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Real Hypersurfaces in Complex Two-Plane
Grassmannians with GTW Harmonic
Curvature

Juan de Dios Pérez, Young Jin Suh, and Changhwa Woo

Abstract. 'We prove the non-existence of Hopf real hypersurfaces in complex two-plane Grassman-
nians with harmonic curvature with respect to the generalized Tanaka—Webster connection if they
satisfy some further conditions.

1 Introduction

The generalized Tanaka—Webster connection (GTW connection) for contact metric
manifolds was introduced by Tanno [12] as a generalization of the connection de-
fined by Tanaka in [11] and, independently, by Webster in [13]. The Tanaka-Webster
connection is defined as a canonical affine connection on a non-degenerate, pseudo-
Hermitian CR-manifold. A real hypersurface M in a Kihler manifold has an (inte-
grable) CR-structure associated with the almost contact structure (¢, &, 7, ¢) induced
on M by the Kahler structure, but, in general, this CR-structure is not guaranteed to
be pseudo-Hermitian. Cho defined the GTW connection for a real hypersurface of a
Kiéhler manifold (see [4,5]) by

(L1) TEY = VY + g($AX, Y)E - n(Y)$AX — kn(X)$Y

for any X, Y tangent to M, where V denotes the Levi-Civita connection on M, A is
the shape operator on M, and k is a non-zero real number. In particular, if the real
hypersurface satisfies Ag + ¢A = 2k¢, then the GTW connection V¥ coincides with
the Tanaka—Webster connection (see [4]).

Let us denote by G,(C™*?) the set of all complex 2-dimensional linear subspaces
in C™*2. Tt is known to be the unique compact irreducible Riemannian symmetric
space equipped with both a Kahler structure ] and a quaternionic Kéhler structure J
not containing J (see Berndt and Suh [2]). In other words, G,(C™*?) is the unique
compact, irreducible Kahler, quaternionic Kéhler manifold that is not a hyper-Kahler
manifold.

Received by the editors August 29, 2014; revised February 3, 2015.

Published electronically July 14, 2015.

This work was supported by grant Proj. No. NRF-2015-R1A2A1A-01002459 from the National Re-
search Foundation of Korea. The first author is partially supported by MCT-FEDER Grant MTM2010-
18099, the second author by Grant Proj. No. NRF-2012-R1A2A2A-01043023, and the third author by
Fostering Core Leaders No. NRF-2013-H1A8A1004325.

AMS subject classification: 53C40, 53C15.

Keywords: real hypersurfaces, complex two-plane Grassmannians, Hopf hypersurface, generalized
Tanaka-Webster connection, harmonic curvature.

835

https://doi.org/10.4153/CMB-2015-039-7 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2015-039-7

836 ]. de Dios Pérez, Y. J. Suh, and C. Woo

Let M be a real hypersurface in G,(C™*?) and let N be a local normal unit vector
field on M. Also, let A be the shape operator of M associated with N. Then we define
the structure vector field of M by & = —JN. Moreover, if {J1, J2, J3} is a local basis of
J, we define &; = —J;N, i = 1,2,3. We will call D+ = Span{{}, &,, &}

M is called Hopf if £ is principal, that is, A = a. Berndt and Suh [2] proved
that if m > 3, a real hypersurface M of G,(C™*?) for which both [£] and D* are A-
invariant must be an open part of either (A) a tube around a totally geodesic G, (C™*!)
in G,(C™*?), or (B) atube around a totally geodesic HP" in G,(C™*?). In this second
case m = 2n.

Let S denote the Ricci tensor of the real hypersurface M. In [7] we proved the non-
existence of Hopf real hypersurfaces in G,(C™*?), m > 3, with parallel Ricci tensor,
that is VS = 0, if the Ricci tensor commutes with the structure tensor ¢.

This result was improved by Suh [9] who proved that the second condition is re-
dundant.

Recently, in [8], as a generalization of the notion of the parallelism of the Ricci
tensor we have studied real hypersurfaces in a complex two-plane Grassmannian with
GTW connection, obtaining the following non-existence theorem.

