F-INJECTORS OF LOCALLY SOLUBLE FC-GROUPS

by M. J. TOMKINSON

(Received 19 June, 1968)

1. Introduction. A group G is said to be an FC-group if each element of G has only a finite number of conjugates in G. We are concerned with the class \mathfrak{G} of periodic locally soluble FC-groups. Clearly subgroups and factor groups of \mathfrak{G} -groups are also \mathfrak{G} -groups.

Every finite soluble group is a G-group, and we consider here the generalization of a concept from the theory of finite soluble groups.

In [1], B. Fischer, B. Hartley and W. Gaschütz defined a *Fitting class* to be a class & of finite soluble groups satisfying the following conditions:

(i) If $G \in \mathfrak{E}$ and $N \lhd G$, then $N \in \mathfrak{E}$; and

(ii) if N_1 and N_2 are normal \mathfrak{E} -subgroups of G such that $G = N_1 N_2$, then G is also an \mathfrak{E} -group.

If \mathfrak{X} is any class of groups, then an \mathfrak{X} -injector of the group G is defined to be an \mathfrak{X} -subgroup X of G such that, for each subnormal subgroup S of G, $X \cap S$ is a maximal \mathfrak{X} -subgroup of S.

The following result was proved in [1]:

THEOREM 1.1. If \mathfrak{E} is a Fitting class, then a finite soluble group G possesses \mathfrak{E} -injectors and any two such subgroups are conjugate in G.

We shall extend this result to the class 6.

We define a *Fitting class* of \mathfrak{G} -groups to be a subclass \mathfrak{F} of \mathfrak{G} satisfying the following conditions:

(i) If $G \in \mathfrak{F}$ and $N \lhd G$, then $N \in \mathfrak{F}$; and

(ii) if N_{λ} ($\lambda \in \Lambda$) are normal F-subgroups of the G-group G such that $G = gp\{N_{\lambda} : \lambda \in \Lambda\}$, then G is also an F-group.

With the usual notations for closure operations, these two conditions may be written

(i) $s_n \mathfrak{F} = \mathfrak{F}$ and (ii) $N\mathfrak{F} \cap \mathfrak{G} = \mathfrak{F}$.

These conditions ensure that every \mathfrak{G} -group G has a unique maximal normal \mathfrak{F} -subgroup, called the \mathfrak{F} -radical of G.

An automorphism ϕ of a group G is said to be *locally inner* if, for each finite set of elements $g_1, \ldots, g_n \in G$, there is an element $x \in G$ (depending on the set g_1, \ldots, g_n) such that

$$g_i \phi = x^{-1} g_i x$$
 (*i* = 1, 2, ..., *n*).

If there is a locally inner automorphism of G mapping a subgroup H onto a subgroup K, then H and K are said to be *locally conjugate* in G. In a number of results for FC-groups which are generalizations of results for finite groups it will be seen that local conjugacy replaces conjugacy. This holds, for example, in the case of Sylow subgroups [2], Carter subgroups [5]

and covering F-subgroups [6]. We shall have a further illustration in the present paper where we establish the following result:

If \mathcal{F} is a Fitting class of \mathcal{G} -groups, then a \mathcal{G} -group G possesses \mathcal{F} -injectors and any two such subgroups are locally conjugate in G.

A. P. Dicman proved that every finite set of elements of a periodic FC-group G is contained in a finite normal subgroup of G (see [4], pp. 154–155). To construct the F-injectors of G from the F-injectors of the finite normal subgroups of G, we also use the theory of projection sets due to A. G. Kuroš ([4], pp. 167–169). We refer to the outline of this theory given in Section 3 of [6].

In Section 4 we consider what conditions are necessary for the \mathcal{F} -injectors of G to be conjugate in G.

2. Fitting classes of G-groups. In this section we characterize the Fitting classes of G-groups in terms of the Fitting classes of finite soluble groups. The first result is an immediate consequence of the definitions.

THEOREM 2.1. If F is a Fitting class of G-groups, then the class of finite F-groups is a Fitting class of finite soluble groups.

THEOREM 2.2. If \mathfrak{E} is a Fitting class of finite soluble groups, then $\mathfrak{L}\mathfrak{E} \cap \mathfrak{G}$ is a Fitting class of \mathfrak{G} -groups.

