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Abstract. Moduli spaces of pointed curves with some level structure are studied. We prove that for
so-called geometric level structures, the levels encountered in the boundary are smooth if the ambient
variety is smooth, and in some cases we can describe them explicitly. The smoothness implies that
the moduli space of pointed curves (over any field) admits a smooth finite Galois cover. Finally, we
prove that some of these moduli spaces are simply connected.
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1. Level Structures overMg,n

In this first section we give a preliminary exposition of the theory of level structures
overMg,n, the coarse moduli scheme for smooth curves withn distinct marked
points, from a stack (orbifold) theoretical point of view. So letMg,n be the corres-
ponding stack (orbifold), andMg,n its Knudsen’s compactification. In the sequel
we will actually switch very often between algebraic (stacks’) and analytic (or-
bifolds’) formalism, according to our necessities. We will abuse notation in that
the symbolsMg,n, Mg,n, etc., will mostly denote stacks over the field of complex
numbersC, but sometimes (in Proposition 2.6 notably) they denote stacks over
Spec(Z).

Given a closed compact oriented surfaceSg,n with n distinct points removed,
the Teichmüller group0g,n is usually defined as the group of isotopy classes of
orientation preserving homeomorphisms which fix the punctures pointwise. We
will use the following algebraic characterization. Let5g,n be a group abstractly
isomorphic to the fundamental group ofSg,n, so its standard presentation is

5g,n
∼= 〈α±1, . . . , α±g, δ1, . . . , δn|δn · · · δ1[α1, α−1] · · · [αg, α−g]〉.

LetA(g, n) be the group of automorphisms of5g,n which fix the conjugacy class
of every δi and induce the identity onH2(5g,0,Z) (actually this last condition
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172 M. BOGGI AND M. PIKAART

is needed only for then = 0 case). We will refer to its elements asgeometric
automorphismsof 5g,n. The inner automorphismsI (g, n) of 5g,n clearly form a
normal subgroup ofA(g, n). It is well known (in casen = 0 it is a classical result
due to Nielsen) that there is a canonical isomorphism

0g,n ∼= A(g, n)/I (g, n).
In Teichmüller theory alevel structureλ is a normal subgroup0λg,n of 0g,n of

finite index. The quotientMλ
g,n := Tg,n/0

λ
g,n is a (finite) Galois cover ofMg,n,

which is algebraic by the generalized Riemann existence theorem. If0λg,n acts
freely onTg,n, the levelλ is said to befine, since in that caseMλ

g,n represents a
moduli functor for pointed curves with some extra structure. The levelλ is said
to begeometricif there exists an invariant subgroup (which means stable by geo-
metric automorphism of the fundamental group)Kλ of 5g,n, such that0λg,n is the
kernel of the natural representation0g,n→ Out(5g,n/K

λ).
It can be enlightening to rephrase the above definitions in terms of orbifolds.

The fundamental group and orbifold universal cover in the category of orbifolds
share properties similar to those in the case of manifolds. In our case we can
rephrase part of Teichmüller theory by saying that the universal cover ofMg,n

is represented by a smooth analytic spaceTg,n and that the group of deck trans-
formations for the coverTg,n → Mg,n equals the group0g,n = π1(Mg,n, a).
Furthermore,Mg,n is the orbifold quotient ofTg,n by the action of0g,n and so
it is an analytic orbifold.

In this setting a level structure is just a (finite) étale Galois cover of the smooth
analytic orbifoldMg,n

Mλ
g,n

π- Mg,n

and it is ‘fine’ when it is represented by an analytic varietyMλ
g,n.

We say that the level structureλ2 dominates the level structureλ1 (the notation
is λ2 > λ1) whenMλ2

g,n is an étale cover ofMλ1
g,n. This is clearly equivalent to

0λ2
g,n 6 0λ1

g,n, therefore the set of level structure with the relation of domination is a
lattice equivalent to the lattice of finite index normal subgroups of0g,n.

As we mentioned above, the stackMg,n has been given a canonical compacti-
ficationMg,n by Deligne, Mumford and Knudsen. A nice way to restate a classical
result of Teichmüller theory is then the following.

PROPOSITION 1.1.The stack(orbifold) Mg,n is simply connected.

Proof. We will prove thatMg,n has only trivial étale covers. LetX
π- Mg,n

be an étale cover, then the suborbifoldU = π−1(Mg,n) hasTg,n as universal cover.
By general theory we know that a local chart forX is completely determined by
the monodromy representation

π1(B
3g−3+n\1)→ 0g,n/π1(U),
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whereC → B3g−3+n is a modular family ofn-pointed stable curves, giving a local
chartB3g−3+n → Mg,n for the orbifold, and1 is the locus inB corresponding to
singular curves. For every[C] ∈Mg,n we can takeB ⊃ [C] so small that[C] is the
most degenerate curve in the familyC→B. The monodromy representation sends
a standard generator ofπ1(B\1), given by a simple loop around the irreducible
component of1 corresponding to a certain singularity onC, to the Dehn twist
along the corresponding vanishing cycle onC.

