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YOUNG DIAGRAMMATIC METHODS IN NON-
COMMUTATIVE INVARIANT THEORY

YASUO TERANISHI

Introduction

In this paper we will study some aspects of non-commutative in-
variant theory. Let V be a finite-dimensional vector space over a field
K of characteristic zero and let

K[V =KV S(V)® -, and
K(Vy=KeVo&Vek'Ve -

be respectively the symmetric algebra and the tensor algebra over V.
Let G be a subgroup of GL(V). Then G acts on K[V] and K{(V). Much
of this paper is devoted to the study of the (non-commutative) invariant
ring K{V)¢ of G acting on K{V>.

In the first part of this paper, we shall study the invariant ring in
the following situation.

Take a classical group G (i.e., G = SL(n, K), O(n, K) or Sp(n, K))
and the standard G-module K*. Let V be the d-th symmetric power of
K", Then G acts on V and we get K(V)°.

By the Lane-Kharchenko theorem ([L], [Kh}]), the invariant ring K{V )¢
is a free algebra. For the construction of explicit free generators, we
will develop a symbolic method along the lines of Kung-Rota [K-R].

In the second part of this paper, we will study S-algebras in the
sence of A.N. Koryukin. Koryukin [Ko] has proved that if V is a
finite-dimensional K-vector space and G is a reductive subgroup of GL(V)
then K(V)¢ is finitely generated as an S-algebra. We will prove that a
homogeneous system of generators for the (commutative) invariant ring
K[A2V @V]¢ gives rise to a system of generators for the invariant ring
K{(V»% as an S-algebra.

In the final part of this paper, we will study (non-commutative) in-
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variants of finite linear groups acting on the ring of 2 by 2 generic
matrices with zero trace. In this case, rings of invariants are finitely
generated and Cohen-Macaulay modules over their centrers. We will
give a formula for the Poincare series of the invariant rings. The formula
is analogous to the classical formula of Molien in the commutative case,
but more complicated.

§1. Umbral derivation of tensor invariants of n-ary forms
1.1. We consider the generic n-ary forms of degree d,

fentn vt = 3 (¢t

a€N®» \
la]=d

with coeflicients a, which are indeterminates over a field K of characteristic

zero. Here, for ana = (o, -+ -, )eN", |a| =, + - -+ + «a,, £ = 2. . &
!
and (d) = -——-d——— Then each transformation
o altay,!
El = Z akie)’c 1
1<ksn
carries the generic n-ary form f(&,, - - -, £,) into another n-ary form

ety )= 3 (% )aier.
agNn \ X
The map a, — @, defines the d-th symmetric tensor representation of the
general linear group GL(n, K). Further let d,, d,, ---, d, be positive in-
tegers and consider a system of generic n-ary forms f,, f,, - - -, f, of degree
d, d, ---,d,, respectively:

fi= 3 (d‘)a‘(xl)ea’ fi= 3O (‘ligz)agz)sﬂ, o fo= 3 (?r)a;r)ei.

«€EN® \ & p=N=» rEN®
lal=d1 18l=ds Irl=dy
Viewing the coefficients e, af’, - - -, a!” as independent variables over

K, we get a linear action of GL(n, K) on the polynomial ring
S,¢= Kl[a®,a®, -+, a"].

Let G be a classical subgroup (i.e., G = SL(n, K), O(n, K), or Sp(n, K)).
The invariant ring S¢, under the group action of G is called the ring of
simultaneous G-invariants of n-ary forms f,, f,, - - -, f,. The polynomial ring
S,.. is N7-graded by giving a{’ multi-degree ¢, = (0, ---,0,1,0, - - -, 0), the
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i-th unit vector of N7, the grading on S, , induces the same grading on

G
n,d°

For each m = (m,, - - -, m,) € N", we denote by (S, )% the vector space
of degree m. If m = (1,1, ..., 1), the space is called the space of multi-
linear G-invariants of type d = (d,, - - -, d,).

2.
Let x® = t(x{n’ e x;l)), % = ¢(x{2)’ cee x,(;”)’ cee x" = ‘(x{'), ceey x;r))
n-dimensiona umn vectors whose entries x{¥ are independen
be the n-dimensional col t h t x{ are independent
commuting variables. We call these variable vectors x®, x® ... x®

umbral vectors and we call the polynomial ring K[x?; 1 <i<r, 1<j<n]
the umbral space. The umbral operator U is the linear operator from
the umbral space to the polynomial ring S, ; defined by

a®, if |a| = d,

0, otherwise ,

U(x™he) = {
where x®o = x{®*...x®* for « € N*. For a monomial, we set

U(x(ix)h. . .x(iz)ﬂt) — U(x(h)ax), . U(x(iz)a:) .

