with generalisations),
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the slope inequality of Cornalba-Harris [9] and Xiao [23], and the geography of irregular surfaces (see
[17] for a detailed survey). The study of these results as well as their refinements and generalisations
has been active throughout recent decades.

Another interesting case, which is more related to this paper, is when f is a fibration of maximal
Albanese dimension and Y is a curve. In this case, by the work of Hacon and Pardini [12, Theorem 2.4]
(see Proposition 4.1 for a slightly generalised version adapting to the setting of this paper), we know that

𝜒 𝑓 = deg 𝑓∗(𝜔𝑋/𝑌 ⊗ P),

where P is a general torsion element in Pic0(𝑋). Moreover, Hacon and Pardini showed that 𝜒 𝑓 ≥ 0 still
holds in this case.

1.2. Main results

Now we state the first main theorem of this paper.

Theorem 1.2 (Relative Severi inequality). Let 𝑓 : 𝑋 → 𝐵 be a relatively minimal fibration from a
variety X of dimension 𝑛 ≥ 2 to a smooth curve B. Suppose that f is of maximal Albanese dimension.
Then we have the following sharp inequality:

𝐾𝑛
𝑋/𝐵 ≥ 2𝑛!𝜒 𝑓 . (1.1)

We call the inequality in equation (1.1) a relative Severi inequality because it literally replaces the
absolute invariants 𝐾𝑛

𝑋 and 𝜒(𝑋, 𝜔𝑋 ) in the absolute Severi inequality by the relative invariants 𝐾𝑛
𝑋/𝐵

and 𝜒 𝑓 .
Let us put Theorem 1.2 into perspective. When 𝑛 = 2, it is already known by Xiao [23, Corollary 1].

More precisely, Xiao proved that for a relatively minimal surface fibration 𝑓 : 𝑋 → 𝐵 with a general
fibre of genus 𝑔 ≥ 2, the inequality in equation (1.1) holds, provided that ℎ1 (𝑋,O𝑋 ) > 𝑔(𝐵). Note that
this assumption is equivalent to f being of maximal Albanese dimension, as the fibre in this case is just
a curve.

For general 𝑛 > 2, the problem with finding such inequalities has already been addressed by Mendes
Lopes and Pardini [17, §5.3], whose purpose was to generalise, using Pardini’s original approach in
[20], the Severi inequality for surfaces to higher dimensions. To our knowledge, the precise version of
equation (1.1) was first formulated conjecturally by Barja in [2, §1, Page 545]. Barja also observed that
equation (1.1) is in fact a consequence of the f -positivity conjecture [4, Conjecture 1] of himself and
Stoppino.1 Another interesting observation, which probably motivates the formulation in equation (1.1),
is that when X is of maximal Albanese dimension, one can indeed deduce the absolute Severi inequality
by combining Pardini’s approach and equation (1.1) for 𝑔(𝐵) = 0 (see [4, Proposition 4.4] for details).

When 𝑔(𝐵) = 1, it is easy to see that equation (1.1) coincides with the absolute Severi inequality.
In addition to this and prior to our result, Barja proved equation (1.1) for 𝑔(𝐵) = 0 under the extra
assumptions that X is of maximal Albanese dimension and 𝐾𝑋 is nef. Barja also obtained a weaker
version of equation (1.1) when 𝑔(𝐵) ≥ 2. See [2, Corollary C] as well as its proof for details.

Our Theorem 1.2 verifies completely the conjectural formulation of Barja for the base curve B of
arbitrary genus. Moreover, if 𝑔(𝐵) = 0, our assumption that f is of maximal Albanese dimension is
strictly weaker than X itself being of maximal Albanese dimension. As mentioned before, Theorem 1.2
for 𝑔(𝐵) = 0 can be applied to give an alternative proof of the absolute Severi inequality that is different
from that in [2] or [25].2

1This conjecture was recently studied by the authors in [13], where it is shown that counterexamples to this conjecture do exist
for any 𝑛 > 2.

2Since a detailed strategy has been carried out in [4, Proposition 4.4], we will not repeat this proof in this paper and refer the
reader to [4, Proposition 4.4] for details.
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Since equation (1.1) is sharp, a new question naturally arises: can one characterise the equality case?
In this paper, we also consider this problem. We prove the following result.

Theorem 1.3. In Theorem 1.2, if the equality in equation (1.1) holds and 𝜒 𝑓 > 0, then

(1) the Albanese map of X maps a general fibre of f onto an abelian variety of dimension 𝑛 − 1. In
particular,

ℎ1(𝑋,O𝑋 ) − 𝑔(𝐵) = 𝑛 − 1;

(2) the general fibre F of f satisfies the absolute Severi equality: that is,

𝐾𝑛−1
𝐹 = 2(𝑛 − 1)!𝜒(𝐹, 𝜔𝐹 ).

Previously, (1) was known only when 𝑛 = 2 due to Xiao [23, Theorem 3]. This paper mainly
concerns the higher-dimensional case, and our result shows that (1) holds for any 𝑛 ≥ 2. The much
more interesting and stronger part comes from (2): unlike (1) or the absolute Severi inequality, (2) is
trivial when 𝑛 = 2 – that is, when the fibre is a curve – which says that deg 𝐾𝐹 = 2𝜒(𝐹, 𝜔𝐹 ). It holds
true for any surface fibration, not necessarily of maximal Albanese dimension. However, for 𝑛 > 2, (2)
was completely unknown before, and it reveals a new connection between the geometry of a family of
higher-dimensional varieties and the geometry of a general member in this family.

Recall that for a surface fibration 𝑓 : 𝑋 → 𝐵, the relative irregularity is defined as 𝑞 𝑓 :=
ℎ1 (𝑋,O𝑋 ) − 𝑔(𝐵). Recently, Pardini proposed a problem [8, Problem 2] to study various notions of
relative irregularity for families of higher-dimensional varieties. The result (1) also sheds some light on
this problem, suggesting that the number ℎ1 (𝑋,O𝑋 ) − 𝑔(𝐵) may also serve as the relative irregularity
for higher-dimensional fibrations over curves.

When dim 𝐹 ≥ 2, by a very recent result of Barja, Pardini and Stoppino [3, Theorem 1.2] character-
ising the variety satisfying the absolute Severi equality (see also [5, 16] when dim 𝐹 = 2), we know that
(2) actually implies (1). However, our proof of (1) is independent of (2).

1.3. Related results

If more assumptions are imposed on the Albanese map of X, we obtain sharper results. For example, we
prove the following theorem.

Theorem 1.4. Let 𝑓 : 𝑋 → 𝐵 be a relatively minimal fibration from a variety X of dimension 𝑛 ≥ 3 to
a smooth curve B. Denote by F a general fibre of f. Suppose that f is of maximal Albanese dimension
and 𝑎 : 𝑋 → Alb(𝑋) is the Albanese map of X.

(1) If 𝑎 |𝐹 is birational, then

𝐾𝑛
𝑋/𝐵 ≥

5𝑛!
2

𝜒 𝑓 .

(2) If 𝑎 |𝐹 is not composed with an involution, then

𝐾𝑛
𝑋/𝐵 ≥

9𝑛!
4

𝜒 𝑓 .

Combining Theorem 1.4 in the 𝑔(𝐵) = 0 case with the method in [4, Proposition 14], it is easy to
get the following conclusion, which was recently obtained by Barja, Pardini and Stoppino in [6, §1].

Corollary 1.5. Let X be a minimal variety of general type of dimension 𝑛 ≥ 3. Suppose that X is of
maximal Albanese dimension.
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(1) If the Albanese map of X is birational onto its image, then

𝐾𝑛
𝑋 ≥

5𝑛!
2

𝜒(𝑋, 𝜔𝑋 ).

(2) If the Albanese map of X is not composed with an involution, then

𝐾𝑛
𝑋 ≥

9𝑛!
4

𝜒(𝑋, 𝜔𝑋 ).

In the same spirit as before, we may view Theorem 1.4 as a relative version of Corollary 1.5.
In [6], Barja, Pardini and Stoppino consider a more general map 𝑎 : 𝑋 → 𝐴 such that 𝑎∗ : Pic0 (𝐴) →

Pic0(𝑋) is injective (which they call strongly generating) and prove Corollary 1.5 when a is birational
or when a is not composed with an involution. In fact, by the universal property of the Albanese map,
we see that if a is birational or is not composed with an involution, so is the Albanese map of X.

Furthermore, we would like to mention that the proof of the absolute Severi type inequalities by Barja,
Pardini and Stoppino in [6] relies on their study of the continuous rank function. More precisely, they
deduce these absolute results by integrating the derivative of the so-called continuous rank function.
From the viewpoint of our paper, those absolute inequalities are consequences of their corresponding
relative counterparts. To summarise, we have seen again, as in the work of Pardini [20], that the
study of the relative geography, namely the relation among relative birational invariants (such as the
relative canonical volume, the relative Euler characteristic, etc.) plays a crucial role in understanding
the geography of algebraic varieties in the classical sense.

Notation and conventions

In this paper, a fibration always means a surjective morphism with connected fibres.
Let 𝑓 : 𝑋 → 𝐵 be a fibration over a curve B. We say that f is relatively minimal if X is normal with

at worst terminal singularities and 𝐾𝑋 is f -nef. The assumption implies that a general fibre F of f is
also normal with at worst terminal singularities by the adjunction. Moreover, if a general fibre of f is
of maximal Albanese dimension (which is exactly under the setting of Theorem 1.2), then the relative
minimality also ensures that 𝐾𝑋/𝐵 is nef.3

For divisors, we always use ∼ to denote the linear equivalence and ≡ to denote the numerical
equivalence. Let 𝐷1 and 𝐷2 be two Q-divisors on a variety V. The notation 𝐷1 ≥ 𝐷2 means 𝐷1 −𝐷2 is
effective. Let D be aQ-divisor on V. We use 	𝐷
 to denote its integral part. The volume of D is defined as

Vol(𝐷) := lim sup
𝑚→∞

ℎ0 (𝑉, 	𝑚𝐷
)

𝑚dim𝑉 /(dim𝑉)!
.

2. A Clifford type inequality

In this section, we recall a Clifford type result in [24] that will be used later. All results in this section
hold also in positive characteristics.

2.1. 𝜀 for divisors

Let V be a smooth variety of dimension 𝑛 > 0, and let L be a Q-divisor on V. For any big divisor
M on V with |𝑀 | base point free, take the smallest integer 𝜆𝑀 > 0 so that the divisor 𝜆𝑀𝑀 − 𝐿 is

3In fact, Fujino [10, Theorem 1.1] proved that in this case, the general fibre has a good minimal model. Thus, by a result of
Nakayama [18, Theorem 5], 𝐾𝑋 is f -semi-ample. Using the argument as in the proof of [19, Theorem 1.4], we deduce that 𝐾𝑋/𝐵
is nef.
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pseudo-effective. When 𝑛 ≥ 2, we define

𝜀(𝑉, 𝐿, 𝑀) := (𝜆𝑀 + 1)𝑛−1𝑀𝑛.

When 𝑛 = 1, we simply set

𝜀(𝑉, 𝐿, 𝑀) = 1.

For any 𝑛 > 0, define

𝜀(𝑉, 𝐿) := inf
𝑀

𝜀(𝑉, 𝐿, 𝑀),

where the infimum is taken over all divisors M on V chosen as above. In particular, when 𝑛 = 1, we have

𝜀(𝑉, 𝐿) = 1.

It is straightforward to check that
Proposition 2.1. The above 𝜀 satisfies the following properties:
(1) If 𝐿 ′ ≥ 𝐿, then 𝜀(𝑉, 𝐿 ′, 𝑀) ≥ 𝜀(𝑉, 𝐿, 𝑀) for any M chosen as above. In particular, 𝜀(𝑉, 𝐿 ′) ≥

𝜀(𝑉, 𝐿).
(2) Let 𝜎 : 𝑉 ′ → 𝑉 be a birational morphism. Then 𝜀(𝑉 ′, 𝜎∗𝐿) ≤ 𝜀(𝑉, 𝐿).

2.2. A Clifford type inequality

The main result in this section is the following one, which will be used later in the proof of Theorem 1.2.
Theorem 2.2. Let V be a smooth variety of dimension 𝑛 > 0. Suppose that L is a Q-divisor on V such
that 𝐾𝑉 − 𝐿 is pseudo-effective. Then

ℎ0 (𝑉, 	𝐿
) ≤
1

2𝑛!
Vol(𝐿) + 𝑛𝜀(𝑉, 𝐿).

Proof. By [24, Theorem 1.2], which was stated only for integral divisors, we have

ℎ0 (𝑉, 	𝐿
) ≤
1

2𝑛!
Vol(	𝐿
) + 𝑛𝜀(𝑉, 	𝐿
).

Note that Vol(	𝐿
) ≤ Vol(𝐿), and by Proposition 2.1, 𝜀(𝑉, 	𝐿
) ≤ 𝜀(𝑉, 𝐿). Thus the result follows
easily. �

Remark 2.3. As is explained in [24], Theorem 2.2 is a natural generalisation of the classical Clifford
inequality.