Theorem 1.1  There do not exist connected, orientable, Hopf, real hypersurfaces in
G,(C™*?), m > 3, whose Ricci tensor is parallel with respect to the GTW connection.

The tensor field T of type (1,1) on M is called of Codazzi typeif (VxT)Y = (VyT)X
forany X, Y tangent to M. In the case of the Ricci tensor S, if it is of Codazzi type, M is
said to have harmonic curvature. Suh [10] has recently proved the following theorem.

Theorem 1.2 Let M be a Hopf real hypersurface of harmonic curvature with constant
scalar and mean curvatures. If the shape operator commutes with the structure tensor
& on the distribution ©*, then M is locally congruent to a tube over a totally geodesic
G, (C™*1) in Gy(C™*?) with radius r, cot*(\/2r) = 2(m - 1).

In this paper we deal with the same conditions considering the GTW on M. We
will say that M has GTW harmonic curvature if (’ﬁg(k)S) Y= (/ﬁg,k) S)X forany X,Y
tangent to M. To prove this result, we need two geometric notions, mean and scalar
curvature. Mean curvature h is the trace of the shape operator h = Tr(A) and scalar
curvature r is defined by the trace of the Ricci tensor i.e., r = Tr(S). Thus, we will
prove the following theorem.

Theorem 1.3  There do not exist Hopf real hypersurfaces of GTW harmonic curvature
with constant scalar and mean curvatures in Go(C™*?), m > 3, if the shape operator
commutes with the structure tensor ¢ on the distribution D*.

2 Preliminaries

For the study of the Riemannian geometry of G,(C™*2), see [1]. All the notation we
will use from now on are from [2,3]. We will suppose that the metric g of G,(C™*?)
is normalized for the maximal sectional curvature of the manifold to be eight. Then

https://doi.org/10.4153/CMB-2015-039-7 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2015-039-7

Hypersurfaces in Complex Two-plane Grassmannians 837

the Riemannian curvature tensor R of G,(C™*?) is locally given by

R(X,Y)Z=g(Y,Z2)X -g(X,2)Y + g(JY,Z)]X

3
+ Z{e0 Y. D)X - g X 2)1Y - 201X, V)], 2}

3
+ Z{eOUIY. 2)1JX - g(1LIX. Z)1.]Y }

where {]1, ]2, J3} is any canonical local basis of J.

Let M be areal hypersurface of G, (C™*?), that is, a submanifold of G, (C™**) with
real codimension one. The induced Riemannian metric on M will also be denoted
by g, and V denotes the Riemannian connection of (M, g). Let N be a local unit
normal vector field of M and A the shape operator of M with respect to N. The Kéhler
structure ] of G, (C™*?) induces on M an almost contact metric structure (¢, &, 1, g).
More explicitly, we can define a tensor field ¢ of type (1,1), a vector field & and its dual
I-form 7 on M by g(¢X,Y) = ¢(JX,Y) and (X) = g(& X) for any tangent vector
fields X and Y on M. Then they satisfy

$2X = -X+n(X)E ¢E=0, n(¢X)=0, and 5(&)=1

for any tangent vector field X on M. Furthermore, let {J;, J2, J3} be a canonical local
basis of J. Then each J, induces an almost contact metric structure (¢, &,,7,, )
on M in such a way that a tensor field ¢, of type (1,1), a vector field &, and its dual
1-form 7, on M are defined by g(¢,X,Y) = g(J, X, Y) and ,(X) = g(&,, X) for any
tangent vector fields X and Y on M, respectively. Then they also satisfy

$iX = -X+n(X)&, & =0, 1,(,X)=0, and 5,(§)=1

for any tangent vector field X on M and v = 1, 2, 3. Since J is parallel with respect to the
Riemannian connection V of (G,(C™*?), g), for any canonical local basis {J;, 2, J3}
of J there exist three local 1-forms g, 42, 3 such that

ﬁX]v = qv+2(X)]v+l - qv+1(X)]v+2

for any X tangent to G,(C™*?), where subindices are taken modulo 3.
From the expression of the curvature tensor of G,(C™*?) the Gauss equation is
given by
1) R(X,Y)Z=g(Y,2)X - g(X,2)Y
+8(9Y, 2)¢X - g(¢X, Z)$Y - 28(¢X, Y)¢Z