1.2. We associate to an n-tuple [ = (i, I,, - - -, I,) of positive integers
satisfying 1 < i, <i,<.--<i, <r, an indeterminate p,( = Dyy,....,). Let I
be the ideal of the polynomial ring K[ - -, p,, - - -] generated by the Pliicker
relations

lercsnn( - l)k+lphh--'J,;-“!aﬂplxiz"-ln—xh .
The quotient ring
K[ py 1T

is the coordinate ring K[Gr(n, r)] of the Grassmann variety Gr(n,r). The
ring K[---,p,, ---] (resp. K[Gr(n, r)]) is an N7-graded ring by giving each
p, degree e, + --- + e, e N". We associate to each monomial

PyDy - Dk (l’:(l'h "'»in)yj = (jh "'yj’n)? Tty k= (kh >kn))

of degree d = (d,, -- -, d,) € N”, a multi-linear form in a{, af, ---, a/” in
the following way. We replace each factor p,,...,, of a monomial p,-p,
.- -px by the determinant |x™V...x™| of the n by n matrix

xgml) e x;mn)

x{m L L e
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Then expanding the product of these determinants, we find that
U(x49 - . . gt |60 .. xlm || xt60) . lend])
is a Z-linear combination of terms of the form
al-af---a (a, 8, ---,7eN") with |a| =d,, |f|=dy, -+, [T| = d,.
Therefore we can define a K-linear map

Unmd : K[ AR 2T ']d —> (Sn,d)(l---X)

U"‘!"xd(pil'“in ‘Pireegn” 'ph"-kn)
= U(lx(il). . .x(in)l.lx(jl). . .x(fn)l, . .!x(kl), . _x(k,,)l .

THEOREM 1.1. The image of K[---,p,, - - -1 by the K-linear map U, ,
is the K-vector space (S, )™F of multi-linear SL(n, K) invariants of type
d and the kernel is INK[---,p,, - 14 .

In other words, the map U, ,, induces o K-linear isomorphism

K([Gr(n, nNly = (S, %% .

Proof. Consider the standard action of SL(n, K) on the umbral
vectors x®, x®, ..., x®, Then the fundamental theorem of vector in-
variants (cf. [W] Chap. 2) says that the ring K[Gr(n, r)] is isomorphic to
the ring of SL(n, K)-invariants of the umbral space, via the map

Pigeeety —> Ix(i‘) . e x(’ln)l .

The umbral space is N7-graded by giving each x{® degree ¢, e N".
Then it is clear that, for each d = (d,, - - -, d,) € N", the umbral operator

U: K[xy); 1 S i .é r, 1 S] S n]¢ "—'—_)(Sn,d)(b"I)

is an SL(n, K)-isomorphism of vector spaces and hence we obtain K-linear
isomorphisms, '

K[Gr(n,nl, ~ K[x{; 1 <i<r, 1 <J < 50

L(n, K
=~ (S, )%

This completes the proof.
For every d = (d,, -- -, d,) e N, we set

k=|dlln and d~=(k—d, - k—d).
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Then it can be easily seen that if dimg(S, )E%E > 1, d~eN'. For an
n-tuple (@, --+,0,), 1<, <, <---<i,<r, let (i}, ---,i,._,) denote the
complement of (i, ---,7,) in (1,2, ---, 7).

To each monomial

p == p“...i" 'pj,...,,,' ce 'pk,...k,,

we associate the monomial
D =Dy Pspsy 0 Pigeeigy -
Then the map p — p defines a K-linear isomorphism
K[Gr(n, r)], = K[Gr(r — n, r),-.
By Theorem 1.1, we obtain
CoroLLARY. If dimg(S, )SE%F > 1, then
dim (S, JFE%F = dimg(S, -, ) TS

Let us recall some notations and definitions on Young diagrams.
Let 2= (2, 4, - --) be a partition. We identify 2 with the corresponding
Young diagram (denoted also by 2). If 1,>0 and 2,,, = 0, for some n,
we call n the length of 2 and denote it by I(2). A Young diagram whose
squares are filled with some positive integers is called a numbered diagram.
If a numbered diagram is column strict, i.e.,, the numbers in each row
are non-decreasing from left to right and numbers in each column are
strictly increasing from top down, it is called a Young tableau. If a Young
talbeau 7T has i, I’s, i, 2’s, etc, then the sequence (i, i,, - - -) is called the
weight of T. For a Young diagram 1, we denote its transpose by ‘A.