3. Sharper estimate under extra assumptions

To prove Theorem 1.3, we need some estimates on the dimension of 𝐻0 (𝑉, 𝐿) similar to Theorem 2.2
but stronger. All the sharper bounds in this section are inspired by the work of Barja, Pardini, and
Stoppino in [6], where they proved the so-called ‘continuous’ estimates. However, under our setting, we
need explicit results instead, and the method we will employ is based on [24, 25, 26].

3.1. A filtration for nef divisors

Let 𝑓 : 𝑉 → 𝐵 be a fibration from a smooth variety V of dimension n to a smooth curve B with a
general fibre F. Let L be a nef divisor on V. We first recall the following theorem.
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Theorem 3.1 ([26, Theorem 4.1]). Let 𝑓 : 𝑉 → 𝐵, F and L be as above. Then there is a birational
morphism 𝜎 : 𝑉𝐿 → 𝑉 and a sequence of triples

{(𝐿𝑖 , 𝑍𝑖 , 𝑎𝑖) |𝑖 = 0, 1, · · · , 𝑁}

on 𝑉𝐿 with the following properties:

◦ (𝐿0, 𝑍0, 𝑎0) = (𝜎∗𝐿, 0, int 𝑓𝐿 (𝐿0)), where 𝑓𝐿 : 𝑉𝐿
𝜎
→ 𝑉

𝑓
→ 𝐵 is the induced fibration.

◦ For any 𝑖 = 0, · · · , 𝑁 − 1, there is a decomposition

|𝐿𝑖 − 𝑎𝑖𝐹𝐿 | = |𝐿𝑖+1 | + 𝑍𝑖+1

such that 𝑍𝑖+1 ≥ 0 is the fixed part of |𝐿𝑖 − 𝑎𝑖𝐹𝐿 | and the movable part |𝐿𝑖+1 | of |𝐿𝑖 − 𝑎𝑖𝐹𝐿 | is base
point free. Here 𝐹𝐿 = 𝜎∗𝐹 denotes a general fibre of 𝑓𝐿 , and 𝑎𝑖 = int 𝑓𝐿 (𝐿𝑖).

◦ We have ℎ0 (𝑉𝐿 , 𝐿𝑁 − 𝑎𝑁 𝐹𝐿) = 0.

In the above theorem, for any 0 ≤ 𝑖 ≤ 𝑁 , the number int 𝑓𝐿 (𝐿𝑖) is defined by

int 𝑓𝐿 (𝐿𝑖) := min{𝑎 ∈ Z|𝐿𝑖 − 𝑎𝐹𝐿 is not nef}.

Thus via Theorem 3.1, we obtain a filtration

𝜎∗𝐿 = 𝐿0 > 𝐿1 > · · · > 𝐿𝑁 ≥ 0

of nef divisors on a birational model 𝑉𝐿 of V. For simplicity, we denote by F a general fibre of
𝑓𝐿 : 𝑉𝐿 → 𝐵 in the rest of this section.

Proposition 3.2 ([24, Proposition 2.2]). We have the following two inequalities:

ℎ0 (𝑉, 𝐿) ≤
𝑁∑
𝑖=0

𝑎𝑖ℎ
0 (𝐹, 𝐿𝑖 |𝐹 );

𝐿𝑛 ≥ 𝑛
𝑁∑
𝑖=0

𝑎𝑖 (𝐿𝑖 |𝐹 )
𝑛−1 − 𝑛(𝐿0 |𝐹 )

𝑛−1.

Proposition 3.3 ([24, Lemma 2.3]). We have

𝐿𝑛0 ≥

(
𝑁∑
𝑖=0

𝑎𝑖 − 1

)
(𝐿0 |𝐹 )

𝑛−1.

3.2. Sharper bound involving subcanonicity

Let V be a smooth variety of dimension 𝑛 > 0 with the Kodaira dimension 𝜅(𝑉) ≥ 0, and let L be a
Q-divisor on V. Let M be a big divisor on V such that |𝑀 | is base point free. We recall that the numerical
subcanonicity of L with respect to M is defined in [6, Definition 5.1] as follows:

𝑟 (𝐿, 𝑀) :=
𝐿𝑀𝑛−1

𝐾𝑉 𝑀𝑛−1 .

When 𝑛 = 1, set 𝑟 (𝐿, 𝑀) = deg 𝐿
deg𝐾𝑉

. When 𝐾𝑉 𝑀𝑛−1 = 0, we have 𝜅(𝑉) = 0. In this case, we set
𝑟 (𝐿, 𝑀) = +∞. Define a function 𝛿 as follows:

𝛿(𝑥) =

{
2, 𝑥 ≤ 1;

2𝑥
2𝑥−1 , 𝑥 > 1.
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Theorem 3.4. Let L and M be as above, and write 𝑟 = 𝑟 (𝐿, 𝑀). Then

ℎ0 (𝑉, 	𝐿
) ≤
1

𝛿(𝑟)𝑛!
Vol(𝐿) + 𝑛𝜀(𝑉, 𝐿, 𝑀).

Proof. The proof is by induction, and we present it in several steps.
Notice that the required inequality holds trivially if ℎ0 (𝑉, 	𝐿
) = 0. We may make assumption

ℎ0 (𝑉, 	𝐿
) > 0 from now on.

Step 1: Reduce to the case when L is nef.
In fact, by replacing V by an appropriate blowing up, we may assume that

𝐿 = 𝐿 ′ + 𝑍,

where 𝐿 ′ is the movable part of | 	𝐿
 | and Z is its fixed part. It is clear that

𝑟 (𝐿, 𝑀) ≥ 𝑟 (𝐿 ′, 𝑀), Vol(𝐿) ≥ Vol(𝐿 ′), 𝜀(𝑉, 𝐿, 𝑀) ≥ 𝜀(𝑉, 𝐿 ′, 𝑀).

Thus it suffices to prove Theorem 3.4 for 𝐿 ′.
From now on, we assume that L is a nef divisor.

Step 2: The 𝑛 = 1 case.
When 𝑛 = 1, Theorem 3.4 is straightforward. If ℎ1 (𝑉, 𝐿) ≠ 0, the classical Clifford inequality implies

Theorem 3.4. Otherwise, by the Riemann-Roch theorem,

ℎ0 (𝑉, 𝐿) = deg 𝐿 −
1
2

deg 𝐾𝑉 =

(
1 −

1
2𝑟

)
deg 𝐿.

Thus the proof is completed.

Step 3: The proof when 𝐿𝑛 > 0.
Now we assume that Theorem 3.4 holds for dimension 𝑘 < 𝑛. Choose a general pencil in |𝑀 |, and

blow up the indeterminacies of this pencil, denoted by 𝜋 : 𝑉0 → 𝑉 . We get a fibration

𝑓 : 𝑉0 → P1

such that the general fibre F of f is isomorphic to a general member of the chosen pencil. By the
adjunction, 𝜅(𝐹) ≥ 0. Write 𝑀0 = 𝜋∗𝑀 and 𝐿0 = 𝜋∗𝐿. It follows that

𝑟 (𝐿, 𝑀) =
𝐿0𝑀

𝑛−2
0 𝐹

(𝜋∗𝐾𝑉 )𝑀
𝑛−2
0 𝐹

≥ 𝑟 (𝐿0 |𝐹 , 𝑀0 |𝐹 ),

where the last inequality follows from the adjunction.
Apply Theorem 3.1 to f and 𝐿0. Replacing 𝑉0 by a further blowing up if necessary, we get triples

(𝐿𝑖 , 𝑍𝑖 , 𝑎𝑖) (𝑖 = 0, . . . , 𝑁)

on 𝑉0, and 𝐿𝑖 and 𝑎𝑖 satisfy the inequalities in Proposition 3.2 and 3.3. Note that by the definition of
𝑟 (𝐿, 𝑀), we see that

𝑟 (𝐿𝑖 |𝐹 , 𝑀0 |𝐹 ) ≤ 𝑟 (𝐿0 |𝐹 , 𝑀0 |𝐹 ) = 𝑟.

By induction and using the fact that the function 𝛿 is nonincreasing, we have

ℎ0 (𝐹, 𝐿𝑖 |𝐹 ) ≤
1

𝛿(𝑟) (𝑛 − 1)!
(𝐿𝑖 |𝐹 )

𝑛−1 + (𝑛 − 1)𝜀(𝐹, 𝐿𝑖 |𝐹 , 𝑀0 |𝐹 ).
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Combine this with Proposition 3.2. It follows that

ℎ0 (𝑉0, 𝐿0) −
1

𝛿(𝑟)𝑛!
𝐿𝑛0 ≤ (𝑛 − 1)

𝑁∑
𝑖=0

𝑎𝑖𝜀(𝐹, 𝐿𝑖 |𝐹 , 𝑀0 |𝐹 ) +
1

(𝑛 − 1)!
(𝐿0 |𝐹 )

𝑛−1.

To estimate the right-hand side of the above inequality, let 𝜆 be the smallest integer such that 𝜆𝑀 − 𝐿
is pseudo-effective. Note that 𝐿𝑛 > 0.
(1) It implies that 𝐿𝑛 ≤ 𝜆𝐿𝑛−1𝑀 = 𝜆(𝐿0 |𝐹 )

𝑛−1. In particular, (𝐿0 |𝐹 )
𝑛−1 > 0. Thus, by Proposition 3.3,

𝑁∑
𝑖=0

𝑎𝑖 ≤
𝐿𝑛0

(𝐿0 |𝐹 )𝑛
+ 1 ≤ 𝜆 + 1.

(2) By Proposition 2.1 (1),

𝜀(𝐹, 𝐿𝑖 |𝐹 , 𝑀0 |𝐹 ) ≤ 𝜀(𝐹, 𝐿0 |𝐹 , 𝑀0 |𝐹 ).

Moreover, since 𝜆𝑀0 |𝐹 − 𝐿0 |𝐹 is also pseudo-effective, we have

𝜀(𝐹, 𝐿0 |𝐹 , 𝑀0 |𝐹 ) ≤ (𝜆 + 1)𝑛−2(𝑀0 |𝐹 )
𝑛−1 = (𝜆 + 1)𝑛−2𝑀𝑛.

(3) We have

(𝐿0 |𝐹 )
𝑛−1 = 𝐿𝑛−1𝑀 ≤ 𝜆𝐿𝑛−2𝑀2 ≤ · · · ≤ 𝜆𝑛−1𝑀𝑛.

Combining all of the above inequalities, it follows that

ℎ0 (𝑉0, 𝐿0) −
1

𝛿(𝑟)𝑛!
𝐿𝑛0 ≤ (𝑛 − 1) (𝜆 + 1)𝑛−1𝑀𝑛 +

1
(𝑛 − 1)!

𝜆𝑛−1𝑀𝑛

≤ 𝑛𝜀(𝑉, 𝐿, 𝑀).

Thus the proof in this case is completed.

Step 4. The proof when 𝐿𝑛 = 0.
In this case, the proof is easier. Since L is not big, we know that

ℎ0(𝑉, 𝐿 − 𝑀) = 0.

Take W to be a general member in |𝑀 |, and we have

ℎ0 (𝑉, 𝐿) ≤ ℎ0 (𝑊, 𝐿 |𝑊 ).

Therefore, by induction, we deduce that

ℎ0 (𝑉, 𝐿) ≤
1

(𝑛 − 1)!
(𝐿 |𝑊 )𝑛−1 + (𝑛 − 1)𝜀(𝑊, 𝐿 |𝑊 , 𝑀 |𝑊 ).

Let 𝜆 be the smallest integer such that 𝜆𝑀 − 𝐿 is pseudo-effective. Similar to Step 3, we have
(1) (𝐿 |𝑊 )𝑛−1 = 𝐿𝑛−1𝑀 ≤ 𝜆𝑛−1𝑀𝑛;
(2) 𝜀(𝑊, 𝐿 |𝑊 , 𝑀 |𝑊 ) ≤ (𝜆 + 1)𝑛−2𝑀𝑛.

Combining the above inequalities, it follows that

ℎ0 (𝑉, 𝐿) ≤
1

(𝑛 − 1)!
𝜆𝑛−1𝑀𝑛 + (𝑛 − 1) (𝜆 + 1)𝑛−2𝑀𝑛 ≤ 𝑛𝜀(𝑉, 𝐿, 𝑀).

Thus the whole proof is completed. �
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3.3. Sharper bound involving the mapping degree

Let V be a smooth variety of dimension 𝑛 ≥ 2, and let L be a Q-divisor on V such that 𝐾𝑉 − 𝐿 is
pseudo-effective. Instead of the subcanonicity, we suppose that

𝑎 : 𝑉 → Σ

is a generically finite morphism onto a (possibly singular) variety Σ. Let H be a sufficiently ample
divisor on Σ, and write 𝑀 = 𝑎∗𝐻. The assumption will be used until the end of this section.

3.3.1. Preparation
We first assume that V is a surface and |𝐿 | is base point free. Although this assumption looks simple,
all the results we need can be reduced to this setting.