The mapπ is étale if and only if this representation is trivial for every possible
B and in that case every Dehn twist is inπ1(U). We have thatπ1(U) = 0g,n since
the Teichmüller group is generated by Dehn twists. So the group0g,n/π1(U) is
trivial and therefore every étale cover ofMg,n is trivial.

COROLLARY 1.2.The schemeMg,n is simply connected.
Proof. The natural map of orbifoldsMg,n → Mg,n, induces a surjection on

fundamental groups (indeed it is easy to see that every connected étale cover of
Mg,n can be pulled back to an étale connected cover ofMg,n). 2
Now we come to the definition of the compactified level structures. There is a
canonical way to compactify a level structureMλ

g,n overMg,n; namely we just take

the normalization of the proper stackMg,n in the function field of the stackMλ
g,n.

We thus obtain a proper stackMλ
g,n.

We say that the levelλ is an Abelian level if it is geometric with5g,n/K
λ

equal toH1(Sg,0,Z/ lZ). We will usually denote an Abelian level by(l) (hence the
corresponding normal subgroup by0(l)g,n and the variety byM(l)

g,n). If λ dominates an

abelian level(l), with l > 3, then bothMλ
g,n andMλ

g,n are known to be represented
by a scheme (for the latter, see [2]). We will assume that this is the case throughout
the whole paper, and we will use the same notation for both stack and variety.

We know that the universal curveCg,n → Mg,n is isomorphic toMg,n+1, and
from the universal property of the fiber product it follows easily that the universal
curve for the levelλ overMλ

g,n, which is just the pull-back ofCg,n, is isomorphic
to Mλ

g,n+1. We can actually prove more.

PROPOSITION 1.3.The pull back onMλ
g,n of the universal curve overMg,n is

canonically isomorphic toMλ
g,n+1.

Proof. We first prove that the pull backCλ
g,n of the stable curveMg,n+1→Mg,n

on Mλ
g,n is normal. OverMλ

g,n, the pull-back ofMg,n+1 is clearly smooth. The
completion of a local ring at a closed point of the boundary is either isomorphic to

ÔMλ
g,n,p
[[x]] or to ÔMλ

g,n,p
[[x, y]]/xy − tn,

wheret is a regular element in̂OMλ
g,n,p

. In both cases it is normal becauseÔMλ
g,n,p

is normal.
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From this description we also see thatCλ
g,n is smooth in codimension one. Now

we want to apply Serre’s criterion for normality (see [4], Chapter IV, Section 5.8).
We only have to verify thatCλ

g,n satisfies propertyS2 of Serre. By Remark 6.4.3 in
Chapter IV of [4], it is enough to verify this property on the completed local rings,
in which case it is satisfied because they are normal.

By the universal property of the normalization we can conclude that we have a
finite map

Mg,n+1×Mg,n
Mλ

g,n→Mλ
g,n+1.

By a previous remark we know that this map is also birational, hence it is an
isomorphism. 2
E. Looijenga has proved the existence of level structures overMg such that their
compactification is a smooth variety (see [13]), and other levels with a similar prop-
erty have been defined by M. Pikaart and A. J. De Jong (see [18]). The following
proposition shows that the stable curve one has over such a smooth covering does
not yield a smooth covering ofMλ

g,1.

PROPOSITION. 1.4.The stable curveMλ
g,n+1 overMλ

g,n is singular for any level

λ defined onMg,n.
Proof. For every proper subgroup0λg,n < 0g,n we can find a Dehn twistτγ

which does not belong to0λg,n. We consider a neighbourhood inMλ
g,n of [C] where

C has one singularity such thatγ is a vanishing cycle. A local chartU around[C]
will be given by the ramified cover

U → B3g−3+n,
t 7→ tm.

HereB is the base of the universal deformation ofC, andm is the smallest natural
number such thatτmγ ∈ 0λg,n.

The pull-back overU of the local equationxy = t for the singularity in the
special fiber overB, is thenxy = tm, yielding a singularity forMλ

g,n+1. 2
2. The Deligne–Mumford Boundary of Geometric Level Structures

A description of the boundary for the stack ofn-pointed stable curvesMg,n was
given by Knudsen in [11, II, Sec. 3]. In this section we will give an analogous
one for the boundary of geometric level structures (i.e. corresponding to geometric
subgroups of the Teichmüller group).