A monomial p;,..., Ps...;." " *Pir.s, 18 called a standard monomial if

1ree

the associated numbered diagram

iljl"'kl

in jn c kn
is a Young tableau. A Young tableau is called an SL(n, K)-tableau if
each column has n squares. Let T be an SL(n, K)-tableau with weight
d=(d,d,  --,d,)eN". We denote the associated monomial in K[Gr(n, r)]
by p(T). Then p(T) has degree d.

PropositioNn 1.1 ([D-R-S] Theorem 1). For each de N7, the set of
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monomials {p(T); T is an SL(n, K)-tableau of weight d} is a K-basis of
K[Gr(n, r),.

By Theorem 1.1 and Proposition 1.1 we then obtain the following

TuEoreM 1.2. For each d =(d, ---,d,) e N7, the set of elements
{U,..d(p(T)); T is an SL(n, K)-tableau of weight d} is a K-basis of the
vector space of multi-linear SL(n, K)-invariants with type d.

Consider a free algebra K{a,; ae N and || = d) generated by a,.
Then this algebra is N-graded by giving each a, degree one. For each
(non-commutative) monomial a,a,,- - -a,, of degree r, we set ¥ (a,a., - -a.,
= aPa®-.-af”, then we obtain a K-linear isomorphism

U,:Ka,;eeN" |a|=d), —> (S, 5
where {d) = (d---d)e N". Further we set
Uspria = U Upyr oy -
Then from Theorem 1.2, we obtain

PROPoéITION 1.2. For each reN, the set of elements {U,, (p(T); T
is an SL(n, K)-tableau of weight {(d) e N"} constitutes a K-basis of K{a,;
ae N, |a| = d),.

Let T be a Young tableau with, say, s columns and let ¢ be a posi-
tive integer with ¢ <s. Then we denote by T, the Young tableau taken
from the first £ columns of 7. An SL(n, K)-tableau T with, say, s columns
and weight (d---d) e N7 is called indecomposable, if there is no positive
integer ¢, t < s, such that T, is an SL(n, K)-tableau of weight (d---d) e N*
for some &, 0 <k <r. Then the following result follows from Proposition
1.2 and the Lane-Kharchenko theorem.

THEOREM 1.3 ([Te2] Theorem 3.3). The set {U,,,p(T));reN and T
is an indecomposable SL(n, K)-tableau of weight (d---d)e N"} constitutes
a set of free generators of the non-commutative) invariant ring K{a,; « € N*,
la| = dYysT®x),

Let A(n,d,r) = dimgK|[a,; a € N*, |a| = d]5*™% and

A(n, d, r) = dim K{a,; @ € N*, || = d)sE®D
In the commutative case, the classical Hermite reciprocity theorem says
that A2,d,r) = A(2,r,d) for all d and r. On the other hand, in the
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non-commutative case, we obtain the following reciprocity theorem.
ProrosiTiON 1.3. If r> n, then
An,d,r) = A(r — n,d~, 1),
where d~ = rd/n — d.
Proof. This follows from the corollary of Theorem 1.1.

1.3. In this section we shall be concerned with simultaneous in-
variants of the orthogonal group O(n, K). Let n and r be positive integers
with n <r and x,,, 1 <i, j <1, independent variables. Let I be an ideal
of the polynomial ring Klx,;;1<1i,j<r] generated by the following
elements:

(1) x,—2x4 1<Li,j<r, and

(2) the (n+ 1) X (n+ 1) minors of the r X r matrix X = (x,,),

1<i, j<r

The polynomial ring Klx,,; 1<i,j<r] has an N’-graded structure
by giving each «x,, degree e, 4+ e;, Here, as before, ¢, and e, denote
respectively the i-th and j-th unit vectors of N”.

For each monomial x,,, x,,," - -%,,, of degree d e N", we set

Un,r,d(xh]lxtzjs. : 'xtk!k) = U((x(ix), x(h)) (x(ta), x(h))' : '(x(it)) x(h))) ’

where x®, ... x™ are umbral vectors and U the umbral operator, and
(2, %) = Dlici<n %.Y:, the standard inner product.
Then we get a K-linear map

Un,r,,; : K[xu; 1<i,j<r]l—> (Sn,d)(l...l) .
The fundamental theorem of vector invariants (cf. [W] Chap. 2) for the
orthogonal group O(n, K) says that the ring K(x,,;1 <, j<rl/I is iso-
morphic to the ring K[x{?;1<i<r,1<j<n]°™® of orthogonal vector

invariants, via the map x,, — (x?x¥’). By the same argument as in the
proof of Theorem 1.1, we then obtain the following result.

THEOREM 1.4. For each d e N, the image of the K-linear map U, ,,
is the vector space (S, )°™% of multi-linear O(n, K)-invariants of type d,
and

KerU,,,=INK[x,;;1<i,j<r],.