Lemma 3.5. If ℎ0 (𝑉, 𝐿 − 𝑀) = 0, then

ℎ0 (𝐿) ≤
1
2
𝐿𝑀 + 1 ≤ 𝜀(𝑉, 𝐿, 𝑀).

Proof. Choose a general curve 𝐶 ∈ 𝑎∗ |𝐻 |. By Bertini’s theorem, we may assume that C is smooth. The
assumption ℎ0 (𝑉, 𝐿 − 𝑀) = 0 just tells us that ℎ0 (𝑉, 𝐿) ≤ ℎ0(𝐶, 𝐿 |𝐶 ). Thus the first inequality is just
a combination of the Clifford inequality and the Riemann-Roch theorem again.

The second inequality is directly from the definition of 𝜀. Let 𝜆 be the smallest integer such that
𝜆𝑀 − 𝐿 is pseudo-effective. Then

1
2
𝐿𝑀 + 1 ≤

𝜆

2
𝑀2 + 1 ≤ (𝜆 + 1)𝑀2 = 𝜀(𝑉, 𝐿, 𝑀).

The proof is completed. �

Now suppose that ℎ0 (𝑉, 𝐿 − 𝑀) > 0. Let

𝛾 := max{𝑖 ∈ Z|ℎ0 (𝑉, 𝐿 − 𝑖𝑀) > 0}.

Obviously, 𝛾 ≥ 1.

Lemma 3.6. If ℎ0 (𝑉, 𝐿 − 𝑀) > 0, then

𝐿2 ≥ ℎ0(𝑉, 2𝐿) − ℎ0 (𝑉, 𝐿) − 1.

Proof. Take a general member 𝐷 ∈ |𝐿 |. By assumption, D is big. Thus we may assume that D is smooth
and irreducible. Consider the following exact sequence:

0 → 𝐻0(𝑉, 𝐿) → 𝐻0 (𝑉, 2𝐿) → 𝐻0(𝐷, 2𝐿 |𝐷).

Since 𝐾𝑉 − 𝐿 is pseudo-effective, we know that deg(2𝐿 |𝐷) ≤ deg(𝐾𝑉 |𝐷 + 𝐿 |𝐷) = deg 𝐾𝐷: that is,
𝐾𝐷 − 2𝐿 |𝐷 is pseudo-effective. Apply the Clifford inequality (when ℎ1 (𝐷, 2𝐿 |𝐷) > 0) or the Riemann-
Roch theorem (when ℎ1 (𝐷, 2𝐿 |𝐷) = 0) for 2𝐿 |𝐷 , and it follows that

𝐿2 =
1
2

deg(2𝐿 |𝐷) ≥ ℎ0 (𝐷, 2𝐿 |𝐷) − 1 ≥ ℎ0 (𝑉, 2𝐿) − ℎ0 (𝑉, 𝐿) − 1.

The proof is completed. �

Let 𝐶 ∈ 𝑎∗ |𝐻 | be a general member, hence smooth. Consider the two restriction maps

res1,𝑖 : 𝐻0 (𝑉, 𝐿 − 𝑖𝑀) → 𝐻0(𝐶, 𝐿 |𝐶 − 𝑖𝑀 |𝐶 )
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and

res2, 𝑗 : 𝐻0(𝑉, 2𝐿 − 𝑗𝑀) → 𝐻0(𝐶, 2𝐿 |𝐶 − 𝑗𝑀 |𝐶 ).

The kernels of the above two maps are 𝐻0 (𝑉, 𝐿 − (𝑖 + 1)𝑀) and 𝐻0 (𝑉, 2𝐿 − ( 𝑗 + 1)𝑀), respectively.
Let𝑉1,𝑖 (respectively,𝑉2, 𝑗 ) denote the image of 𝐻0(𝑉, 𝐿− 𝑖𝑀) (respectively, 𝐻0(𝑉, 2𝐿− 𝑗𝑀)) under

res1,𝑖 (respectively, res2, 𝑗 ).

Lemma 3.7. We have

ℎ0 (𝑉, 𝐿) =
𝛾−1∑
𝑖=0

dim𝑉1,𝑖 + ℎ0 (𝑉, 𝐿 − 𝛾𝑀)

ℎ0 (𝑉, 2𝐿) =
2𝛾−1∑
𝑗=0

dim𝑉2, 𝑗 + ℎ0 (𝑉, 2𝐿 − 2𝛾𝑀) ≥ 2
𝛾−1∑
𝑖=0

dim𝑉2,2𝑖 − dim𝑉2,0.

Proof. The two equalities are obvious. The last inequality in the second formula holds simply because
ℎ0 (𝑉, 2𝐿 − 2𝛾𝑀) > 0 and dim𝑉2,2𝑖−1 ≥ dim𝑉2,2𝑖 for any 1 ≤ 𝑖 ≤ 𝛾 − 1. �

Let |𝑁𝑖 | denote the movable part of |𝐿 − 𝑖𝑀 |. Note that the base locus of |𝑁𝑖 | is either empty or of
dimension zero. We deduce that 𝑁𝑖 is nef. Also, we have

dim𝑉1,𝑖 = dim |𝑁𝑖 | |𝐶 + 1.

Lemma 3.8. For 0 ≤ 𝑖 ≤ 𝛾, we have

dim𝑉2,2𝑖 ≥ 2 dim𝑉1,𝑖 − 1.

If, moreover, the linear system |𝑁𝑖 | |𝐶 induces a birational map on C, then

dim𝑉2,2𝑖 ≥ 3(dim𝑉1,𝑖 − 1).

Proof. This is just [6, Lemma 5.3] for 𝑘 = 2. �

In the following, we will apply the above results to deduce more inequalities subject to the degree of
the map a. The notation here will be used frequently.

3.3.2. deg 𝑎 = 1
We first consider the case when a is birational.

Theorem 3.9. Suppose that deg 𝑎 = 1, and 𝐾𝑉 − 𝐿 is pseudo-effective. Then we have

ℎ0 (𝑉, 	𝐿
) ≤
2

5𝑛!
Vol(𝐿) + 𝑛𝜀(𝑉, 𝐿, 𝑀).

Similar to the proof of Theorem 3.4, we may assume that L is nef. We may even assume that |𝐿 | is
base point free. Moreover, we only need to prove Theorem 3.9 when 𝑛 = 2 (i.e., Lemma 3.10), and the
general result follows by an inductive argument almost identical to Step 3 and Step 4 in the proof of
Theorem 3.4.

One little difference is that, instead of choosing a general pencil in |𝑀 | as in Step 3 of the proof
of Theorem 3.4, here we choose a general pencil in the sublinear system 𝑎∗ |𝐻 | ⊆ |𝑀 |. Since 𝑎∗ |𝐻 | is
also base point free, the smoothness of a general member in it is guaranteed by Bertini’s theorem. This
adjustment will be used until the end of this section. Note that the restriction of a on a general member
of 𝑎∗ |𝐻 | has degree one. This is the key point for us to use the induction.

With this adjustment and by Lemma 3.5, we eventually reduce Theorem 3.9 to the following lemma.
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Lemma 3.10. Theorem 3.9 holds when 𝑛 = 2, |𝐿 | is base point free and ℎ0 (𝑉, 𝐿 − 𝑀) > 0.

Proof. We claim that

ℎ0 (𝑉, 2𝐿) − 6ℎ0 (𝑉, 𝐿) ≥ −8𝐿𝑀 − 7. (3.1)

Suppose the claim holds. Together with Lemma 3.6, we deduce that

ℎ0 (𝑉, 𝐿) ≤
1
5
𝐿2 +

8
5
(𝐿𝑀 + 1),

and the proof will be completed by noting that

8
5
(𝐿𝑀 + 1) < 2𝜀(𝑉, 𝐿, 𝑀)

just as in the proof of Lemma 3.5.
To prove the claim, let C, 𝛾, 𝑉1,𝑖 , 𝑉2, 𝑗 be the same as in Section 3.3.1. For 0 ≤ 𝑖 ≤ 𝛾 − 1, |𝑀 | is a

sublinear system of |𝐿 − 𝑖𝑀 |, which means |𝑀 | |𝐶 is a sublinear system of 𝑉1,𝑖 . Note that |𝑀 | |𝐶 induces
a birational map from C. We deduce that the map induced by 𝑉1,𝑖 (0 ≤ 𝑖 ≤ 𝛾 − 1) is birational. Thus it
follows from Lemma 3.7 and the second inequality in Lemma 3.8 that

ℎ0 (𝑉, 2𝐿) − 6ℎ0 (𝑉, 𝐿) ≥ −6
(
𝛾 + ℎ0 (𝑉, 𝐿 − 𝛾𝑀)

)
− dim𝑉2,0.

Let us estimate the right-hand side of the above inequality.

(1) Since ℎ0 (𝑉, 𝐿 − (𝛾 + 1)𝑀) = 0, by Lemma 3.5, we have

ℎ0 (𝑉, 𝐿 − 𝛾𝑀) ≤
1
2
(𝐿𝑀 − 𝛾𝑀2) + 1 ≤ 𝐿𝑀 − 𝛾𝑀2 + 1.

In particular,

ℎ0(𝑉, 𝐿 − 𝛾𝑀) + 𝛾 ≤ 𝐿𝑀 + 1.

(2) Note that dim𝑉2,0 ≤ ℎ0(𝐶, 2𝐿 |𝐶 ). By the Clifford inequality and the Riemann-Roch theorem,
similar to before, we simply deduce that

dim𝑉2,0 ≤ ℎ0 (𝐶, 2𝐿 |𝐶 ) ≤ deg(2𝐿 |𝐶 ) + 1 = 2𝐿𝑀 + 1.

Combining the above two inequalities, we prove the claim. �

3.3.3. 𝑎 is not composed with an involution
Second, we consider the case when a is not composed with an involution. That is, there is no generically
finite map 𝑉 � 𝑉 ′ of degree two through which a factors birationally.

Theorem 3.11. Suppose that a is not composed with an involution and 𝐾𝑉 − 𝐿 is pseudo-effective. Then
we have

ℎ0 (𝑉, 	𝐿
) ≤
4

9𝑛!
Vol(𝐿) + 𝑛𝜀(𝑉, 𝐿, 𝑀).

Similar to what we did for Theorem 3.9, we may assume that 𝑛 = 2, |𝐿 | is base point free and
ℎ0 (𝑉, 𝐿 − 𝑀) > 0. For general n, we use the induction. Note that by our assumption, the restriction of
a on a general member of 𝑎∗ |𝐻 | is not composed with an involution either. See [6, Proposition 2.8], for
example. This guarantees that the inductive argument also works in this situation. Therefore, Theorem
3.11 boils down to the following lemma.
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Lemma 3.12. Theorem 3.11 holds when 𝑛 = 2, |𝐿 | is base point free and ℎ0 (𝑉, 𝐿 − 𝑀) > 0.

Proof. We sketch the proof here since it is similar to that of Lemma 3.10.
Let C, 𝛾, 𝑉1,𝑖 , 𝑉2, 𝑗 , 𝑁𝑖 be identical to those in Section 3.3.1. Let

𝑖0 = min{0 ≤ 𝑖 ≤ 𝛾 − 1|𝑉1,𝑖 does not induce a birational map on 𝐶}.

With this notation, using the same strategy as for proving equation (3.1), we deduce that

ℎ0 (𝑉, 2𝐿) − 6ℎ0 (𝑉, 𝐿) ≥ −8𝐿𝑀 − 7 − 2
𝛾−1∑
𝑖=𝑖0

dim𝑉1,𝑖 .

Comparing to the proof of equation (3.1), the only modification we make here is that, for 𝑖 ≥ 𝑖0, we
have to use the first inequality in Lemma 3.8 to compare dim𝑉2,2𝑖 with dim𝑉1,𝑖 , which is the reason for
having an extra term −2

∑𝛾−1
𝑖=𝑖0

dim𝑉1,𝑖 on the right-hand side.
Combining this inequality with Lemma 3.6, it follows that

𝐿2 ≥ 5ℎ0 (𝑉, 𝐿) − 2
𝛾−1∑
𝑖=𝑖0

dim𝑉1,𝑖 − 8(𝐿𝑀 + 1). (3.2)

On the other hand, recall that for any 0 ≤ 𝑖 ≤ 𝛾 − 1, 𝑁𝑖 is nef and

dim𝑉1,𝑖 = dim |𝑁𝑖 | |𝐶 + 1.