* é {g(¢,Y,2)¢,X - g($,X,2)¢Y —2g(¢, X, Y)$,Z}
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2 {2(949Y. 2)¢09X - 2(949X, 2) 99V}

Z {n(V)n(2)¢u$X = n(X)n.(2)$,9Y]

2 {n(X)g(944Y.2) = n(Y)g(909X. 2)} &

|| Mw || Mw u Mw

+g(AY, Z2)AX - g(AX, Z)AY,
for any X, Y, Z tangent to M. The Codazzi equation is also given by
(VxA)Y = (VyA)X = n(X)pY —n(Y)$X - 2g(¢X, Y)§
3

Z{m(X )by Y — 1, (V) X —2g(4, X, V)&, }

{nv(¢X)¢v¢Y— v ($Y)$, X}

H Mw IIM"’ ||

{H(X)m(¢Y) ~n(Y)n,(¢X)} &,

for any X, Y tangent to M. The derivatives of the structure tensor ¢ and the Reeb
vector field & in almost contact structure (¢, &, 77, g) of M in G,(C™*?) can be re-
spectively given by

(Vx9)Y = n(Y)AX - g(AX,Y)¢é and Vx&=pAX.

Moreover, the derivatives of the structure tensor ¢, and the structure vector fields
&y, v = 1,2,3 in almost contact metric 3-structure (¢, &,,17,,g) of M in G,(C™*?)
are respectively given by

(VX(P‘V)Y = _QV+1(X)¢V+2Y + qv+2(X)¢v+1Y + l/lv(Y)AX - g(AX’ Y)Ev:

VXEV = q’V+2(X)£V+1 - QV+1(X)€V+2 + (vaX-

From (2.1) the Ricci tensor S of M in G,(C™*?) is given by

4m-1
(22)  SX= ¥ R(X,ei)e;
i=1
= (4m+7)X - 3n(X)&+ hAX - A°X

+ éjl{ =30 (X) &y + 10 (E) ¢ X — (9 X) b & — n(X) 1, (§)E,},

for any X tangent to M, where h denotes Tr(A).
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From (2.2) we can compute the derivative of the Ricci tensor S as follows (see [7]):

(2.3)
(VxS)Y = 3g(§AX, Y)E - 35(Y)$AX
=3 3 { @2 (X (1) - s (O0:2(V) + 8($,AX, 1)} &y

=3 (@201 - Gt (OFin2 + $,4%)

+ 2 {XOLEDRSY + (D0 (81,297

+ 4v2(X)Puna @Y + 1, (§Y)AX - g(AX, $Y)E,}
+ 1y () {n(Y)$,AX - ¢(AX, V), &} - g($AX, §,Y) 0§
H @ (X)n($us2Y) = 4y (0n($rY)
= 1y (Y)n(AX) +n(&)g(AY, X)} ¢,&
= 1(¢vY){gv2(X)pv+18 = gv1(X) $rs28
+ $vPAX - n(AX)E, + (&) AX]
- g(9AY, X) ()&, = (V)X (0, ()& = (V) (§) Vx|
+ (Xh)AY + h(VxA)Y — (VxA®)Y
for any X, Y tangent to M, where the subindices are taken modulo 3.

For a real hypersurface of type (A) (resp., (B)), we recall two propositions due to
Berndt and Suh [2] as follows.