In other words, the K-linear map U, , , induces a K-linear isomorphism
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from the K-vector space (K|[x;,;1<1i,j<r]/); to the K-vector space of
multi-linear O(n, K)-invariants of type d.
Let, as before, (d) =(d---d)eN" and U, ,, = U, v cay

CororLarY. For all d, reN,
Onrat (K231 < i, j < 1l/Dey —> Kda,; 2 e N*, Ja] = dyomm
is a K-linear isomorphism.

Let 2 be a Young diagram. A Young tableau 7 with shape 2 of
length < n is called an O(n, K)-tableau if 1 is an even partition. Given
(i 1y -+, i )eN™ and (j,, j, -+ -, Jm) € N™ with 1 < i, j, <r, we denote by
(iyiy- + ~igljiJa - -Jn) the determinant of the minor of the r by r symmetric
matrix

X = (xij; Xy = x,u)

with row indices (i, i,, - - -, I,,) and column indices (j,, js, * - -, Jn)-
To each O(n, K)-tableau of weight d € N7;

ay by ay by -
. Sos
R R
we associate an element x(T) of K[x,;;1<1i,j<r] by
X(T) = [liz1 (@i - Q| by by - by,
Then by Theorem 5.1 of [D-P], the set
{x(T); T is an O(n, K)-tableau of weight d}

constitutes a K-basis of (K|[x,,;1 < i, j<r]/I);; Combining this with the
fundamental theorem of vector invariants for the orthogonal group O(n, K),
we obtain

ProposiTiON 1.4. The set
{Up.rd(x(1)); T is an O(n, K)-tableau of weight d}

is a K-basis of the vector space of simultaneous O(n, K)-invariants of type d.
In particular, we have the following

ProrositioN 1.5. The set
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{U,.r.o(x(T)); T is an O(n, K)-tableau of weight (d---d)e N7}
is a K-basis of the vector space K{a,; « € N*, |a| = d)Y?™B),

An O(n, K)-tableau T of weight (d---d) e N" with, say, s columns is
called indecomposable if, for any 0 < ¢ < s, the sub-tableau T, is not an
O(n, K)-tableau of weight (d---d)eN* 0< k<r. Then the following
theorem follows from Proposition 1.5 and the Lane-Kharchenko theorem.

THEOREM 1.5. The set

{Un,,,d(x(T)); reN and T is an indecomposable O(n, K)-tableau of
weight (d---d)e N*} constitutes a set of free generators of the (non-com-
mutative) invariant ring K{a,; @ € N*, |a| = d)°™D,

1.4. In this section we shall be concerned with simultaneous in-
variants for the symplectic group Sp(n, K). Let n be an even positive
integer and r an integer with r>n. Let x,, 1<i,j<r,i=j, be inde-
pendent commutative variables and let I be an ideal of the polynomial
ring K[x,,;1 <1, j < r] generated by

(1) x4+ %, 1<, j<r, and

(2) the Pfaffians of the (n + 2) X (n + 2) principal minors taken from
the upper corner of the skew-symmetric matrix

0 Xig * 00 Xyp
=X, 0 -.x,
— Xy - ... 0

By giving each x,, degree e, + ;e N, Klx,;;1<1i,j <r] has an
N'-graded structure. For each monomial x,, %;,;," - - %, Of degree d e N7,
we set

Unor iy Konsy s+ - Xy = U([x®, x90]. . . [0, xU0])
where U is the umbral operator and

[x, y] = (xy1 — x1y) + -+ + (XY — XnYw), n = 2m, with

X = (0 X1%%  XnXp), Y=YV YnIm) -
Then we obtain a¢ K-linear map
Uﬂyfyd : K[xij; 1 S ”’.] S r]g > (Sn,g)(l...n N

and, by using the fundamental theorem of vector invariants for the
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symplectic group Sp(n, K), we obtain the following

THEOREM 1.6. For each d e N", the image of U,,, , is the vector space
of simultaneous Sp(n, K)-invariants of type d and

KerU,,,=INK[x;1<i,j<r],.

In other words the K-linear map U,,, , induces a K-linear isomorphism
from the space (K|[x,;;1<1i,j<rl/I); to the space of all multi-linear
simultaneous Sp(n, K)-invariants of type d.