Note that in the current setting, 𝑁0 = 𝐿 and |𝑁𝑖+1 | is also the movable part of |𝑁𝑖 − 𝑀 |.
For any 𝑖 > 0, we have

𝑁2
𝑖−1 − 𝑁2

𝑖 ≥ (𝑁𝑖−1 + 𝑁𝑖)𝑀 ≥ 2𝑁𝑖𝑀 ≥ 4 dim𝑉1,𝑖 − 4, (3.3)

where the last inequality follows from the fact that 𝐾𝐶 − (𝐿 |𝐶 − 𝑖𝑀 |𝐶 ) is pseudo-effective. When 𝑖 ≥ 𝑖0,
𝑉1,𝑖 induces a map on C of degree at least three. Otherwise, the map 𝜙 |𝐿−𝑖𝑀 | induced by the linear
system |𝐿 − 𝑖𝑀 | would factor through a degree two map from V, and a would factor through 𝜙 |𝐿−𝑖𝑀 | ,
which is a contradiction. Let

𝜙𝑖 : 𝐶 → 𝐶 ′
𝑖

be the morphism induced by the movable part of 𝑉1,𝑖 . Then deg 𝜙𝑖 ≥ 3. Since 𝜙𝑖 factor through the
normalisation of 𝐶 ′

𝑖 , we may assume that the curve 𝐶 ′
𝑖 is normal, hence smooth. Then

|𝑁𝑖 | |𝐶 = 𝜙∗
𝑖 |𝐿

′
𝑖 | + 𝑍 ′

𝑖 ,

where 𝐿 ′
𝑖 and 𝑍 ′

𝑖 are effective divisors on 𝐶 ′. Since

dim𝑉1,𝑖 ≤ ℎ0 (𝐶 ′
𝑖 , 𝐿

′
𝑖) ≤ deg 𝐿 ′

𝑖 + 1 ≤
1

deg 𝜙𝑖
𝑁𝑖𝑀 + 1,

similar to equation (3.3), we deduce that for 𝑖 ≥ max{1, 𝑖0},

𝑁2
𝑖−1 − 𝑁2

𝑖 ≥ 2𝑁𝑖𝑀 ≥ 6 dim𝑉1,𝑖 − 6. (3.4)
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Note that we also have

dim𝑉1,0 ≤

⎧⎪⎪⎨⎪⎪⎩
1
2 𝐿𝑀 + 1, 𝑖0 > 0;

1
3 𝐿𝑀 + 1, 𝑖0 = 0.

Together with equations (3.3) and (3.4) for all 𝑖 > 0, we deduce that

𝐿2 =
𝛾−1∑
𝑖=1

(𝑁2
𝑖−1 − 𝑁2

𝑖 ) + 𝑁2
𝛾−1

≥ 4
𝑖0−1∑
𝑖=0

dim𝑉1,𝑖 + 6
𝛾−1∑
𝑖=𝑖0

dim𝑉1,𝑖 − 2𝐿𝑀 − 6𝛾 + 𝑁2
𝛾−1

≥ 4ℎ0 (𝑉, 𝐿) + 2
𝛾−1∑
𝑖=𝑖0

dim𝑉1,𝑖 − 4ℎ0 (𝑉, 𝐿 − 𝛾𝑀) − 2𝐿𝑀 − 6𝛾

≥ 4ℎ0 (𝑉, 𝐿) + 2
𝛾−1∑
𝑖=𝑖0

dim𝑉1,𝑖 − 4𝐿𝑀 − 6𝛾 − 4. (3.5)

The third inequality here is due to Lemma 3.7. For the last inequality, by Lemma 3.5 and the definition
of 𝛾, we have

ℎ0 (𝑉, 𝐿 − 𝛾𝑀) ≤
1
2
(𝐿𝑀 − 𝛾𝑀2) + 1.

Then it is easy to deduce that

4ℎ0 (𝑉, 𝐿 − 𝛾𝑀) ≤ 2𝐿𝑀 − 2𝛾𝑀2 + 4.

Thus equation (3.5) is verified.
Now, adding equations (3.2) and (3.5), it follows that

2𝐿2 ≥ 9ℎ0 (𝑉, 𝐿) − 12𝐿𝑀 − 6𝛾 − 12,

that is,

ℎ0 (𝑉, 𝐿) ≤
2
9
𝐿2 +

4
3
𝐿𝑀 +

2
3
𝛾 +

4
3
.

Finally, let 𝜆 be the smallest integer such that 𝜆𝑀 − 𝐿 is pseudo-effective. Noting that 𝛾 ≤ 𝜆, we
deduce that

4
3
𝐿𝑀 +

2
3
𝛾 +

4
3
≤

4
3
𝜆𝑀2 +

2
3
𝜆 +

4
3
≤ 2(𝜆 + 1)𝑀2 = 2𝜀(𝑉, 𝐿, 𝑀).

Thus the whole proof of this lemma is completed. �

3.3.4. 𝑎 is composed with an involution and 𝜅(Σ) > 0
Finally, we consider the case when a is composed with an involution and Σ is birational to a smooth
projective variety of positive Kodaira dimension. Let 𝜋 : Σ′ → Σ be a resolution of singularities of Σ.
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Then 𝜅(Σ′) > 0. Set

𝑟 ′(𝐿, 𝑀, Σ′) :=
𝐿𝑀𝑛−1

2𝐾Σ′ (𝜋∗𝐻)𝑛−1.

By the assumption, 𝐾Σ′ (𝜋∗𝐻)𝑛−1 > 0. Thus 𝑟 ′(𝐿, 𝑀, Σ′) < ∞.
Theorem 3.13. Let the notation be as above. Write 𝑟 ′ = 𝑟 ′(𝐿, 𝑀, Σ′). Suppose that 𝐾𝑉 − 𝐿 is pseudo-
effective. Then we have

ℎ0 (𝑉, 	𝐿
) ≤
2𝛿(𝑟 ′) − 1

(5𝛿(𝑟 ′) − 3)𝑛!
Vol(𝐿) + 𝑛𝜀(𝑉, 𝐿, 𝑀).

Moreover, for any Q-divisor 𝐿1 ≤ 𝐿, we have

ℎ0 (𝑉, 	𝐿1
) ≤
2𝛿(𝑟 ′) − 1

(5𝛿(𝑟 ′) − 3)𝑛!
Vol(𝐿1) + 𝑛𝜀(𝑉, 𝐿, 𝑀).

Here the function 𝛿(𝑥) is the same as that in Theorem 3.4. Note that under this setting, 𝛿(𝑟 ′) > 1.
Moreover, since 𝑟 ′1 := 𝑟 ′(𝐿1, 𝑀, Σ′) ≤ 𝑟 ′, we have 𝛿(𝑟 ′1) ≥ 𝛿(𝑟 ′) and 2𝛿 (𝑟 ′1)−1

5𝛿 (𝑟 ′1)−3 ≤
2𝛿 (𝑟 ′)−1
5𝛿 (𝑟 ′)−3 . Therefore,

the second inequality in Theorem 3.13 can be deduced from the first one for 𝐿1.
Note that the restriction of a on a general member of 𝑎∗ |𝐻 | is composed with an involution. Further-

more, by the adjunction, a smooth model of a general member of |𝐻 | has positive Kodaira dimension.
Thus the induction method works here, and Theorem 3.13 is finally reduced to the following result.
Lemma 3.14. Theorem 3.13 holds when 𝑛 = 2, |𝐿 | is base point free and ℎ0 (𝑉, 𝐿 − 𝑀) > 0.
Proof. The proof is just a modification of the proof of Lemma 3.12. We sketch it and leave the details
to the interested reader.

Let C, 𝛾, 𝑉1,𝑖 , 𝑉2, 𝑗 , 𝑁𝑖 and 𝑖0 be identical to those in the proof of Lemma 3.12. Then it is easy to see
that equation (3.2) still holds here: that is,

𝐿2 ≥ 5ℎ0 (𝑉, 𝐿) − 2
𝛾−1∑
𝑖=𝑖0

dim𝑉1,𝑖 − 8(𝐿𝑀 + 1). (3.6)

For any 1 ≤ 𝑖 ≤ 𝛾 − 1, equation (3.3) also holds here: that is,

dim𝑉1,𝑖 ≤
1
4
(𝑁2

𝑖−1 − 𝑁2
𝑖 ) + 1. (3.7)

The major modification is a replacement of equation (3.4). For 𝑖0 ≤ 𝑖 ≤ 𝛾 − 1, 𝑉1,𝑖 induces a map on
C of degree at least two. Let 𝜙𝑖 : 𝐶 → 𝐶 ′

𝑖 , 𝐿
′
𝑖 and 𝑍 ′

𝑖 be as in the proof of Lemma 3.12. We may further
assume that the curve 𝐶 ′

𝑖 is normal. By Theorem 3.4 and the fact that deg 𝜙𝑖 ≥ 2, we deduce that

dim𝑉1,𝑖 ≤ ℎ0 (𝐶 ′
𝑖 , 𝐿

′
𝑖) ≤

1
𝛿(𝑟 ′𝑖 )

deg 𝐿 ′
𝑖 + 1 ≤

1
2𝛿(𝑟 ′𝑖 )

𝑁𝑖𝑀 + 1,

where 𝑟 ′𝑖 =
deg 𝐿′

𝑖

deg𝐾𝐶′
𝑖

. Now we claim that

𝛿(𝑟 ′𝑖 ) ≥ 𝛿(𝑟 ′)

for any 𝑖 ≥ 𝑖0 as above. With this claim, we deduce that for 𝑖 ≥ max{1, 𝑖0},

dim𝑉1,𝑖 ≤
1

4𝛿(𝑟 ′)
(𝑁2

𝑖−1 − 𝑁2
𝑖 ) + 1. (3.8)
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To prove the claim, we only need to prove that 𝑟 ′𝑖 ≤ 𝑟 ′. Since we already have deg 𝐿 ′
𝑖 ≤

1
2 𝐿𝑀 as

above, it suffices to prove that deg 𝐾𝐶′
𝑖
≥ 𝐾Σ′ (𝜋∗𝐻). This is rather obvious. The key is to note that 𝑎 |𝐶

factors through 𝜙𝑖 . Via this factorisation, 𝐶 ′
𝑖 maps to a general curve in |𝐻 | on Σ. Since 𝜋∗ |𝐻 | is base

point free, by Bertini’s theorem, a general member of 𝜋∗ |𝐻 | is smooth. Moreover, the aforementioned
map on 𝐶 ′

𝑖 lifts to a map from 𝐶 ′
𝑖 to a general member 𝐶 ′′ ∈ 𝜋∗ |𝐻 |. Therefore, by the Hurwitz formula

and the adjunction formula,

deg 𝐾𝐶′
𝑖
≥ deg 𝐾𝐶′′ = 𝐾Σ′ (𝜋∗𝐻) + (𝜋∗𝐻)2 > 𝐾Σ′ (𝜋∗𝐻).

Thus the claim is verified, and equation (3.8) is established.
Having the above modification, we can proceed the proof as before. Sum up equations (3.7) and (3.8)

over all the above 𝑖 > 0. Note that

dim𝑉1,0 ≤

⎧⎪⎪⎨⎪⎪⎩
1
2 𝐿𝑀 + 1, 𝑖0 > 0;

1
2𝛿 (𝑟 ′) 𝐿𝑀 + 1, 𝑖0 = 0.

It follows that

𝐿2 ≥ 4
𝑖0−1∑
𝑖=0

dim𝑉1,𝑖 + 4𝛿(𝑟 ′)
𝛾−1∑
𝑖=𝑖0

dim𝑉1,𝑖 − 2𝐿𝑀 − 4𝛿(𝑟 ′)𝛾 + 𝑁2
𝛾−1

≥ 4ℎ0 (𝑉, 𝐿) + 4(𝛿(𝑟 ′) − 1)
𝛾−1∑
𝑖=𝑖0

dim𝑉1,𝑖 − 4ℎ0 (𝑉, 𝐿 − 𝛾𝑀)

− 2𝐿𝑀 − 4𝛿(𝑟 ′)𝛾.

Using the argument for proving equation (3.5), we can similarly deduce that

4ℎ0 (𝑉, 𝐿 − 𝛾𝑀) + 2𝐿𝑀 + 4𝛿(𝑟 ′)𝛾 ≤ 4𝐿𝑀 + 4𝛿(𝑟 ′)𝛾 + 4.

The above two inequalities imply that

𝐿2 ≥ 4ℎ0 (𝑉, 𝐿) + 4(𝛿(𝑟 ′) − 1)
𝛾−1∑
𝑖=𝑖0

dim𝑉1,𝑖 − 4𝐿𝑀 − 4𝛿(𝑟 ′)𝛾 − 4. (3.9)

For simplicity, we write 𝛿 = 𝛿(𝑟 ′). As before, we use equations (3.6) and (3.9) to eliminate∑𝛾−1
𝑖=𝑖0

dim𝑉1,𝑖 . It follows that

(2𝛿 − 1)𝐿2 ≥ (10𝛿 − 6)ℎ0(𝑉, 𝐿) − (16𝛿 − 12)𝐿𝑀 − 4𝛿𝛾 − (16𝛿 − 12),

that is,

ℎ0 (𝑉, 𝐿) ≤
2𝛿 − 1
10𝛿 − 6

𝐿2 +
8𝛿 − 6
5𝛿 − 3

𝐿𝑀 +
2𝛿

5𝛿 − 3
𝛾 +

8𝛿 − 6
5𝛿 − 3

.