Proof. (i) Let H be a normal subgroup of the $L \mathfrak{G} \cap \mathfrak{G}$ -group G and let h_1, \ldots, h_n be a finite set of elements of H. There is an \mathfrak{E} -subgroup E of G containing h_1, \ldots, h_n . $H \cap E$ is a normal subgroup of E and so is an \mathfrak{E} -subgroup of H containing h_1, \ldots, h_n . Thus $H \in L \mathfrak{E} \cap \mathfrak{G}$ and $L \mathfrak{E} \cap \mathfrak{G}$ is \mathfrak{s}_n -closed.

(ii) Let G be a G-group generated by the normal LE-subgroups N_{λ} ($\lambda \in \Lambda$) and let g_1, \ldots, g_n be a finite set of elements of G. There is a finite normal subgroup N of G containing g_1, \ldots, g_n , and we may choose $\lambda_1, \ldots, \lambda_r \in \Lambda$ such that $N \leq N_{\lambda_1} N_{\lambda_2} \ldots N_{\lambda_r} = L$, say. It is now sufficient to prove that $N_0 L \subseteq \cap \subseteq = L \subseteq \cap \subseteq$, for then $L \in L \subseteq \cap \subseteq$ and so, by (i), N is an E-subgroup of G containing g_1, \ldots, g_n .

Accordingly let H and K be normal LE-subgroups of the G-group G such that HK = G. Let g_1, \ldots, g_n be a finite set of elements of G and, for each $i = 1, 2, \ldots, n$, write $g_i = h_i k_i$, where $h_i \in H$ and $k_i \in K$. There are normal E-subgroups E_1 and E_2 of G contained in H and K and containing h_1, \ldots, h_n and k_1, \ldots, k_n respectively. It follows that

$$g_1,\ldots,g_n\in E_1$$
 $E_2\in\mathbb{N}_0$ $\mathfrak{E}=\mathfrak{E}$.

Thus $G \in L \mathfrak{C} \cap \mathfrak{G}$, as required.

It follows from these two results that the Fitting classes of \mathfrak{G} -groups are precisely the classes $\mathfrak{LG} \cap \mathfrak{G}$, where \mathfrak{G} is a Fitting class of finite soluble groups.

COROLLARY 2.3. If \mathfrak{F} is a Fitting class of \mathfrak{G} -groups, then $\mathfrak{L}\mathfrak{F} \cap \mathfrak{G} = \mathfrak{F}$.

https://doi.org/10.1017/S0017089500000689 Published online by Cambridge University Press

3. E-injectors of G-groups.

LEMMA 3.1. Let \mathfrak{F} be a Fitting class of \mathfrak{G} -groups. If V is an \mathfrak{F} -injector of the \mathfrak{G} -group G and $H \triangleleft G$, then $V \cap H$ is an \mathfrak{F} -injector of H.

Proof. $V \cap H$ is a normal subgroup of V and so is an \mathfrak{F} -subgroup.

If S is a subnormal subgroup of H, then S is also subnormal in G, and so $V \cap S$ is a maximal F-subgroup of S.

THEOREM 3.2. Let \mathfrak{F} be a Fitting class of \mathfrak{G} -groups. Then the \mathfrak{G} -group G possesses Finjectors.

Proof. Let $\{N_{\lambda}: \lambda \in \Lambda\}$ be the set of all finite normal subgroups of G. Since the class of finite \mathfrak{F} -groups is a Fitting class of finite soluble groups (Theorem 2.1), each N_{λ} possesses \mathfrak{F} -injectors (Theorem 1.1). For each $\lambda \in \Lambda$, let \mathscr{A}_{λ} denote the set of \mathfrak{F} -injectors of N_{λ} ; then each \mathscr{A}_{λ} ($\lambda \in \Lambda$) is finite and non-empty. The sets \mathscr{A}_{λ} ($\lambda \in \Lambda$) may be partially ordered by defining $\mathscr{A}_{\lambda} \prec \mathscr{A}_{\mu}$ if and only if $N_{\lambda} \leq N_{\mu}$.