Proposition A Let M be a connected real hypersurface of Go(C™*?). Suppose that
AD c ®, Al = a&, and & is tangent to D*. Let ]; € J be the almost Hermitian structure
such that JN = J{N. Then M has three (if r = n/2\/§) or four (otherwise) distinct
constant principal curvatures

a=8cot(v8r), B=+2cot(v/2r), A=-2tan(v/2r), u=0
with some r € (0, 1/\/8). The corresponding multiplicities are
m(a)=1, m(B)=2, m(d)=2m-2=m(yu),
and the corresponding eigenspaces are
To = RE=RJN = RE; = Span{{} = Span{&;},
Tp = C*¢ = C'N = RE, @ RE; = Span{&,, &5},
Ty ={X|X L H¢ JX =X},
T, = {X|X LHE JX = -/ X},

where RE, C&, and HE denote the real, complex, and quaternionic spans of the structure
vector field &, respectively, and C* & denotes the orthogonal complement of C& in HE.
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Proposition B Let M be a connected real hypersurface of G,(C™*?). Suppose that
AD c O, A = i, and & is tangent to ©. Then the quaternionic dimension m of
G,(C™*?) is even, say m = 2n, and M has five distinct constant principal curvatures

a =-2tan(2r), f=2cot(2r), y=0, A=cot(r), p=-tan(r)
with some r € (0, /4). The corresponding multiplicities are
m(a) =1 m(B)=3=m(y), m(A)=dn-4=m(y)

and the corresponding eigenspaces are

T, =RE= Span{ E},
Tg=JJ& = Span{fv| v= 1,2,3},
T, =J¢= Span{</>vf| v = 1,2,3},
TAa Ty)
where
Ty® T, = (HCE), JITh=Ty, JTu=Ty JTa=T,.
The distribution (HCE)* is the orthogonal complement of HHCE, where

HC¢=RéoRjé® JE®JJE.

3 Proof of the Theorem 1.3
The GTW parallel Ricci tensor is defined by

TE )y =P (sy)-svPy
= Vx(SY) + g($AX, SY)E - n(SY)pAX — kn(X)$SY
~ SVxY - g($AX, Y)SE+n(Y)SPAX + kn(X)SY.

And from (1.1), as we suppose that M has GTW harmonic curvature, we have
(1) (VxS)Y — (VyS)X = — g(AX,SY)E + n(SY)AX + kn(X)¢SY
+g(pAX, Y)SE-n(Y)SPAX — kn(X)S¢Y

+ g(PAY,SX)E - n(SX)PAY — kn(Y)pSX
- g(QAY, X)SE+ n(X)SPAY + kn(Y)S¢X
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for any X, Y tangent to M. Thus, by using (2.3), (3.1) can be written as follows:

(3.2)

- 38($AX, Y)§ - 3n(Y)pAX
-3 é{qm(X)fvm(Y) = Qv (X)v42(Y) + g($,AX, V) }E,

-3 il 1o (V) @vs2(X)Evet - qrar(X)Evsa + $yAX)

+ é{X(ﬂv(f)ﬁbver (D) =gy (X)briadY

+ @ua2(X)@y1@Y + 11, (pY)AX — g(AX, ¢Y)E, }

+ 1y (§){n(Y)pyAX - g(AX, Y) ¢y &} — g(PAX, ¢, Y)
+{qv1(X)N($v42Y) = qura(X)1(¢va¥) = 1o (Y)(AX)
+1(8,)g(AX, Y) 1y & = (¢ Y ){qus2(X) pvid

= @yt (X)py28 + ¢y pAX — n(AX)E, + (&, )AX}

- 8(PAX, V)1, (§)& = n(YV) X (1,()) &y = n(Y) 1, (§) Vx &y}
+ X(h)AY + h(VxA)Y - (VxAY)Y
+3g($AY, X) & + 3(X) AY

+3 é{qHz(Y)mu(X) - qu(Y)r]HZ(X) + g(¢vAY,X)}fV
+3 Zi:l Ny (X){@v+2(Y) &1 = gvia(Y)&yia + ¢ AY }

- Z YOO8 + (- (V29X

+ qvi2(Y)r19X + 1, ($X)AY — g(AY, ¢X)&,}

+ 11y (E){n(X) ¢y AY - g(AY, X) ¢, &} - g(PAY, ¢, X) ¢

+{ v (Y)1(¢v2X) = qya(Y)1(dy1 X) = 1o (X)n(AY)
+1(8,)8(AY, X)} ¢, & = n($v X){qv+2(Y) pv1