For a 2m-tuple (i, iy, - - -, I,,) Of positive integers with 1< i, <i, <
«o o <y, < 1, we denote by [i,i,- - -i,,] the Pfaffian of the principal minor
taken from the upper corner of the r by r skew-symmetric matrix X =
(%45 Xy = — x5,), with row and column indices i, i, -+, i,,. Let 1 be a
partition of length < n. A Young tableau T of shape 2 is called an
Sp(n, K)-tableau if the transpose ‘2 of 1 is an even partition. To each
Sp(n, K)-tableau

Ay Ay -
T =
Ay, Aogy - -

of weight d e N”, we associate an element x(T) of K[x,,;1<1i,j<r] by

2(T) = lay - - oy, ] [ay - - 'azx,] Tt

Note that, since ‘A is an even partition, k,, k,, - - - are even integer. Then
it follows from Theorem 6.5 of [D-P] the set

{x(T); T is an Sp(n, K)-tableau of weight d}

is a K-basis of the vector space (K[x,,; 1 <1, j<r]/I);. Therefore by the
fundamental theorem of vector invariants for the symplectic group Sp(n, K),
we obtain the following two propositions.

ProrosiTioN 1.6. The set
{U,,rdx(T)); T is an Sp(n, K)-tableau of weight d}

constitutes a K-basis of the vector space of all simulataneous multi-linear
Sp(n, K)-invariants of type d.

PropositioN 1.7. For deN, let U, ,, be the K-linear map defined by
Un,r,d - w-,- Un,r,(du-d)' Then the set
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{U,,..x(T)); T is an Sp(n, K)-tableau of weight (d---d)e N}
is a K-basis of the vector space K{a,; @ € N*, |a| = d),.

An Sp(n, K)-tableau of weight (d---d)e N” with, say, s columns is
called indecomposable if, for any 0 < t < s, the sub-tableau 7, is not an
Sp(n, K)-tableau. Then we, as before, obtain

THEOREM 1.7. The set

{Uﬂ,,.,d(x(T)); reN and T is an indecomposable Sp(n, K)-tableau of
weight (d---d)e N7} is a set of free generators of the (non-commutative)
invariant ring K{a,; a € N*, |a| = d)$?™5),

§ 2. S-Generators of tensor invariants

2.1. Let V be a finite dimensional K-vector space and G a subgroup
of GL(V) acting on K{(V) as a group of graded algebra homomorphisms
on K(Vy. For each me N, the symmetric group S, acts on the space
®™V by

O‘(UI ®' : '® vm) = vv"l(l) ® e ® va"x(m)y o€ Sm .

In general a graded sub-algebra R = @,5, R, of K(V) is called an
S-algebra if each R, is a sub-S,-module of ®"V. The invariant ring
K{V)% is an S-algebra, since the actions of GL(n, K) and S, on ® "V
centralize each other. Let {f;};c; be a system of homogeneous elements
of K{V)%. We denote by SK{f,;ieI) the algebra generated by the f,
i e I, together with the actions of the symmetric groups. If SK{(f,;iel)
= K{V>%, then {f,; ie I} is called a homogeneous system of S-generators.
If K{(V)¢ has a homogeneous system of S-generators consisting of finitely
many tensor invariants, then K(V)¢ is called finitely generated as an
S-algebra. A.N. Koryukin [Ko] proved that if G is a reductive algebraic
subgroup of GL(V), the invariant ring K(V)? is finitely generated as an
S-algebra. We now consider the commutative ring K[®"V]¢, n = dim V,
of all simultaneous polynomial invariants. To each homogeneous element
f of K[®"V]¢ we can associate an element f, called complete polarization,
of K{V)? For details, consult [Tel].

THEOREM 2.1. (Theorem 2.1 [Tel]). Let G be a subgroup of GL(V) and
{fihier @ homogeneous system of generators of the (commutative) invariant
ring K[®"V]% n=dimV. Then {f},e, is a homogeneous system of S-
generators of K(V ).

https://doi.org/10.1017/5S002776300000338X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300000338X

26 YASUO TERANISHI

Theorem 2.1 enables us to find such a number N7, that the invariant
ring K(V>¢ is generated as an S-algebra by invariants of degree < Ng ;.

THEOREM 2.2. If the field K is algebraically closed and G is an
algebraic subgroup of GL(V), then

(1) if G is a finite group, we can take N3, = 4 G,

(2) if G is a torus, we can take Ny, = n*C(n*s!t*),

(38) if G is semi-simple and connected, we can take

N~ _ n20< 2r+sn2(:+1)(n2 . l)s—rtr(s + 1)| )
3 (s — N/ ‘

Here n = dimV, s = dim G, and r = rank of G. For a positive integer k,
C(k) = L.CM.{a e N;0 < a < k}. For the definition of t, see [P1] Theorem 2.

Proof. By Theorem 2.1, the problem can be reduced to the commu-
tative case, and we obtain the desired result by Theorem 2 of [P1].

Remark. T. Tambour (Theorem 7 [T]) proved (1) by a different method.
In the commutative case, the proof of (1) was given by E. Noether [N],
of (2) by G. Kempf [K], and of (38) by V. L. Popov [P1].