If $\mathscr{A}_{\lambda} \prec \mathscr{A}_{\mu}$ and V_{μ} is an \mathfrak{F} -injector of N_{μ} , then, by Lemma 3.1, $V_{\mu} \cap N_{\lambda}$ is an \mathfrak{F} -injector of N_{λ} . Thus we may define a projection $\pi_{\mu\lambda}$ from \mathscr{A}_{μ} into \mathscr{A}_{λ} by

$$V_{\mu}\pi_{\mu\lambda} = V_{\mu} \cap N_{\lambda}$$

Clearly $\pi_{\lambda\lambda}$ is the identity mapping on \mathscr{A}_{λ} , and if $\mathscr{A}_{\lambda} \prec \mathscr{A}_{\mu} \prec \mathscr{A}_{\nu}$, then

$$V_{\nu}\pi_{\nu\mu}\pi_{\mu\lambda}=V_{\nu}\cap N_{\mu}\cap N_{\lambda}=V_{\nu}\cap N_{\lambda}=V_{\nu}\pi_{\nu\lambda},$$

and so $\pi_{\nu\mu}\pi_{\mu\lambda} = \pi_{\nu\lambda}$.

It follows that there is a complete projection set, i.e. a set $\mathcal{P} = \{V_{\lambda}; \lambda \in \Lambda\}$ such that,

whenever $N_{\lambda} \leq N_{\mu}$, $V_{\mu} \cap N_{\lambda} = V_{\lambda}$. We define $V = \bigcup_{i=1}^{N} V_{\lambda}$ and show that V is an \mathfrak{F} -injector of G. If x_1, \ldots, x_n is a finite set of

elements of V, then there is a finite normal subgroup N_{λ} of G containing x_1, \ldots, x_n . But it is clear from the properties of the complete projection set \mathscr{P} that $V \cap N_{\lambda} = V_{\lambda}$, and so x_1, \ldots, x_n are contained in the F-subgroup V_{λ} of V. Thus V is an $LF \cap G$ -group; hence, by Corollary 2.3, V is an F-group.

Now let S be a subnormal subgroup of G and let W be an \mathfrak{F} -subgroup of S containing $V \cap S$. For each $\lambda \in \Lambda$, $W \cap N_{\lambda}$ is an \mathfrak{F} -subgroup of $S \cap N_{\lambda}$ containing $V \cap S \cap N_{\lambda} = V_{\lambda} \cap S$. Since $S \cap N_{\lambda}$ is subnormal in N_{λ} , $V_{\lambda} \cap S$ is a maximal \mathfrak{F} -subgroup of $S \cap N_{\lambda}$ and so $W \cap N_{\lambda}$ $= V_{\lambda} \cap S$. Therefore

$$W = \bigcup_{\lambda \in \Lambda} (W \cap N_{\lambda}) = \bigcup_{\lambda \in \Lambda} (V_{\lambda} \cap S) = V \cap S;$$

hence $V \cap S$ is a maximal \mathcal{F} -subgroup of S.

THEOREM 3.3. Let & be a Fitting class of G-groups. Then any two &-injectors of the \mathfrak{G} -group G are locally conjugate in G.

Proof. Let V_1 and V_2 be two \mathfrak{F} -injectors of G and again let $\{N_\lambda: \lambda \in \Lambda\}$ be the set of all finite normal subgroups of G. $V_1 \cap N_\lambda$ and $V_2 \cap N_\lambda$ are \mathfrak{F} -injectors of N_λ (Lemma 3.1) and so are conjugate in N_{λ} (Theorem 1.1). For each $\lambda \in \Lambda$, let \mathscr{A}_{λ} be the set of automorphisms of

https://doi.org/10.1017/S0017089500000689 Published online by Cambridge University Press

 N_{λ} which are induced by inner automorphisms of G and which map $V_1 \cap N_{\lambda}$ onto $V_2 \cap N_{\lambda}$. Then each \mathscr{A}_{λ} ($\lambda \in \Lambda$) is finite and non-empty.

If $N_{\lambda} \leq N_{\mu}$ and $\phi_{\mu} \in \mathscr{A}_{\mu}$, then the automorphism induced in N_{λ} by ϕ_{μ} is a member of \mathscr{A}_{λ} . It follows from a result due to S. E. Stonehewer ([5], Lemma 2.2) that G has a locally inner automorphism ϕ which induces in each N_{λ} an automorphism in the set \mathscr{A}_{λ} . In particular,

and so

$$(V_1 \cap N_\lambda)\phi = V_2 \cap N_\lambda$$

$$V_1\phi = \bigcup_{\lambda \in \Lambda} (V_1 \cap N_\lambda)\phi = \bigcup_{\lambda \in \Lambda} (V_2 \cap N_\lambda) = V_2;$$

i.e. V_1 and V_2 are locally conjugate in G.