Since 1 < 𝛿 ≤ 2, it is straightforward to check that the above inequality implies that

ℎ0 (𝑉, 𝐿) ≤
2𝛿 − 1

10𝛿 − 6
𝐿2 +

10
7

𝐿𝑀 + 𝛾 +
10
7
. (3.10)
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Once again, let 𝜆 be the smallest integer such that𝜆𝑀−𝐿 is pseudo-effective. Since 𝑀2 = (deg 𝑎)𝐻2 ≥ 2
and 𝛾 ≤ 𝜆, we deduce that

10
7

𝐿𝑀 + 𝛾 +
10
7

≤
10
7
𝜆𝑀2 +

1
2
𝜆𝑀2 +

10
7

< 2(𝜆 + 1)𝑀2 = 2𝜀(𝑉, 𝐿, 𝑀).

Thus the whole proof is completed. �

4. Some results about 𝜒 𝑓

Let 𝑓 : 𝑋 → 𝐵 be a fibration from a smooth variety X to a smooth curve B of genus g, with a general
fibre F. Recall that

𝜒 𝑓 := 𝜒(𝑋, 𝜔𝑋 ) − 𝜒(𝐵, 𝜔𝐵)𝜒(𝐹, 𝜔𝐹 ).

The goal of this section is to list some results about this relative invariant. We always assume that f is
of maximal Albanese dimension. Denote by

𝑎 : 𝑋 → 𝐴

the Albanese map of X. Let 𝑞 = dim 𝐴 = ℎ1 (𝑋,O𝑋 ). The above notation will be used throughout this
section.

4.1. 𝜒 𝑓 equals the degree of a twisted Hodge bundle

The following result relates 𝜒 𝑓 to the degree of a twisted Hodge bundle.

Proposition 4.1. With the above notation, we have

𝜒 𝑓 = deg 𝑓∗(𝜔𝑋/𝐵 ⊗ P),

where P is a general torsion element in Pic0(𝑋).4

Proof. This result has been proved by Hacon and Pardini [12, Theorem 2.4] assuming 𝑔(𝐵) ≥ 2. In
fact, this assumption can be removed. Here we give a slightly different proof that works for any curve B.

By the assumption, 𝑎 |𝐹 : 𝐹 → 𝐴 is generically finite onto its image. Let P ∈ Pic0(𝑋) be a general
torsion element. Applying exactly the proof of [12, Corollary 2.3], we conclude that 𝑓∗(𝜔𝑋/𝐵 ⊗ P) is
torsion free, hence a locally free sheaf on B of rank 𝑟 = 𝜒(𝐹, 𝜔𝐹 ). Still, by [12, Corollary 2.3], for any
𝑖 > 0,

𝑅𝑖 𝑓∗(𝜔𝑋/𝐵 ⊗ P) = 0.

Together with the Leray spectral sequence, we know that for any 𝑖 ≥ 0,

ℎ𝑖 (𝑋, 𝜔𝑋 ⊗ P) = ℎ𝑖 (𝐵, 𝑓∗(𝜔𝑋 ⊗ P)).

In particular,

𝜒(𝑋, 𝜔𝑋 ) = 𝜒(𝑋, 𝜔𝑋 ⊗ P) = 𝜒(𝐵, 𝑓∗(𝜔𝑋 ⊗ P)).

Combine all of the above, and apply the Riemann-Roch theorem for 𝑓∗(𝜔𝑋 ⊗ P). It follows that

deg 𝑓∗(𝜔𝑋/𝐵 ⊗ P) = deg 𝑓∗(𝜔𝑋 ⊗ P) − 2𝜒(𝐹, 𝜔𝐹 )𝜒(𝐵, 𝜔𝐵)

= 𝜒(𝐵, 𝑓∗(𝜔𝑋 ⊗ P)) − 𝜒(𝐹, 𝜔𝐹 )𝜒(𝐵, 𝜔𝐵)

4Here, being general means P is not contained in a certain proper subvariety (usually called the cohomological jumping loci)
of Pic0 (𝑋 ) .
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= 𝜒(𝑋, 𝜔𝑋 ) − 𝜒(𝐹, 𝜔𝐹 )𝜒(𝐵, 𝜔𝐵)

= 𝜒 𝑓 .

Thus the proof is completed. �

4.2. The degree of the Hodge bundle under étale covers

In this subsection, we assume that 𝑔 > 0. Thus X itself is of maximal Albanese dimension.
Let 𝜇𝑚 : 𝐴 → 𝐴 be the multiplication-by-m map of A. Let 𝑋𝑚 = 𝑋 ×𝜇𝑚 𝐴. Since a is the

Albanese map, 𝑋𝑚 is irreducible. Let 𝐽 (𝐵) be the Jacobian variety of B. By the abuse of notation, let
𝜇𝑚 : 𝐽 (𝐵) → 𝐽 (𝐵) also denote the multiplication-by-m map of 𝐽 (𝐵), and let 𝐵𝑚 = 𝐵 ×𝜇𝑚 𝐽 (𝐵). Thus
we have the following commutative diagram:

𝐴

𝜇𝑚
��

��

𝑋𝑚𝑎𝑚
��

𝑓𝑚

��

𝜈𝑚
�� 𝑋 𝑎

��

𝑓

��

𝐴

ℎ

��
𝐽 (𝐵)

𝜇𝑚

��𝐵𝑚
��

𝜎𝑚

�� 𝐵 �� 𝐽 (𝐵).

Now we claim that if m is a sufficiently large prime number, the morphism

𝑓𝑚 : 𝑋𝑚 → 𝐵𝑚

is always a fibration: that is, it has connected fibres. To see this, let 𝐴𝐹 = ker ℎ, which is also an abelian
variety. We may assume that up to a translation by a point in 𝐽 (𝐵), 𝑎(𝐹) generates 𝐴𝐹 . Thus the kernel
of the map (𝑎 |𝐹 )

∗ : Pic0(𝐴𝐹 ) → Pic0(𝐹) is finite. Thus for any integer m coprime to the cardinality of
this kernel, the general fibre of 𝑓𝑚 is irreducible.

Proposition 4.2. With the above notation, we have

lim
𝑚 prime,𝑚→∞

deg 𝑓𝑚∗𝜔𝑋𝑚/𝐵𝑚

𝑚2𝑞 = 𝜒 𝑓 .

Proof. From the above construction, we know that for any 𝑚 > 0, the morphism 𝜎𝑚 : 𝐵𝑚 → 𝐵 is étale.
By the projection formula,

𝜎𝑚∗O𝐵𝑚 =
⊕

P∈𝑇𝑚 (𝐵)

P,

where 𝑇𝑚 (𝐵) ⊂ Pic0(𝐵) is the subgroup of all m-torsion line bundles on B. There is a natural injective
group homomorphism

𝑓 ∗ : 𝑇𝑚 (𝐵) → 𝑇𝑚 (𝑋)

given by the pull-back of f, where 𝑇𝑚 (𝑋) ⊂ Pic0 (𝑋) is the subgroup of all m-torsion line bundles on
X. Let m be a sufficiently large prime number, and let 𝑋 ′

𝑚 = 𝑋 ×𝐵 𝐵𝑚. Then we have the following
commutative diagram:
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𝑋𝑚

𝑓𝑚

��

𝜈𝑚

��

𝜈′𝑚

		�
��

��
��

�

𝑋 ′
𝑚

𝜎′
𝑚 ��

𝑓 ′
𝑚

��

𝑋

𝑓

��
𝐵𝑚

𝜎𝑚 �� 𝐵.

It is clear that 𝜈′𝑚 : 𝑋𝑚 → 𝑋 ′
𝑚 is a Galois cover with Gal(𝜈′𝑚) �

𝑇𝑚 (𝑋 )
𝑓 ∗𝑇𝑚 (𝐵) . Thus, by the projection

formula,

𝜈′𝑚∗𝜔𝑋𝑚/𝐵𝑚 =
⊕

Q+ 𝑓 ∗𝑇𝑚 (𝐵)

𝜔𝑋 ′
𝑚/𝐵𝑚 ⊗ (𝜎′

𝑚)
∗Q.

Here the summation runs over all cosets of 𝑓 ∗𝑇𝑚 (𝐵) in 𝑇𝑚 (𝑋) (whose cardinality equals 𝑚2𝑞−2𝑔), and
Q is any representative in each corresponding coset. Thus we have the following splitting:

𝑓𝑚∗𝜔𝑋𝑚/𝐵𝑚 = 𝑓 ′𝑚∗

(
𝜈′𝑚∗𝜔𝑋𝑚/𝐵𝑚

)
=

⊕
Q+ 𝑓 ∗𝑇𝑚 (𝐵)

𝜎∗
𝑚( 𝑓∗(𝜔𝑋/𝐵 ⊗ Q)).

All the above imply particularly that

deg 𝑓𝑚∗𝜔𝑋𝑚/𝐵𝑚 = deg 𝜎𝑚∗

(
𝑓𝑚∗𝜔𝑋𝑚/𝐵𝑚

)
= deg

(
𝜎𝑚∗

(
𝑓𝑚∗𝜔𝑋𝑚

)
⊗ 𝜔−1

𝐵

)
= deg

(
𝑓∗
(
𝜈𝑚∗𝜔𝑋𝑚

)
⊗ 𝜔−1

𝐵

)
.

On the other hand, by the projection formula,

𝜈𝑚∗𝜔𝑋𝑚 =
⊕

P∈𝑇𝑚 (𝑋 )

𝜔𝑋 ⊗ P.

Thus it follows that

deg 𝑓𝑚∗𝜔𝑋𝑚/𝐵𝑚 =
∑

P∈𝑇𝑚 (𝑋 )

deg 𝑓∗(𝜔𝑋/𝐵 ⊗ P).

Let 𝑆𝑚(𝑋) = {P ∈ 𝑇𝑚 (𝑋) | deg 𝑓∗(𝜔𝑋/𝐵 ⊗ P) = 𝜒 𝑓 } be the subset of 𝑇𝑚 (𝑋). By Proposition 4.1,
we know that the set ⋃

𝑚∈Z

(𝑇𝑚 (𝑋)\𝑆𝑚(𝑋))

is contained in a proper subvariety of Pic0(𝑋). In particular,

lim
𝑚→∞

#𝑆𝑚 (𝑋)
#𝑇𝑚 (𝑋)

= lim
𝑚→∞

#𝑆𝑚 (𝑋)
𝑚2𝑞 = 1.

Note that deg 𝑓∗(𝜔𝑋/𝐵 ⊗P) is always nonnegative (e.g., see [12]) and bounded from above independent
of m. We deduce that

lim
𝑚→∞

deg 𝑓𝑚∗𝜔𝑋𝑚/𝐵𝑚

𝑚2𝑞 = 𝜒 𝑓 .

Thus the proof is completed. �
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5. Slope inequalities for fibrations over curves

In this section, we prove a slope inequality for fibrations over curves whose general fibre is a smooth
variety of general type. Throughout this section, we always assume that

𝑓 : 𝑋 → 𝐵

is a fibration from a smooth variety X of dimension 𝑛 ≥ 2 to a smooth curve B. Denote by F a general
fibre of f.

5.1. Xiao’s method

Here we review Xiao’s method and list some inequalities deduced from it. Most of the following facts
can be found in [23] when 𝑛 = 2 and in [19, 15, 4] for general 𝑛 ≥ 2.

Let L be a nef Q-divisor on X. Let

0 = E0 � E1 � · · · � E𝑚 = 𝑓∗O𝑋 (	𝐿
)

be the Harder-Narasimhan filtration of 𝑓∗O𝑋 (	𝐿
). For any 0 ≤ 𝑖 ≤ 𝑚, set

𝑟𝑖 = rankE𝑖 , 𝜇𝑖 =
deg(E𝑖/E𝑖−1)

rank(E𝑖/E𝑖−1)
.

Then we have

𝜇1 > 𝜇2 > · · · > 𝜇𝑚

as well as

deg E𝑘 =
𝑘−1∑
𝑖=1

𝑟𝑖 (𝜇𝑖 − 𝜇𝑖+1) + 𝑟𝑘𝜇𝑘 (5.1)

for each 1 ≤ 𝑘 ≤ 𝑚.
For each 1 ≤ 𝑖 ≤ 𝑚, consider the rational map 𝜙𝑖 : 𝑋 � P𝐵 (E𝑖) associated to the evaluation

morphism 𝑓 ∗E𝑖 → O𝑋 (	𝐿
). We may choose a common blowing up 𝜎 : 𝑌 → 𝑋 , which resolves all
indeterminacies of 𝜙𝑖 . Denote by 𝐹1 a general fibre of 𝑓 ◦ 𝜎 : 𝑌 → 𝐵. Applying Xiao’s method, we
obtain a sequence of nef Q-Cartier divisors

𝑁1 ≤ 𝑁2 ≤ · · · ≤ 𝑁𝑚 ≤ 𝑁𝑚+1 := 𝜎∗𝐿

on Y. Here 𝑁𝑖 = (𝜙𝑖 ◦𝜎)
∗𝐻E𝑖 − 𝜇𝑖𝐹1, where 𝐻E𝑖 is a hyperplane section of P𝐵 (E𝑖). For each 1 ≤ 𝑖 ≤ 𝑚,

𝑁𝑖 |𝐹1 is Cartier, ℎ0 (𝐹1, 𝑁𝑖 |𝐹1) = 𝑟𝑖 ,

𝑁𝑖+1 ≥ 𝑁𝑖 + (𝜇𝑖 − 𝜇𝑖+1)𝐹1,

and

𝜎∗𝐿 ≥ 𝑁𝑖 + 𝜇𝑖𝐹1.