2.2. T. Tambour [T] has investigated a generating function associated
with the graded S-algebra K({V)® and proved that the generating function
is equal to the Poincare series of the graded ring K[A2V®V]¢ A* = the
exterior square. Then one can naturally expect some relationship between
structure of the S-algebra and that of K[AAV@®V] In this section we
will establish a relationship between them. For a partition i, we denote
by s)(x, Xy, - - -) the Schur function corresponding to i. The Littlewood
identity (IM] Chap. 1)

D sixy, Xy, v o) = IL,(L — x,)7 I (1 — xy%,) !

shows that the GL(n, K) ( = GL(V))-module K[A*V@®V] is decomposed
into the irreducible parts

K[/PV@V] = @1W1 s

where 2 is over all the partitions of length <n and W, denotes the
irreducible GL(n, K)-submodule corresponding to 2. Let

xy 1<i<j<n, and x, 1< k<1,

be indeterminates, then
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KIAVOV] =Klx,, x;1<i<j<n 1< k<n].

For each m, 1 < m < n, we define a polynomial J,, in x,, and x, by

fyeeet : .
Dt €K X, if mois even,
J, = o 2
D tran €I ey %, if mois odd,
where
1, if (&, - -+, i,) is an even permutation of 1, ---, m
ghtvrim = ¢ — 1, if (i, - -, i,,) 1s an odd permutation of 1, ---, m

0, otherwise.

When m is even, J,, is the Pfaffian relative to the principal m by m minor
taken from the upper corner of the n by n skew-symmetric matrix X =
(%155 %5 = — X;y).

For a partition 2 = (4, 4, - - -, 2,) of length < n, we set

fz(xu; xg) = JpJp. . Jl

where [, = 4, — A,,,, 1 < i < n, with 2,,, = 0. Then it is easily seen that
fi(x;;, x,) is an weight vector under the action of the group of all upper
triangular n by n matrices and

2
R Lty fulxig, ) = 8283 - -t fi(yy, xy) -
t, )

Therefore f,(x,,, x,) is the highest weight vector of the irreducible GL(n, K)-
module W, and hence we have

W, = GL(n, K)-f,(x”, %) -

We denote by e, the Young idempotent corresponding to a partition A.
Let

Tl = e1'®mV.

Then T, is an irreducible GL(n, K)-submodule of ® "V and hence there
exists a GL(n, K)-isomorphism

a,: W,—> T},

for each partition 2 of length < n. We define an isomorphism of GL(n, K)-
modules
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a: K[sz@V] B @l(l)sn Tl )

by a = @z(z)gn a,.
For partitions 1 and p of length < n, consider the GL(n, K)-map ¥
and ¥': W, ®W,— W,,,, defined as follows: for f,e W, and f,e W,,

U(f,®f,) = fi-f, (usual multiplication of polynomials)

and

V(i ®f) = a‘l_-:ﬂ(el'},u'(al(fl) & ay(fz))) ’

where e;,, the Young idempotent associated with the partition 2 + .
Since W, = GL(n, K)-fi(x:;, ) and fy(xj, %) fxe5, X,) = frs (%s5, %), the
map ¥ is well-defined.

Hereafter we asssume that the field K is algebraically closed. Because
W, and W, are irreducible GL(n, K)-modules and the decomposition of
the tensor product W, ®W, into irreducible parts contains the irreducible
GL(n, K)-module W,,, with multiplicity one, it follows from Schur’s lemma
that ¥ and ¥’ coincide, up to a non-zero scalar in K. Therefore the
following diagram of GL(n, K)-isomorphisms is commutative up to a non-
zero scalar:

Wl ®W# TWM—;:
a;®a,. Qisp

T1® T/[T}Tlﬂx’

where + is defined by v (x®y) = e, (xR y), xe T, ye T,

THEOREM 2.3. Let the field K be algebraically closed and G a sub-
group of GL(V). If {f)hie:r a homogeneous system of generators for the
(commutative) invariant ring K[AV @V]E, then {a(f)}her is a homogeneous
system of S-generators for the (non-commutative) invariant ring K{V)S.

Proof. For each ke N, we regard ®*V as a GL(n, K) X S;-module.
Then by H. Weyl’s reciprocity theorem, it decomposes as

®kV= @Ilg)skn T) ®V§k, n= d.imKV.

Here V§* denotes the irreducible S,-module corresponding to the partition
A. Denoting by K[S,] the group ring of S,, we have

T, @V = (K[Si]e) - T:,
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and hence

(@ V) = @y, (KISiJe)-(T)°.
This together with the diagram above completes the proof.