It was proved in [1] that, if V is an \mathfrak{E} -injector of G and H is a subgroup of G containing V, then V is also an \mathfrak{E} -injector of H. This result is easily extended to the class \mathfrak{G} .

THEOREM 3.4. Let \mathfrak{F} be a Fitting class of \mathfrak{G} -groups and let V be an \mathfrak{F} -injector of the \mathfrak{G} -group G. If $V \leq H \leq G$, then V is an \mathfrak{F} -injector of H.

Proof. Let $\{N_{\lambda}: \lambda \in \Lambda\}$ be the set of all finite normal subgroups of G. By Lemma 3.1, $V \cap N_{\lambda}$ is an F-injector of N_{λ} . Since the class of finite F-groups is a Fitting class of finite soluble groups and $V \cap N_{\lambda} \leq H \cap N_{\lambda} \leq N_{\lambda}$, $V \cap N_{\lambda}$ is an F-injector of $H \cap N_{\lambda}$. It now follows as in the proof of Theorem 3.2 that $V = \bigcup (V \cap N_{\lambda})$ is an F-injector of $H = \bigcup (H \cap N_{\lambda})$.

A subgroup A of a group G is said to be *pronormal* in G if, for each $x \in G$, A and A^x are conjugate in gp $\{A, A^x\}$.

THEOREM 3.5. Let \mathfrak{F} be a Fitting class of G-groups. If V is an \mathfrak{F} -injector of the \mathfrak{G} -group $G_{\mathfrak{s}}$ then V is pronormal in G.

Proof. If $x \in G$, then V^x is an \mathfrak{F} -injector of G and so, by Theorem 3.4, V and V^x are \mathfrak{F} -injectors of $H = gp\{V, V^x\}$. Therefore there is a locally inner automorphism ϕ of H such that $V\phi = V^x$ (Theorem 3.3). But $H \leq gp\{V, x\}$, and so V has finite index in H. It follows that $V\phi = V^h$ for some $h \in H$, so that V and V^x are conjugate in H.

4. Conjugacy of \mathcal{F} -injectors. If A is a subgroup of the group G, then the *local conjugacy* class containing A is the set of all subgroups of G which are locally conjugate to A, and is denoted by Lcl(A). Similarly the conjugacy class containing A is denoted by Cl(A).

We showed in [7] that, with suitable conditions on A, Lcl(A) = Cl(A) if and only if Cl(A)is finite. The main restriction on A was that, for any set $\{H_{\lambda} : \lambda \in \Lambda\}$ of normal subgroups of $G, \bigcap_{\lambda \in \Lambda} (AH_{\lambda}) = A(\bigcap_{\lambda \in \Lambda} H_{\lambda})$. This condition is not satisfied by the \mathfrak{F} -injectors, and so we prove a result similar to that in [7] with different conditions on the subgroup A. The proof of this result is essentially the same as that given by M. I. Kargapolov [3] for the case in which A is a Sylow *p*-subgroup, but, as Kargapolov's result is not available in translation, it seems worth giving the details in full.

I

THEOREM 4.1. Let A be a subgroup of the periodic FC-group G satisfying the following conditions:

(i) A is pronormal in G; and

(ii) for each finite normal subgroup N of G and for each $x \in G$, $A \cap N$ and $A^x \cap N$ are conjugate in N.

Then Lcl(A) = Cl(A) if and only if Cl(A) is finite.

Proof. It has already been shown in [7] that, for any subgroup A with Cl(A) finite, Lcl(A) = Cl(A). It remains to prove that if Cl(A) is infinite, then $Lcl(A) \neq Cl(A)$.

We shall define inductively the following ascending chains of subgroups:

$$1 = N_0 < N_1 < \dots < N_i < \dots,$$
(1)

where each N_i is a finite normal subgroup of G,

$$1 = \bar{A}_0 < \bar{A}_1 < \dots < \bar{A}_i < \dots,$$
(2)

$$1 = A_0^* < A_1^* < \dots < A_i^* < \dots,$$
(3)

where, for each integer i > 0, \overline{A}_i and A_i^* are subgroups of G which are conjugate to $N_i \cap A$ and which satisfy the condition

 $\left|\bar{A}_{i}:\bar{A}_{i}\cap A_{i}^{*}\right|=n_{i},$

where

$$1 = n_0 < n_1 < \dots < n_i < \dots$$
 (4)

By Lemma 2.2 of [5], $\bigcup_{i=0}^{\infty} \overline{A}_i$ and $\bigcup_{i=0}^{\infty} A_i^*$ are locally conjugate to $\bigcup_{i=0}^{\infty} (N_i \cap A)$ and so are

contained in subgroups \overline{A} and A^* , respectively, which are locally conjugate to A.