= @1 (Y)Pvi28 + ¢y PAY — n(AY)E, + n(&,)AY}

- 8(9AY, X) 1, (§) & — n(X) Y (14 (§)) &y = n(X)nu(§)Vy &y}
- Y(h)AX - h(VyA)X + (VyA*)X

— g($AX, SY)E + n(SY)PAX + kn(X)$SY

841

+ 8(¢AX, Y)SE—n(Y)SPAX — kn(X)SPY + g(pAY, SX)& - n(SX)pAY

—kn(Y)¢pSX — g(9AY, X)SE+ n(X)SPAY + kn(Y)S¢pX
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for any X, Y tangent to M.
We can write & = (X)) Xo + (&) &, where X, is a unit vector field in ©. Suppose

that AZ = a& and that n(Xo)#%(&) # 0.
Bearing in mind that
y(¢Xo) =0 for v=1,2,3,
S&=(4m+4+ ha - ocz)f— an(é) &,
n(¢19Xo) = n(Xo)n(&1),
n(y9Xo) =0 for v=2,3,
§(m (&) = 8(& Vedh),

by putting X = £, Y = ¢ Xy in (3.2) and taking scalar product of (3.2) with &, we get

(33)  4(a-k)n*(&)n(Xo) —167(81)g(ApXo, $1€) + ($Xo)(a® — ah) = 0.
By using

1n(Xo)

__ n(&)
’1(51) ¢X0 and A(/)Xo = A(/)] é;‘,

hit=- 1(Xo)

(3.3) becomes

4o = k) (§)n(Xo) +161° (§1)g(Agér, ¢&1) +1(&1) (9é1) (ah - a®) = 0.

Since the shape operator A commutes with the structure tensor ¢ on the distribu-
tion ©*, we have

g(APEL, &) = g(PAE, ¢&1) = g(A&, &) — an’(&).

Thus, we arrive at

4(a - k)n*(&)n’ (Xo) + 1617 (&) g(A&, &)
—16an* (&) + n(&)(¢&1)(ah —a’) = 0.

Let {E;}i-1,....am—1 be an orthonormal basis of eigenvectors of M. If we develop

.....

a contracted formula Y3717 ¢((VE,S)Y — (VyS)E;, E;) in (3.1), the left side of the
equality (3.2) yields for Y = & (see [10, (5.4)]),

-3 3 g(guAEn ) + k() ~ A+ h( E(@) - E() - 1r(A¢4))
- (&(a?) - Tr(A%QA) - E(Tr(A%)).

On the other hand, the contracted formula in the right side of (3.1), bearing in mind
that g(¢SY, &) = 0, g(¢AE;, E;) = 0, because E; is principal and g(&, ¢SY) = 0, gives

~g(APY.SH) - (V) T g(SPABLE:) - kg(5,54Y) + 2kn(¥) S g(SEi9E).
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Now we get

8(S& APY) = —4n(&)g(&1, AgY),
T g(9AELSE) =4 % (£ A0E.),
8(SE¢Y) = —4n(&)g(&, ¢Y).

From this, together with inserting Y = £ in above formula, the right side of the con-
tracted formula becomes —4 Y23 _; g(&,, A¢&,). Then both sides of the contracted for-
mula in (3.2) can be given by

(3.4) BE(@) — £(0) + E(TH(AY) = 7 5 (6 A9E:) =0,

where we have applied that / is constant and ¢ and A commute on ©*.
If r denotes the scalar curvature of M,
4m-1

r=Y g(SE;,E;)=16m* +24m —19 + h* — h,,
i=1

where h, = Tr(A?); see [10]. As r is constant, h, is also constant. Thus, (3.4) yields
&(ah — a*) = 0. This gives us either £(a) = 0 or h = 2a.
If h = 2 and « is constant, then from Berndt and Suh [2] we may use the following

V(@) = E@)n(Y) =4 £ 1. (9Y)

for any Y € TM. This yields ¢;& = 0, which gives a contradiction.
Suppose now that £(«) = 0. As above, Y (a) = 4n;(&)g(Y, ¢&;). Thus,

(&) (@) =4n(&)(1-77(&)) =4n(&)n*(Xo)

and
(¢&1) (ah —a®) = (h - 2a)($&1) (@) = 4(h — 20) (&) (Xo).-
From (3.4) we obtain
(3.5) 0=4(h-k-a)n*(Xo) +16g(A&, &) - 16an* (&)
=4(h -k - a)n*(Xo) +16an*(Xo)
=4(h -k +3a)7*(Xo).
We also have g(Vx grad(«),Y) = g(Vy grad(a), X) for any X, Y tangent to M.