§3. Non-commutative invariants of rings of 2 by 2 generic matrices
with zero trace
In this section we will study invariant rings of 2 by 2 generic matrices
with zero trace under linear actions of finite groups. Let K be a field
of characteristic zero and let X, X,, ---, X, (n >2) be 2 by 2 generic
matrices with trace zero over K. That is

X 2 z
X, = [x“ 12], X, = [yu y12]’ o X, = [ 1 12] ,
Xo  —%n Yu  —In 2y —2n

where x,,, X5, X5, Yi1s Yi2s Yoi, * * > 211, 212, 25y are commuting indeterminates
over K. The K-subalgebra

Rn = K[XI; Xz, Tt Xn]

generated by X,, X,, ---, X, is called the ring of n generic 2 by 2 matrices
with zero trace. This is a K-subalgebra of the 2 by 2 matrix algebra
M(K[x.;, ¥, 2:5]) over the polynomial ring K[x,,, ¥, 2]

Let MY(K) denote the set of 2 by 2 matrices with zero trace. The
group GL(2, K) acts on @"M3(K) by

g(AL A, - A)=(gAg "' gAsg" - -,g4A,8"), with
geGL(2,K) and (4, A4, - -, A)e®"MYK).

Then in a natural manner (cf. [Pr]), R, can be identified with the ring
of polynomial GL(2, K)-concomitants

f: @"MYK) —> MYK) .

We denote by C, the invariant ring K[@®"M(K)]¢**®. C, can be
identified with center of R, (cf. [Pr] Sec. 2). The general linear group
GL(n, K) acts on R, and C, by the left multiplication on the column
vector X, X,, - -+, X,) of 2 by 2 generic matrices with zero trace X, X,,

. Xn_

THEOREM 3.1. Let G be a reductive subgroup of GL(n, K). Then the
invariant ring RS is a finitely generated K-algebra.
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Proof. By a well-known theorem in invariant theory, C¢ is finitely
generated K-algebra. Since RS is a finitely generated C¢-module, RS is
finitely generated K-algebra.

We now prove that for any finite subgroup G of GL(n, K), RS is a
Cohen-Macaulay module over CS. First we recall a result of Le Bruyn.

TurEoreEM 3.2 ([L] Theorem 5.1). R, is Cohen-Macaulay over C,.
We are going to prove the following

TueoreMm 3.3. If G is a finite subgroup of GL(n, K), then RS is a
Cohen-Macaulay C-module.

Proof. Because
€7 = KI@"MK)]>*5,

C¢ is a Cohen-Macaulay ring, by the fundamental theorem of Hochstar
and Roberts. Let (4, ---,6,) be a homogeneous system of parameters of
C¢. By a standard argument, we see that (4, ---, 6,) is a homogeneous
system of parameters for C,. By Le Bruyn’s theorem, R, is a Cohen-
Macaulay module over C,. Hence R,/@, ---,6,) is a finite dimensional
K-vector space. Since the group GXSL(2, K) is reductive, there exists
a Raynord’s operator

$: R,—> RS .
Let W= {feR,; f*=0}. Then W is an R%module and

R, = RE®W.
We choose a basis (f,, - - -, f.) of R,/(6,, ---,0,) so that (f, - - -, f,) is a basis
of R§/@,, ---,0,) and f,,,, - - -, f. is a basis of W/(@,, - --,0)W. Let f,, ---,f.
be representative in RS for f,, - - -, f., respectively. Then we have

R'th = ®1i‘=lfiK[0h R} 0:] .

This completes the proof.
For a Young diagram 2 (possibly 2 = ¢) of length < 1 and a Young
diagram p, we define an integer x(u, ) e {— 1,0, 1} as follows:
(1) i<t swy={g Dt
(2) if I{g) > 1 and p has no skew-hook of length 2I(x) — 3 through
the node (I(y), 1), then (g, 2) =0,
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(3) if I(x) > 1 and p has a skew-hook A of length 2(x) — 3 through
the node (I(w), 1), then r(y, 2) = (— 1)*®k(u\h, 2), where o(h)
denotes the leg length of A.
Let G be a finite subgroup of GL(n, K). In the commutative case,
the Poincare series of the invariant ring K[x,, - - -, x,]¢ is given by Molien’s
classical formula

1 1
P(E[x, - 210 = = Tyt
e Te TR T ey

The invariant ring RS is an N-graded ring by giving each X, degree 1.
We consider the Poincare series of RS:

P(Rg7 t) = ZTGNdimK(Rg)rlT .