 $N_i \cap A^*$ is conjugate to $N_i \cap A$ and contains A_i^* Therefore $N_i \cap A^* = A_i^*$ and so

$$\overline{A}_i \cap (\overline{A} \cap A^*) = \overline{A}_i \cap A^*$$
$$= \overline{A}_i \cap N_i \cap A^*$$
$$= \overline{A}_i \cap A_i^*.$$

Therefore

$$|\overline{A}:\overline{A}\cap A^*| \ge |\overline{A}_i:\overline{A}_i\cap A_i^*| = n_i, \quad \text{for all } i.$$

Thus $|\overline{A}:\overline{A}\cap A^*|$ is infinite and so \overline{A} and A^* cannot both be conjugate to A ([7], Lemma 2.3). Therefore $Lcl(A) \neq Cl(A)$.

To construct the chains (1), (2) and (3), we assume that we have constructed the first k terms of each chain and show that subgroups N_{k+1} , \overline{A}_{k+1} and A_{k+1}^* may be defined such that N_{k+1} is a finite normal subgroup of G containing N_k , $\overline{A}_{k+1} > \overline{A}_k$, $A_{k+1}^* > A_k^*$, \overline{A}_{k+1} and A_{k+1}^* are conjugate to $A \cap N_{k+1}$ and $|\overline{A}_{k+1} : \overline{A}_{k+1} \cap A_{k+1}^*| > n_k$.

Let $\{N_{\lambda}: \lambda \in \Lambda\}$ be the set of all finite normal subgroups of G containing N_k . If \overline{A} and A^* are subgroups locally conjugate to A and containing \overline{A}_k and A_k^* respectively, then, as above, $N_k \cap \overline{A} = \overline{A}_k$ and $N_k \cap A^* = A_k^*$

134

Thus, for each $\lambda \in \Lambda$,

$$\bar{A}_k \cap (\bar{A} \cap N_\lambda \cap A^*) = \bar{A}_k \cap A_k^*.$$

Therefore

$$\left|\bar{A} \cap N_{\lambda} : \bar{A} \cap N_{\lambda} \cap A^{*}\right| \geq \left|\bar{A}_{k} : \bar{A}_{k} \cap A_{k}^{*}\right| = n_{k},$$

for all $\lambda \in \Lambda$ and for all \overline{A} , A^* satisfying

$$\overline{A} \ge \overline{A}_k, \quad A^* \ge A_k^*, \quad \overline{A} \text{ and } A^* \text{ are members of Lcl}(A).$$
 (5)

Suppose, if possible, that

$$\left|\bar{A} \cap N_{\lambda}; \bar{A} \cap N_{\lambda} \cap A^{*}\right| = n_{k},\tag{6}$$

for all $\lambda \in \Lambda$ and for all \overline{A} and A^* satisfying (5).

Now

$$gp\left\{\bar{A}_{k},\bar{A}\cap N_{\lambda}\cap A^{*}\right\}\leq\bar{A}\cap N_{\lambda}$$

and so

$$\left| \operatorname{gp}\left\{ \overline{A}_{k}, \overline{A} \cap N_{\lambda} \cap A^{*} \right\} : \overline{A} \cap N_{\lambda} \cap A^{*} \right| \leq n_{k}$$

But clearly

$$\left| \operatorname{gp} \left\{ \overline{A}_k, \overline{A} \cap N_\lambda \cap A^* \right\} : \overline{A} \cap N_\lambda \cap A^* \right| \geq \left| \overline{A}_k; \overline{A}_k \cap A_k^* \right| = n_k.$$

Therefore

$$\left| \operatorname{gp} \left\{ \overline{A}_{k}, \overline{A} \cap N_{k} \cap A^{*} \right\} : \overline{A} \cap N_{\lambda} \cap A^{*} \right| = \left| \overline{A} \cap N_{\lambda} : \overline{A} \cap N_{\lambda} \cap A^{*} \right|$$

and so

$$gp\left\{\bar{A}_{k}, \bar{A} \cap N_{\lambda} \cap A^{*}\right\} = \bar{A} \cap N_{\lambda}, \tag{7}$$

for all $\lambda \in \Lambda$ and for all \overline{A} , A^* satisfying (5).