In particular, 𝜎∗𝐿 − 𝜇1𝐹1 is pseudo-effective, and for 1 ≤ 𝑖 ≤ 𝑚 − 1, we have

𝑁𝑛
𝑖+1 ≥ (𝑁𝑖 + (𝜇𝑖 − 𝜇𝑖+1)𝐹1)

𝑛 ≥ 𝑁𝑛
𝑖 + 𝑛(𝜇𝑖 − 𝜇𝑖+1) (𝑁𝑖 |𝐹1)

𝑛−1.

Thus the following lemma follows easily by induction.
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Lemma 5.1. Keep the same notation as above. Suppose that for some 1 ≤ 𝑖 ≤ 𝑚, we have 𝜇𝑖 ≥ 0. Let
𝑘 := max{𝑖 | 1 ≤ 𝑖 ≤ 𝑚 and 𝜇𝑖 ≥ 0}. Then we have

𝐿𝑛 ≥ 𝑛
𝑘−1∑
𝑖=1

(𝜇𝑖 − 𝜇𝑖+1) (𝑁𝑖 |𝐹1 )
𝑛−1 + 𝑛𝜇𝑘 (𝑁𝑘 |𝐹1 )

𝑛−1.

Proof. Inductively using the above estimate, we have

𝑁𝑛
𝑘 ≥ 𝑁𝑛

1 + 𝑛
𝑘−1∑
𝑖=1

(𝜇𝑖 − 𝜇𝑖+1) (𝑁𝑖 |𝐹1)
𝑛−1 ≥ 𝑛

𝑘−1∑
𝑖=1

(𝜇𝑖 − 𝜇𝑖+1) (𝑁𝑖 |𝐹1 )
𝑛−1.

The last inequality holds since 𝑁1 is nef. Notice that 𝜎∗𝐿 ≥ 𝑁𝑘 + 𝜇𝑘𝐹1 and 𝜇𝑘 ≥ 0. We have

𝐿𝑛 ≥ (𝑁𝑘 + 𝜇𝑘𝐹1)
𝑛 = 𝑁𝑛

𝑘 + 𝑛𝜇𝑘 (𝑁𝑘 |𝐹1)
𝑛−1.

Thus the proof is completed by combining the above estimates. �

5.2. A basic slope inequality

We have the following result.

Proposition 5.2. Let 𝑓 : 𝑋 → 𝐵 and F be as before. Suppose that L is a nef Q-divisor on X such that
𝐿 |𝐹 is big and 𝐾𝐹 − 𝐿 |𝐹 is pseudo-effective. Then we have(

1 +
2𝑛!(𝑛 − 1)𝜀(𝐹, 𝐿 |𝐹 )

(𝐿 |𝐹 )𝑛−1

)
𝐿𝑛 ≥ 2𝑛! deg 𝑓∗O𝑋 (	𝐿
).

Proof. The inequality holds trivially when deg 𝑓∗O𝑋 (	𝐿
) ≤ 0. Thus we may assume that
deg 𝑓∗O𝑋 (	𝐿
) > 0.

Let

0 = E0 � E1 � · · · � E𝑚 = 𝑓∗O𝑋 (	𝐿
)

be the Harder-Narasimhan filtration of 𝑓∗O𝑋 (	𝐿
). Keep the same notation as in Section 5.1. Since
deg 𝑓∗O𝑋 (	𝐿
) > 0, we have 𝜇𝑖 > 0 for some 1 ≤ 𝑖 ≤ 𝑚. Let 𝑘 := max{𝑖 | 1 ≤ 𝑖 ≤ 𝑚 and 𝜇𝑖 ≥ 0}. We
have

deg E𝑘 ≥ deg 𝑓∗O𝑋 (	𝐿
). (5.2)

By equation (5.1) and Lemma 5.1, we have the following two inequalities:

𝐿𝑛 ≥ 𝑛
𝑘−1∑
𝑖=1

(𝜇𝑖 − 𝜇𝑖+1) (𝑁𝑖 |𝐹1 )
𝑛−1 + 𝑛𝜇𝑘 (𝑁𝑘 |𝐹1 )

𝑛−1,

deg E𝑘 =
𝑘−1∑
𝑖=1

𝑟𝑖 (𝜇𝑖 − 𝜇𝑖+1) + 𝑟𝑘𝜇𝑘 .

On the other hand, note that 𝑁𝑖 |𝐹1 ≤ 𝜎∗𝐿 |𝐹1 for any 1 ≤ 𝑖 ≤ 𝑚 and 𝐾𝐹1 − 𝜎∗𝐿 |𝐹1 ≥ 𝜎∗(𝐾𝐹 − 𝐿 |𝐹 ) is
pseudo-effective. By Theorem 2.2 and Proposition 2.1, we have

𝑟𝑖 ≤
1

2(𝑛 − 1)!
(𝑁𝑖 |𝐹1 )

𝑛−1 + (𝑛 − 1)𝜀(𝐹, 𝐿 |𝐹 ). (5.3)
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Combine the above three (in)equalities. We deduce that

𝐿𝑛 ≥ 2𝑛! deg E𝑘 − 2𝑛!(𝑛 − 1)𝜀(𝐹, 𝐿 |𝐹 ) (
𝑘−1∑
𝑖=1

(𝜇𝑖 − 𝜇𝑖+1) + 𝜇𝑘 )

= 2𝑛! deg E𝑘 − 2𝑛!(𝑛 − 1)𝜀(𝐹, 𝐿 |𝐹 )𝜇1

≥ 2𝑛! deg 𝑓∗O𝑋 (	𝐿
) − 2𝑛!(𝑛 − 1)𝜀(𝐹, 𝐿 |𝐹 )𝜇1,

where the last inequality follows by equation (5.2).
What is left to us is to estimate 𝜇1. Note that 𝜎∗𝐿 − 𝜇1𝐹1 is pseudo-effective. Thus

𝐿𝑛 = (𝜎∗𝐿)𝑛 ≥ 𝜇1 (𝜎
∗𝐿 |𝐹1 )

𝑛−1 = 𝜇1 (𝐿 |𝐹 )
𝑛−1.

As a result, we deduce that(
1 +

2𝑛!(𝑛 − 1)𝜀(𝐹, 𝐿 |𝐹 )

(𝐿 |𝐹 )𝑛−1

)
𝐿𝑛 ≥ 2𝑛! deg 𝑓∗O𝑋 (	𝐿
).

Thus the proof is completed. �

Before going further, we would like to remark that the inequality in Proposition 5.2 is by no means
sharp. For example, when 𝑛 = 2, f is a relatively minimal fibration by curves of genus 𝑔 ≥ 2, and
𝐿 = 𝐾𝑋/𝐵 (in this case 𝜀(𝐹, 𝐿 |𝐹 ) = 1), Proposition 5.2 yields

𝐾2
𝑋/𝐵 ≥

(
4𝑔 − 4
𝑔 + 1

)
deg 𝑓∗𝜔𝑋/𝐵,

which is weaker than the optimal slope inequality with the slope 4𝑔−4
𝑔 . This is because our estimate is not

as delicate as Xiao’s original version in [23], which also considers the intersection number contributed
by the horizontal part 𝑁𝑖 |𝐹1 − 𝑁𝑖+1 |𝐹1 . See the proof of [23, Lemma 2] for details. In other words, we
have not employed Xiao’s method in its full strength. However, Proposition 5.2 is already enough to
deduce Theorem 1.2. Moreover, instead of using Theorem 1.2, Proposition 5.2 is sufficient for us to run
the argument as in [4, Proposition 4.4] to deduce the absolute Severi inequality.

5.3. Sharper slope inequalities

In the following, we assume that

𝑎 : 𝐹 → Σ

is a generically finite map onto a projective variety Σ. Let H be a sufficiently ample divisor on Σ. Let
𝑀 = 𝑎∗𝐻.

Proposition 5.3. Let 𝑓 : 𝑋 → 𝐵 and F be as before. Suppose that L is a nef Q-divisor on X such that
𝐿 |𝐹 is big and 𝐾𝐹 − 𝐿 |𝐹 is pseudo-effective.

(1) If a is birational, then(
1 +

5𝑛!(𝑛 − 1)𝜀(𝐹, 𝐿 |𝐹 , 𝑀)

2(𝐿 |𝐹 )𝑛−1

)
𝐿𝑛 ≥

5𝑛!
2

deg 𝑓∗O𝑋 (	𝐿
).

(2) If a is not composed with an involution, then(
1 +

9𝑛!(𝑛 − 1)𝜀(𝐹, 𝐿 |𝐹 , 𝑀)

4(𝐿 |𝐹 )𝑛−1

)
𝐿𝑛 ≥

9𝑛!
4

deg 𝑓∗O𝑋 (	𝐿
).
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(3) If a is composed with an involution and Σ has a smooth model of positive Kodaira dimension, then(
1 +

(5𝛿(𝑟 ′) − 3)𝑛!(𝑛 − 1)𝜀(𝐹, 𝐿 |𝐹 , 𝑀)

(2𝛿(𝑟 ′) − 1) (𝐿 |𝐹 )𝑛−1

)
𝐿𝑛 ≥

(5𝛿(𝑟 ′) − 3)𝑛!
2𝛿(𝑟 ′) − 1

deg 𝑓∗O𝑋 (	𝐿
).

Here 𝑟 ′ and 𝛿 are the same as in Theorem 3.13.

Proof. The proof is almost identical to Proposition 5.2. We only need to replace equation (5.3) by the
inequalities in Theorems 3.9 and 3.11 and the second inequality in Theorem 3.13, respectively. Then
the results will follow. We leave the details to the interested reader. �

6. Proof of the main theorems

In the final section, we prove the main theorems of this paper. We always assume that 𝑓 : 𝑋 → 𝐵 is a
relatively minimal fibration from a variety X of dimension 𝑛 ≥ 2 to a smooth curve B with a general
fibre F and f is of maximal Albanese dimension. Let

𝑎 : 𝑋 → 𝐴

be the Albanese map of X. Write 𝑞 = ℎ1 (𝑋,O𝑋 ) = dim 𝐴.

6.1. Preparation when 𝑔(𝐵) > 0

Before proving the results, we list some notations that will be used throughout the section. We first
assume that 𝑔(𝐵) > 0. Note that in this case, X itself is of maximal Albanese dimension.

Let 𝜋 : 𝑌 → 𝑋 be a resolution of singularities of X. Thus Y is also of maximal Albanese dimension.
Let

𝑓 ′ := 𝑓 ◦ 𝜋 : 𝑌 → 𝐵

be the induced fibration with a general fibre 𝐹 ′, and let

𝑏 : 𝑌 → 𝐴

be the Albanese map of Y.
Let m be a sufficiently large prime number. Similar to Section 4.2 but adding Y to it, we have the

following commutative diagram:

𝐴

𝜇𝑚




��

𝑌𝑚
𝑏𝑚

��

𝜋𝑚

��
𝑓 ′
𝑚

��

𝜈𝑚
�� 𝑌

𝑏
��

𝜋

��
𝑓 ′

��

𝐴

��

𝑋𝑚

𝑎𝑚



���������

𝑓𝑚

��
𝜈𝑚

�� 𝑋

𝑓

��

𝑎

�����������

𝐽 (𝐵)

𝜇𝑚

��𝐵𝑚
��

𝜎𝑚

�� 𝐵 �� 𝐽 (𝐵).

Here 𝜇𝑚 still denotes the multiplication-by-m map of A or 𝐽 (𝐵), the Jacobian variety of B, 𝑋𝑚 and 𝑓𝑚
are identical to those in Section 4.2, 𝑌𝑚 = 𝑌 ×𝜇𝑚 𝐴 and

𝑓 ′𝑚 : 𝑌𝑚 → 𝐵𝑚
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is the Stein factorisation of the morphism𝑌𝑚 → 𝑌 → 𝐵. Clearly, 𝑋𝑚 has at worst terminal singularities,
and 𝜋𝑚 : 𝑌𝑚 → 𝑋𝑚 is also a resolution of singularities of 𝑋𝑚. Denote by 𝐹 ′

𝑚 a general fibre of 𝑓 ′𝑚.
Moreover, we will fix a sufficiently ample divisor H on A. By [7, Proposition 2.3.5],

𝑚2𝐻 ≡ 𝜇∗𝑚𝐻. (6.1)

6.2. Proof of Theorem 1.2

We divide the proof into two cases.

6.2.1. Case I: 𝑔(𝐵) > 0
We first prove Theorem 1.2 when 𝑔 := 𝑔(𝐵) > 0.

If F is not of general type, neither is 𝐹 ′. In this case, for a general torsion element P ∈ Pic0 (𝑌 ),
𝑓∗(𝜔𝑌 /𝐵 ⊗ P) is of rank 𝜒(𝐹 ′, 𝜔𝐹 ′ ) = 0. We deduce that 𝑓∗(𝜔𝑌 /𝐵 ⊗ P) = 0. By Proposition 4.1,
𝜒 𝑓 = 𝜒 𝑓 ′ = 0. Thus equation (1.1) holds trivially.