Bearing in mind that grad(«) = 4#,(&) ¢, € and taking X = &, we get g((V¢) &1, Y) +
g(oV&LY) = g((Vy¢)&r, &), where we have applied that #(&;) = 7:1(&) # 0. If we
apply the formulas in Section 2 for Y = &;, we obtain g(A&}, &) = a. Introducing this
in (3.5) we have 4(h — k + 3a) = 0. Thus, « is constant, and, as above, we arrive to a
contradiction.

Thus, we have obtained that either £ € D or £ € D*.

If £ € ©, M is locally congruent ([6]) to a type (B) real hypersurface. If we bear in
mind the principal curvatures of such a real hypersurface in order our conditions to
be satisfied, we should have A¢&, = 0 = pA&, = 2 cot(2r)p&,. This yields 2 cot(2r) =
cot(r) —tan(r) = 0. Thus, r = §, which is impossible.
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Now we suppose & € ©* and write & = &). If we take the scalar product of (3.2)
with &, we get

(3.6)  —3g((Ap+¢A)X,Y) -3¢((¢1A+AP)X,Y) —6n2(Y)n3(AX)
+613(Y)n2(AX) — 4n2(X) 03 (AY) + 413 (X)n2(AY)
+2(h = a){ 212(X) 13 (V) = 2m2(Y)n3(X) = g(: X, ¥) - g(¢X, V) }
- 2ag(APAX,Y) + g((Ag + pA)AX, AY)
= —g((SpA+ PAS)X,Y) + g(SE &) g((pA+ AP)X,Y),
for any X, Y tangent to M.
If we change X and Y in (3.6) and add the result to (3.6), we obtain
(37)  =1072(Y)n3(AX) +1015(Y)72(AX) = 1072(X) 713 (AY) +1073(X) 72 (AY)
=-g((SpA+ PAS)X,Y) + g( (ApS + SA)X,Y),
for any X, Y tangent to M.
Taking Y = &,, X € © in (3.7) we have
-10773(AX) = —g((SPA + pAS) X, &) + g((AdS + SAP)X, &)
= -g($pAX,S&) + g(AdX, S&) =0,

due to the fact that A¢pX = ¢ AX for any tangent vector field X. Thus, 73(AX) = 0 for
any X € ©, and analogously for Y = &;, we obtain 7, (AX) = 0. From these facts, we
conclude that M is locally congruent to a type (A) real hypersurface. Bearing in mind
that these real hypersurfaces have constant principal curvatures and that A¢ = ¢ A on
them, they have constant mean and scalar curvatures.

Taking X = & and Y = &, in (3.6) we obtain

(3.8)  —4(h-a)-2f(a-B)-2B=2p(4m+ ha - a®)
- Bg( & (4m +6)& + hAE, - A%)
— Bg( &, (4m +6)& + hAE, — A*E;),
where we have applied that
S&=(4m+ ha - a?)&
S& = (4m +6)&, + hAE, - A&,
853 = (41’7’1 + 6)53 + hA£3 —A2£3.
As A&, = &, and A&; = &5, (3.8) becomes

B(ha—a*-5) + (h—-a)(2-p*) =0.
From this it follows that
(3.9) (h—a)(2-p*+aB)-58=0.
Bearing in mind the values of a and f3, we have & — 8 = \/8 cot(\/8r) — \/2 cot(/2r)
and /8 cot(\/8r) = \/2( cot(\/2r) - tan(\/2r)). So it follows that f(a — B) = —2.

From this, together with (3.9), we conclude that 8 = 0, which is impossible. This
completes the proof of our main theorem in the introduction.
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