By Lemma 2.4 of [7],

$$|A^* \cap N_{\lambda}: \overline{A} \cap N_{\lambda} \cap A^*| = |\overline{A} \cap N_{\lambda}: \overline{A} \cap N_{\lambda} \cap A^*| = n_k$$

and so we may prove, corresponding to (7), that

$$gp\{A_k^*, \overline{A} \cap N_\lambda \cap A^*\} = A^* \cap N_\lambda, \tag{8}$$

for all $\lambda \in \Lambda$ and for all \overline{A} , A^* satisfying (5).

It now follows from (7) and (8) that

$$N_k \overline{A} \cap N_\lambda = N_k (\overline{A} \cap N_\lambda)$$
$$= N_k (\overline{A} \cap N_\lambda \cap A^*)$$
$$= N_k (A^* \cap N_\lambda)$$
$$= N_k A^* \cap N_\lambda,$$

for all $\lambda \in \Lambda$ and for all \overline{A} , A^* satisfying (5).

Thus

$$N_k \overline{A} = \bigcup_{\lambda \in \Lambda} (N_k \overline{A} \cap N_\lambda) = \bigcup_{\lambda \in \Lambda} (N_k A^* \cap N_\lambda) = N_k A^*,$$
(9)

for all \overline{A} and A^* satisfying (5).

Let $x \in G$; then, by (ii), $N_k \cap \overline{A}^x$ is conjugate to $N_k \cap \overline{A}$ in N_k , and so there is an element $n \in N_k$ such that

$$\bar{A}^{xn} \ge N_k \cap \bar{A} = A_k.$$

It follows from (9) that

i.e. that

$$N_k \bar{A}^x = N_k \bar{A}.$$

 $N_k \bar{A}^{xn} = N_k \bar{A},$

Thus $N_k A \lhd G$.

For each $x \in G$, $A^x \leq N_k A$ and hence, by (i), A^x is conjugate to A in $N_k A$. But $|N_k A:A|$ is finite, so that A has only a finite number of conjugates in $N_k A$. Thus A has only a finite number of conjugates in G, contrary to our initial hypothesis.

We have shown that our assumption (6) leads to a contradiction, and so there must be a normal subgroup N_{λ} ($\lambda \in \Lambda$) and two subgroups \overline{A} and A^* satisfying (5) such that

$$\left|\bar{A}\cap N_{\lambda}:\bar{A}\cap N_{\lambda}\cap A^{*}\right|>n_{k}.$$

If we define

$$N_{k+1} = N_{\lambda}, \quad \bar{A}_{k+1} = \bar{A} \cap N_{\lambda}, \quad A_{k+1}^* = A^* \cap N_{\lambda}, \quad n_{k+1} = \left| \bar{A}_{k+1} : \bar{A}_{k+1} \cap A_{k+1}^* \right|,$$

then we have defined the (k+1)th terms of the series (1), (2) and (3). This completes the proof of Theorem 4.1.

COROLLARY 4.2. Let \mathfrak{F} be a Fitting class of \mathfrak{G} -groups. Then the \mathfrak{F} -injectors of the \mathfrak{G} -group G are conjugate in G if and only if there is only a finite number of them.

REFERENCES

1. B. Fischer, B. Hartley and W. Gaschütz, Injektoren der endlichen auflösbaren Gruppen, Math. Z. 102 (1967), 337-339.

2. P. A. Gol'berg, Sylow Π -subgroups of locally normal groups, *Mat. Sbornik* 19 (1946), 451–458 (Russian with English summary).

3. M. I. Kargapolov, On the conjugacy of Sylow *p*-subgroups of a locally normal group, Uspehi Mat. Nauk 12 (4) (1957), 297-300 (Russian).

4. A. G. Kuros, The theory of groups, Vol. II (New York, 1960).

5. S. E. Stonehewer, Locally soluble FC-groups, Arch. der Math. 16 (1965), 158-177.

6. M. J. Tomkinson, Formations of locally soluble FC-groups, Proc. London Math. Soc.; to appear.

7. M. J. Tomkinson, Local conjugacy classes, Math. Z. 108 (1969), 202-212.

UNIVERSITY OF GLASGOW

136