From now on, we will always assume that F is of general type. Set

𝐿 := 𝜋∗𝐾𝑋/𝐵, 𝐿𝑚 := 𝜈∗𝑚𝐿 = 𝜋∗𝑚𝐾𝑋𝑚/𝐵𝑚 .

Clearly, 𝐿𝑚 is nef, and 𝐿𝑚 |𝐹 ′
𝑚

is big. Since X has at worst terminal singularities, 𝐾𝑌 − 𝜋∗𝐾𝑋 is effective.
Thus 𝐾𝐹 ′

𝑚
− 𝐿𝑚 |𝐹 ′

𝑚
is pseudo-effective. Moreover, since

𝑓 ′𝑚∗O𝑌𝑚 (	𝐿𝑚
) = 𝑓𝑚∗𝜔𝑋𝑚/𝐵𝑚 = 𝑓 ′𝑚∗𝜔𝑌𝑚/𝐵𝑚 ,

by [11, Main Theorem], we deduce that 𝑓 ′𝑚∗O𝑌𝑚 (	𝐿𝑚
) is semi-positive.
Since deg 𝜈𝑚 = 𝑚2𝑞 , we have

𝐿𝑛𝑚 = 𝑚2𝑞𝐿𝑛. (6.2)

There is a natural restriction morphism

𝜈𝑚 |𝐹 ′
𝑚

: 𝐹 ′
𝑚 → 𝐹 ′.

It is an étale morphism and deg 𝜈𝑚 |𝐹 ′
𝑚
= 𝑚2𝑞−2𝑔. Therefore, we deduce that

(𝐿𝑚 |𝐹 ′
𝑚
)𝑛−1 = 𝑚2𝑞−2𝑔 (𝐿 |𝐹 ′ )𝑛−1 = 𝑚2𝑞−2𝑔𝐾𝑛−1

𝐹 . (6.3)

Moreover, we claim that

𝜀(𝐹 ′
𝑚, 𝐿𝑚 |𝐹 ′

𝑚
) ∼ 𝑂 (𝑚2𝑞−2𝑔−2). (6.4)

In fact, we may assume that 𝑏∗𝐻 − 𝐿 is pseudo-effective. By equation (6.1), 𝑚2 (𝑏∗𝑚𝐻) − 𝐿𝑚 is also
pseudo-effective. Thus

𝜀(𝐹 ′
𝑚, 𝐿𝑚 |𝐹 ′

𝑚
, (𝑏∗𝑚𝐻) |𝐹 ′

𝑚
) ≤ (𝑚2 + 1)𝑛−2 ((𝑏∗𝑚𝐻) |𝐹 ′

𝑚

)𝑛−1

≤
2𝑛−2

𝑚2
(
(𝑏∗𝑚 (𝜇

∗
𝑚𝐻)) |𝐹 ′

𝑚

)𝑛−1

=
2𝑛−2

𝑚2
(
(𝜈∗𝑚 (𝑏

∗𝐻))) |𝐹 ′
𝑚

)𝑛−1

= 2𝑛−2𝑚2𝑞−2𝑔−2 ((𝑏∗𝐻) |𝐹 ′ )
𝑛−1.

Thus the claim is verified.
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Now, applying Proposition 5.2 to 𝑓 ′𝑚 and 𝐿𝑚, we deduce that(
1 +

2𝑛!(𝑛 − 1)𝜀(𝐹 ′
𝑚, 𝐿𝑚 |𝐹 ′

𝑚
)

(𝐿𝑚 |𝐹 ′
𝑚
)𝑛−1

)
𝐿𝑛𝑚 ≥ 2𝑛! deg 𝑓 ′𝑚∗O𝑌𝑚 (	𝐿𝑚
). (6.5)

Recall that

𝑓 ′𝑚∗O𝑌𝑚 (	𝐿𝑚
) = 𝑓 ′𝑚∗𝜔𝑌𝑚/𝐵𝑚 .

Together with equations (6.2), (6.3) and (6.4), the above inequality in equation (6.5) implies that(
1 +𝑂 (𝑚−2)

)
𝐾𝑛
𝑋/𝐵 ≥ 2𝑛!

(deg 𝑓 ′𝑚∗𝜔𝑌𝑚/𝐵𝑚

𝑚2𝑞

)
. (6.6)

Let 𝑚 → ∞. The left-hand side of equation (6.6) clearly tends to 𝐾𝑛
𝑋/𝐵

. By Proposition 4.2, the
right-hand side tends to 𝜒 𝑓 ′ = 𝜒(𝑌, 𝜔𝑌 ) − 𝜒(𝐹 ′, 𝜔𝐹 ′ )𝜒(𝐵, 𝜔𝐵), which is nothing but 𝜒 𝑓 . Thus the
proof for 𝑔 > 0 is completed.

6.2.2. Case II: 𝑔(𝐵) = 0
Now we prove Theorem 1.2 when 𝑔(𝐵) = 0. It is easy to see that the argument for 𝑔(𝐵) > 0 does not
directly apply here. However, we can reduce this case to the previous one via a base change.

Choose four general distinct closed points 𝑃1, . . . , 𝑃4 on B. Let 𝜎 : 𝐶 → 𝐵 be a double cover
branched along 𝑃1, . . . , 𝑃4. By the Hurwitz formula, 𝑔(𝐶) = 1. Let 𝑌 = 𝑋 ×𝐵 𝐶 and

𝑓 ′ : 𝑌 → 𝐶

be the induced fibration. Thus we have the following commutative diagram:

𝑌

𝑓 ′

��

𝜋
�� 𝑋

𝑓

��
𝐶 𝜎

�� 𝐵.

Since f is relatively of maximal Albanese dimension, so is 𝑓 ′. As 𝑔(𝐶) = 1, Y itself is of maximal
Albanese dimension. Since 𝑃1, . . . , 𝑃4 are general, we deduce that Y is normal. Moreover, we claim
that Y has at worst terminal singularities. In fact, let 𝜇 : 𝑋 ′ → 𝑋 be a resolution of singularities of X.
Then 𝑋 ′ ×𝐵 𝐶 → 𝑌 is just a resolution of singularities of Y, and the claim is an easy consequence of
the adjunction.

Since 𝐾𝑌 /𝐶 = 𝜋∗𝐾𝑋/𝐵, 𝑓 ′ is also relatively minimal, and we have

𝐾𝑛
𝑌 /𝐶 = 2𝐾𝑛

𝑋/𝐵 . (6.7)

We also have

𝜋∗𝜔𝑌 = 𝜔𝑋 ⊕ (𝜔𝑋 ⊗ O𝑋 (2𝐹))

from the above double cover. Thus, from the adjunction formula, we deduce that

𝜒 𝑓 ′ = 𝜒(𝑌, 𝜔𝑌 ) − 𝜒(𝐶, 𝜔𝐶 )𝜒(𝐹, 𝜔𝐹 )

= 𝜒(𝑋, 𝜔𝑋 ) + 𝜒(𝑋, 𝜔𝑋 ⊗ O𝑋 (2𝐹)) (6.8)
= 2𝜒(𝑋, 𝜔𝑋 ) + 2𝜒(𝐹, 𝜔𝐹 )

= 2𝜒 𝑓 .
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Now that 𝑔(𝐶) = 1 > 0, we have

𝐾𝑛
𝑌 /𝐶 ≥ 2𝑛!𝜒 𝑓 ′

as in Section 6.2.1. Together with equations (6.7) and (6.8), it implies that

𝐾𝑛
𝑋/𝐵 ≥ 2𝑛!𝜒 𝑓 .

Thus the whole proof of Theorem 1.2 is completed.

Remark 6.1. With this framework, it is easy to see that in order to get inequalities of the same type as
equation (1.1) with various slopes, we only need to (up to a base change to the 𝑔(𝐵) > 0 case) replace
equation (6.5) by a corresponding explicit estimate with the same slope, and the same argument will
give rise to the desired results. This is a crucial observation to us.

6.3. Sharper inequalities

As an example of the above remark, we can easily obtain the following result.

Theorem 6.2 (Theorem 1.4). Let 𝑓 : 𝑋 → 𝐵 be a relatively minimal fibration from a variety X of
dimension 𝑛 ≥ 3 to a smooth curve B. Denote by F a general fibre of f. Suppose that f is of maximal
Albanese dimension and 𝑎 : 𝑋 → Alb(𝑋) is the Albanese map of X.

(1) If 𝑎 |𝐹 is birational, then

𝐾𝑛
𝑋/𝐵 ≥

5𝑛!
2

𝜒 𝑓 .

(2) If 𝑎 |𝐹 is not composed with an involution, then

𝐾𝑛
𝑋/𝐵 ≥

9𝑛!
4

𝜒 𝑓 .

Proof. Remark 6.1 allows us to assume that 𝑔 > 0. In the following, we adopt the notation in Section 6.1.
To prove (1), note that now 𝐵 → 𝐽 (𝐵) is an embedding. It implies that a separates any two distinct

fibres of f. In particular, a is birational. Thus for every sufficiently large prime number 𝑚 > 0, 𝑏𝑚 is
birational. So is 𝑏𝑚 |𝐹 ′

𝑚
. Then we simply replace the estimate equation (6.5) in the proof of Theorem 1.2

by the inequality in Proposition 5.3 (1) for 𝑓 ′𝑚 and 𝐿𝑚, and the conclusion will follow by letting 𝑚 → ∞.
The proof of (2) is similar. In this case, we know that 𝑏 |𝐹 ′ is not composed with an involution. Let

𝑑 = deg 𝑎 |𝐹 = deg 𝑏 |𝐹 ′ . By the following Lemma 6.3, 𝑏𝑚 |𝐹 ′
𝑚

is not composed with an involution as
long as 𝑚 > 𝑑. Thus the conclusion will follow similarly by letting 𝑚 → ∞. �

Lemma 6.3. Let 𝛼 : 𝑉 → 𝑊 be a generically finite morphism between two varieties of degree 𝑑 > 0
such that 𝛼 is not composed with an involution. Let 𝑝 > 𝑑 be any prime number. Let 𝑊𝑝 → 𝑊 be a
Galois cover with 𝐺 = Gal(𝑊𝑝/𝑊) a p-group. Let 𝑉𝑝 := 𝑉 ×𝑊 𝑊𝑝 , and let 𝛼𝑝 : 𝑉𝑝 → 𝑊𝑝 be the
induced morphism. Then 𝛼𝑝 is not composed with an involution.

Proof. By our assumption, 𝐾 (𝑉) �
𝐾 (𝑊 ) (𝑡)
( 𝑓 (𝑡)) , where 𝑓 (𝑡) is an irreducible polynomial of degree d

with coefficients in 𝐾 (𝑊). Using Galois theory, we can find a variety U and a generically finite map
𝛽 : 𝑈 → 𝑉 such that 𝐾 (𝑈) is the splitting field of 𝑓 (𝑡). Thus 𝐾 (𝑈)/𝐾 (𝑊) is a Galois extension. Write

𝐻 = Gal(𝐾 (𝑈)/𝐾 (𝑊)).

Then H is a subgroup of 𝑆𝑑 . In particular, |𝐻 | divides 𝑑!. Since 𝑝 > 𝑑 and G is a p-group, we have
(|𝐺 |, |𝐻 |) = 1.
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Let 𝑈𝑝 = 𝑈 ×𝑉 𝑉𝑝 . We claim that 𝑈𝑝 is irreducible. Otherwise, let 𝑈 ′
𝑝 be an irreducible component

of 𝑈𝑝 . Now the morphism 𝑈 ′
𝑝 → 𝑊 has two factorisations 𝑈 ′

𝑝 → 𝑈 → 𝑊 and 𝑈 ′
𝑝 → 𝑊𝑝 → 𝑊 . Thus

both |𝐻 | and |𝐺 | divide [𝐾 (𝑈 ′
𝑝) : 𝐾 (𝑊)]. Since (|𝐺 |, |𝐻 |) = 1, we have

[𝐾 (𝑈 ′
𝑝) : 𝐾 (𝑊)] ≥ |𝐺 | |𝐻 |.

On the other hand, since the degree of the map 𝑈 ′
𝑝 → 𝑉𝑝 is strictly less than deg 𝛽, we have

[𝐾 (𝑈 ′
𝑝) : 𝐾 (𝑊)] = [𝐾 (𝑈 ′

𝑝) : 𝐾 (𝑊𝑝)] [𝐾 (𝑈) : 𝐾 (𝑊)] < |𝐺 | |𝐻 |.

This is a contradiction. As a result, 𝑈𝑝 is irreducible. In particular, the natural morphism 𝑈𝑝 → 𝑈 is
also a Galois cover and

𝐺 = Gal(𝐾 (𝑈𝑝)/𝐾 (𝑈)).