THEOREM 3.4. Let G be a finite subgroup of GL(n, K). Then the
Poincare series of the invariant ring RS is given by

s 1 (s @) + £ D) Tr(oE)
PO D) = g7 Zeee 2o 400, = oon@) )

where N = n(n + 1)/2, p is over all the partitions of length < n and p,
denotes the irreducible representation of GL(n, K) corresponding to p.

b

Proof. We denote by R the K-vector space of polynomial concomi-
tants:

fr @*"M(K) —> My(K) .
Since My(K) = M(K)® K-1,, we have a direct decomposition
R,=R.®C,.

We can make R, an N"-graded ring by giving each X, degree ¢, e N*,
and consider the Poincare series

P(R'm by oy + v s t'n) = Zdest dimK(Rn)Qt;il- . 'tﬁ"

of R, in this multi-gradation.

In general, let G be a group and let V and W be G-modules of finite
rank. G acts on ®@"V, ne N, diagonaly. We denote by K[®"V, W]¢ the
K-vector space of G-equivariant polynomial maps

f: &*V—W.
Let M (= K® be the standard SO(3, K)-module. Because SL(2, K)

https://doi.org/10.1017/5002776300000338X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300000338X

32 YASUO TERANISHI

and SO(3, K) are isogenous, we have

R, = K[®"M3(K), MyK)]s**%
= K[@"M}(K), M(K)]**®® + K[@"M3(K)]**®*
= K[@®*M, M]5°®50 @ K[@"M]s°&5

Then by Theorem 5.3 [Te3], we obtain

PRty - 1) = 5, K d) + £ D)s,(b, -, L)
' * ZP ”151,/sn(1 - tttj)
where p is over all the partition of length < n.

Let, in general, V be a finite dimensional K-vector space and G a
finite subgroup of GL(V). If M is a GL(V)-module of finite rank, we

denote by M¢ the fixed subspace of M under the action of G. Then we
have

b

dim, M9 = TC% Speo Tr(M, g)

where Tr(M, g) denotes the trace of g as a linear operator on M.
Therefore

1 (K([l, ¢) + k(#s D)S (tl' ° 'tn)
PRE t) = —— n “ get
( ) IGI ZEGG Zl(l‘)S HlSi’jS"(l _ titjtz)

t, ---,t, are eigenvalues of g)

_ 1 (st ) + 5t DTx(o,(8) g
|G| 2iss0 Zirioss det(ly — po(8)?) t

This completes the proof.
By a result of L.Le Bruyn ([L] Chap. 4), the Poincare series of R,
satisfies the functional equation

PR, 1/t) = (— )" "¢"P(R,, 1), n>3.

It follows from Theorem 3.5 with an easy verification that the Poincare
series of the invariant ring R¢ satisfies the same functional equation as
P(R,, 1), if G is a finite subgroup of SL(n, K).

Prorosition 38.1. If G is a finite subgroup of SL(n, K), then the
Poincare series of RS satisfies the functional equation
(= Dre"P(RS, 8, if n>3

P(RS, 1/t) = { — ¢P(RS, 1), ifn=2.
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The following theorem is a generalization of [L] (Chap. 3, Theorem 4.2).

THEOREM 3.6. Let G be a finite subgroup of SL(n, K). Then the
invariant ring RS (n > 2) has finite global dimension if and only if n <3
and G = {e}.

Proof. By [L] (Chap. 3. Theorem 4.2), R, has finite global dimension
if and only if n < 3. Hence it is enough to prove the “only if” part.
Suppose that the invariant ring RS has finite global dimension. Then its
Poincase series P(RS,t) has the form

L
@’

for some monic polynomial with integer coefficients (cf. [L], p. 87). Since
R¢ is a Cohen-Macaulay module over C¢%, the Poincare series has the form

F()
(1 . t‘“)(l — taz). . (1 — tar)

P(R}, ) =

P(RZ, 1) =

b

where F(f) is a monic polynomial with no-negative integer coefficients
and «,, ---, @, are some positive integers. Therefore f(f) is product of
some cyclotomic polynomials. By the functional equation, we see that

3n, if n>3

deg /(1) = {4 ifn=2

If n>3, then one sees easily that P(RS,f) has a pole of order
3n — 3 at £t = 1 and hence f(¢) has the form

f@=0-—29"@,

for some g(f) e Z[t] of degree 3 with g(f) = 0. Moreover, since g(f) is
product of cyclotomic polynomials, one sees that

g®=1+¢ A+DQxt+8B), or 1+ 8.

This implies that 3n — 6 < dimg(RS),, (RS), is the vector space of in-
variants of degree one. Since, clearly, dim (RS) < n, we have n < 3. If
n = 3, we have dimg(RS), = dim,(R,), = 3, and hence G ={e}. If n =2,
by the same argument as before, we find that

fOO=Q0Q—-8a+9.
This implies, dimg(Rf), = dimg(R,), = 2, and hence G = {e}.
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