We claim that the extension 𝐾 (𝑈𝑝)/𝐾 (𝑊) is also Galois. Write

𝐺 𝑝 = Aut(𝐾 (𝑈𝑝)/𝐾 (𝑊)).

It is clear that

|𝐺 𝑝 | ≤ [𝐾 (𝑈𝑝) : 𝐾 (𝑊)] = [𝐾 (𝑈𝑝) : 𝐾 (𝑈)] [𝐾 (𝑈) : 𝐾 (𝑊)] = |𝐺 | |𝐻 |.

On the other hand, since 𝐻 = Gal(𝐾 (𝑈𝑝)/𝐾 (𝑊𝑝)), we may view both G and H as subgroups of 𝐺 𝑝 .
Since (|𝐺 |, |𝐻 |) = 1, we deduce that

|𝐺 𝑝 | ≥ |𝐺 | |𝐻 |.

Therefore, |𝐺 𝑝 | = |𝐺 | |𝐻 |, and the claim is verified. As a consequence of this claim, G is a normal
subgroup in 𝐺 𝑝 .

Now suppose that 𝛼𝑝 is composed with an involution. This means there exists a variety 𝑉 ′
𝑝 such that

𝐾 (𝑉𝑝) ⊃ 𝐾 (𝑉 ′
𝑝) ⊇ 𝐾 (𝑊𝑝) and

[𝐾 (𝑉𝑝) : 𝐾 (𝑉 ′
𝑝)] = 2.

Write 𝐻1 = Aut(𝐾 (𝑈𝑝)/𝐾 (𝑉𝑝)) and 𝐻 ′
1 = Aut(𝐾 (𝑈𝑝)/𝐾 (𝑉 ′

𝑝)). Then the fundamental theorem of
Galois theory tells us that 𝐻1 ⊂ 𝐻 ′

1 are both subgroups of 𝐺 𝑝 and

[𝐻 ′
1 : 𝐻1] = 2.

Since G is normal, we consider another two subgroups 𝐻1𝐺 ⊂ 𝐻 ′
1𝐺 of 𝐺 𝑝 . Then we still have

[𝐻 ′
1𝐺 : 𝐻1𝐺] = 2.

Note that 𝐾 (𝑈𝑝)
𝐻1𝐺 = 𝐾 (𝑉). Again by the fundamental theorem of Galois theory, 𝐾 (𝑈𝑝)

𝐻 ′
1𝐺 is a

subfield of 𝐾 (𝑉) and

[𝐾 (𝑉) : 𝐾 (𝑈𝑝)
𝐻 ′

1𝐺] = 2.

This implies that 𝛼 is composed with an involution. However, this is absurd. Thus the proof is completed.
�

Remark 6.4. After we finished the first version of the paper, Barja informed us of the result [6, Lemma
2.9], which states that if one further assumes that V is of general type, then Gal(𝛼𝑝) = Gal(𝛼) for any
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prime number p larger than a certain nonexplicit constant, depending on the volume and the dimension
of V.

6.4. An example

We provide an example showing that equation (1.1) is sharp.
Let 𝑌 := 𝐵 × 𝐴 be a product of a smooth curve B of genus g and an abelian variety A of dimension

𝑛 − 1, with two natural projections 𝑝1 : 𝑌 → 𝐵 and 𝑝2 : 𝑌 → 𝐴. Take two sufficiently ample divisors
𝐿1 on B and 𝐿2 on A, respectively. Denote 𝐿 = 𝑝∗1𝐿1 + 𝑝∗2𝐿2. Choose a smooth divisor 𝐷 ∈ |2𝐿 | on Y.
Let 𝜋 : 𝑋 → 𝑌 be a double cover branched along D. It is easy to see that

𝑓 : 𝑋 → 𝐵

is a relatively minimal fibration whose general fibre F is a double cover of A branched along 𝐿2 and
thus is of general type. Moreover, f is relatively minimal of maximal Albanese dimension.

Since 𝐾𝑋/𝐵 ∼ 𝜋∗𝐿, we have

𝐾𝑛
𝑋/𝐵 = (𝜋∗𝐿)𝑛 = 2𝐿𝑛 = 2𝑛(deg 𝐿1)𝐿

𝑛−1
2 .

On the other hand, since

𝜋∗𝜔𝑋 = O𝑌 (𝑝
∗
1𝐾𝐵) ⊕ O𝑌 (𝐿 + 𝑝∗1𝐾𝐵)

and

𝜋∗𝜔𝐹 = O𝐴 ⊕ O𝐴(𝐿2),

by the Künneth formula, we have

𝜒(𝑋, 𝜔𝑋 ) = 𝜒(𝑌,O𝑌 (𝑝
∗
1𝐾𝐵)) + 𝜒(𝑌,O𝑌 (𝐿 + 𝑝∗1𝐾𝐵))

= 𝜒(𝐵, 𝜔𝐵)𝜒(𝐴,O𝐴) + 𝜒(𝐵,O𝐵 (𝐿1 + 𝐾𝐵))𝜒(𝐴,O𝐴(𝐿2))

= 𝜒(𝐵,O𝐵 (𝐿1 + 𝐾𝐵))𝜒(𝐴,O𝐴(𝐿2)),

and

𝜒(𝐹, 𝜔𝐹 ) = 𝜒(𝐴,O𝐴) + 𝜒(𝐴,O𝐴(𝐿2)) = 𝜒(𝐴,O𝐴(𝐿2)).

It follows that

𝜒 𝑓 = 𝜒(𝐴,O𝐴(𝐿2)) (𝜒(𝐵,O𝐵 (𝐿1 + 𝐾𝐵)) − 𝜒(𝐵, 𝜔𝐵)) =
𝐿𝑛−1

2
(𝑛 − 1)!

deg 𝐿1.

Thus for this fibration f, we have 𝐾𝑛
𝑋/𝐵

= 2𝑛!𝜒 𝑓 > 0.

6.5. Proof of Theorem 1.3

Since the result is either known or trivial when 𝑛 = 2, in the following, we assume that 𝑛 ≥ 3 and

𝐾𝑛
𝑋/𝐵 = 2𝑛!𝜒 𝑓 > 0.

We first prove Theorem 1.3 (1). Via a base change argument as in Section 6.2.2, we may assume that
𝑔(𝐵) > 0. Thus we are under the setting of Section 6.1. Moreover, by Theorem 1.4, we know that 𝑎 |𝐹
is composed with an involution.
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Resume all notation in Section 6.1. Write Σ = 𝑎(𝐹). Then Σ is a subvariety of an abelian variety
𝐴𝐹 , a general fibre of 𝐴 → 𝐽 (𝐵) of dimension 𝑞 − 𝑔(𝐵), and Σ generates 𝐴𝐹 . To show that Σ = 𝐴𝐹 ,
we only need to show that the smooth model of Σ has Kodaira dimension zero.

Let 𝜎 : Σ′ → Σ be a resolution of singularities of Σ. Let Σ𝑚 = 𝑎𝑚 (𝐹𝑚) and Σ′
𝑚 = Σ𝑚 ×𝜎 Σ′. Then

𝜎𝑚 : Σ′
𝑚 → Σ𝑚 is also a resolution of singularities of Σ𝑚. Let 𝜈𝑚 : Σ′

𝑚 → Σ′ be the induced étale map.
Thus we have the following diagram:

Σ′
𝑚 𝜈𝑚

��

𝜎𝑚

��

Σ′

𝜎

��
𝐹 ′
𝑚

��

𝑏𝑚

		�
��

��
��

�
Σ𝑚� �

��

�� Σ� �

��

𝐹 ′

𝑏

����
��
��
��

��

𝐴𝐹
𝜇𝑚 �� 𝐴𝐹 .

Denote

𝑟 ′ = 𝑟 ′(𝐿 |𝐹 ′ , (𝑏∗𝐻) |𝐹 ′ ,Σ′), 𝑟 ′𝑚 = 𝑟 ′(𝐿𝑚 |𝐹 ′
𝑚
, (𝑏∗𝑚𝐻) |𝐹 ′

𝑚
, Σ′

𝑚).

With this notation, by equation (6.1), we have

𝑟 ′ :=
(𝐿 |𝐹 ′ ) ((𝑏∗𝐻) |𝐹 ′ )𝑛−2

𝐾Σ′ (𝜎∗(𝐻 |Σ))
𝑛−2 =

(𝐿𝑚 |𝐹 ′
𝑚
)
(
(𝑏∗𝑚𝐻) |𝐹 ′

𝑚

)𝑛−2

𝐾Σ′
𝑚

(
𝜎∗
𝑚(𝐻 |Σ𝑚 )

)𝑛−2 =: 𝑟 ′𝑚.

It simply implies that

𝛿(𝑟 ′) = 𝛿(𝑟 ′𝑚).

Now we use the framework of the proof of Theorem 1.2 again and replace equation (6.5) by the one in
Proposition 5.3 (3). Together with the above equality, we deduce that

𝐾𝑛
𝑋/𝐵 ≥

(5𝛿(𝑟 ′) − 3)𝑛!
2𝛿(𝑟 ′) − 1

𝜒 𝑓 .

However, if 𝜅(Σ′) > 0, we would have 𝛿(𝑟 ′) > 1 and thus 5𝛿 (𝑟 ′)−3
2𝛿 (𝑟 ′)−1 > 2. This is a contradiction. As a

result, 𝜅(Σ′) = 0 and Σ = 𝐴𝐹 .
Now we prove Theorem 1.3 (2). Note that 𝐾𝑛

𝑋/𝐵
> 0 implies that 𝐾𝑋/𝐵 is also big. In particular, a

general fibre F of f is a minimal variety of general type. By [14, Theorem 1-2-5], we have

𝑅𝑖 𝑓∗𝜔
[𝑙]
𝑋/𝐵

= 𝑅𝑖 𝑓∗𝜔
[𝑙]
𝑋 ⊗ 𝜔⊗(−𝑙)

𝐵 = 0

for any 𝑖 > 0 and 𝑙 ≥ 2. Thus for any 𝑙 ≥ 2, we have

𝜒(𝐵, 𝑓∗𝜔
[𝑙]
𝑋/𝐵

) = 𝜒(𝑋, 𝜔 [𝑙]
𝑋/𝐵

).

Let 𝑃𝑙 (𝐹) denote the 𝑙th plurigenus of F. Then we have

deg 𝑓∗𝜔
[𝑙]
𝑋/𝐵

= 𝜒(𝐵, 𝑓∗𝜔
[𝑙]
𝑋/𝐵

) − 𝑃𝑙 (𝐹)𝜒(𝐵,O𝐵)

= 𝜒(𝑋, 𝜔 [𝑙]
𝑋/𝐵

) − 𝑃𝑙 (𝐹)𝜒(𝐵,O𝐵)

=
𝑙𝑛𝐾𝑛

𝑋/𝐵

𝑛!
+ 𝑜(𝑙𝑛).
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In particular, for 𝑙 � 0, det 𝑓∗𝜔
[𝑙]
𝑋/𝐵

is an ample line bundle on B. By [22, Proposition 4.6], we know
that for 𝑙 � 0, the vector bundle 𝑓∗𝜔

[𝑙]
𝑋/𝐵

is ample. Thus, by [19, Theorem 1.4], 𝑚𝐾𝑋/𝐵 − 𝐹 is nef for
a sufficiently large 𝑚 ∈ Z. Replacing B by one of its cyclic covers of degree m, which is either étale (if
𝑔(𝐵) > 0) or ramified at general points (if 𝑔(𝐵) = 0), and replacing 𝑓 : 𝑋 → 𝐵 by the fibration induced
by this base change, we may assume that 𝐾𝑋/𝐵 − 𝐹 is nef. Similar to Section 6.2.2, we know that this
induced fibration is also relatively minimal and of maximal Albanese dimension. Moreover, we still have

𝐾𝑛
𝑋/𝐵 = 2𝑛!𝜒 𝑓 > 0

for this new fibration f.
Using the same strategy as in the proof of Theorem 1.2, but replacing 𝐾𝑋/𝐵 by 𝐾𝑋/𝐵 −𝐹, we deduce

that

(𝐾𝑋/𝐵 − 𝐹)𝑛 ≥ 2𝑛! deg 𝑓∗(𝜔𝑋/𝐵 ⊗ P ⊗ O𝑋 (−𝐹)),

where P ∈ Pic0(𝑋) is a general torsion element. That is,

𝐾𝑛
𝑋/𝐵 − 𝑛𝐾𝑛−1

𝐹 ≥ 2𝑛!(𝜒 𝑓 − 𝜒(𝐹, 𝜔𝐹 )).

By the assumption that 𝐾𝑛
𝑋/𝐵

= 2𝑛!𝜒 𝑓 , we have

𝐾𝑛−1
𝐹 ≤ 2(𝑛 − 1)!𝜒(𝐹, 𝜔𝐹 ).

Since F is minimal of maximal Albanese dimension, together with the absolute Severi inequality for F,
we deduce that

𝐾𝑛−1
𝐹 = 2(𝑛 − 1)!𝜒(𝐹, 𝜔𝐹 ).

Thus the proof is completed.
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