Let us recall Knudsen’s results. LetH = {h1, h2, ..., hn1} andK = {k1, k2, ...,

kn2} be complementary subsets of{1,2, ..., n} of cardinalityn1 andn2, respectively.
Letg1 andg2 be nonnegative integers withg = g1+g2 and satisfying the condition
thatni > 2 if gi = 0. There are finite morphisms

β0: Mg−1,n+2→Mg,n
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and

βg1,g2,H,K : Mg1,n1+1×Mg2,n2+1→Mg,n.

These two maps can be described as follows. If[C] is a point ofMg−1,n1+1, then
β0([C]) is the class of the curve obtained by identifying the labeled pointsPn+1 and
Pn+2 ofC to a node. Similarly, if([C1], [C2]) is a point ofMg1,n1+1×Mg2,n2+1, then
βg1,g2,H,K([C1], [C2]) is the class of the curve obtained fromC1qC2 by identifying
the pointsPn1+1 ∈ C1 andPn2+1 ∈ C2 to a node.

These maps define closed substacksB0
g,n andBg1,g2,H,K of Mg,n, which are

irreducible components of the boundary, and all the irreducible components of the
boundary can be obtained in this way. In generalβ0 andβg1,g2,H,K are not embed-
dings. This can be seen as follows. Each irreducible component of the boundary
corresponds in a unique way to a certain kind of singularity on a curve of genus
g. The fact that on the same curve we can have several singularities of the same
type translates into the statement that the corresponding irreducible component
of the boundary has self-intersection. Moreover, the mapβ0 and, forn = 0 and
g1 = g2 = g/2, the mapβg/2,g/2 factorize over the projection to the quotient
Mg−1,n+2/S2, respectively,S2(Mg/2,1). In the first case the symmetric group acts
by permuting the two last labeled points on the curve and in the second by permut-
ing the two components of genusg/2.

Let us consider more closely the preimages of these boundary divisors in the
coveringsMλ

g,n. In the cases we are considering we have a Galois morphismMλ
g,n

π- Mg,n which ramifies only over the Deligne–Mumford boundary ofMg,n.
Purity of branch locus (see [20] Theorem 3.1) tells us that the ramification locus
must be a union of irreducible boundary components. This means that the re-
striction ofπ to each open stratum ofMλ

g,n is étale. Here we are referring to the
natural stratification of the Deligne–Mumford compactification. Thus in the square
diagrams

X0
π ′ - Mg−1,n+2 X1

π ′ - Mg1,n1+1×Mg2,n2+1

,

Mλ
g,n

?
β ′0

π - Mg,n

?
β0

Mλ
g,n

?
β ′g1,g2

π - Mg,n

?
βg1,g2

whereX0 andX1 are connected components of the fiber products, the mapsπ ′ are
Galois étale morphisms.

Differently from β0 andβg1,g2, the morphismsβ ′0 andβ ′g1,g2
are isomorphisms

onto their images as soon as the levelλ dominates an Abelian level. To show this
we have to prove that the action ofS2 onβ ′0(X0) andβ ′g/2,g/2(X1) is not trivial.

This is clear for a point[C] ∈ β ′g/2,g/2(X1), because the action induced by
permuting the two genusg/2 components ofC always moves some nontrivial cycle
in the homology ofC, thus it cannot leave[C] fixed.
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For [C] ∈ β ′0(X0), the action, which is induced by permutation of the two
distinguished points on the normalizationC̃ of C, topologically is given by half a
Dehn twist along a simple closed curveβ bounding the two distinguished points.
Its action on the homology ofC is that of reversing the orientation of the cycle
supported on the pinched genus 0 surface bounded byβ, so it is never trivial if the
homology is taken at least with coefficients inZ/mZ with m > 3.

We can now prove

PROPOSITION 2.1.Let λ be a level structure overMg,n such that its compacti-
ficationMλ

g,n is smooth, then an irreducible component of the boundary does not
have self-intersection, hence it is smooth.

Proof. From the local monodromy description of the smooth Galois cover
Mλ
g,n → Mg,n, we know that the Deligne–Mumford boundary ofMλ

g,n is a di-
visor with normal crossings, hence it suffices to prove that there are no irreducible
boundary components with self-intersection.

Suppose there is an irreducible boundary divisorD with self intersection. Take a
small neighbourhoodU ofD and a pointx inU\D. Then the fibre overx admits (at
least) two models(S, x1, . . . , xn, γ1) and(S, x1, . . . , xn, γ2), where(S, x1, . . . , xn)

represents the smoothn-pointed curvex, and theγi are simple closed nonisotopic
curves onS\x1, . . . , xn which we can and will choose disjoint. The hypotheses
imply the existence of an elementf in 0λg,n such thatf (γ1) = γ2.

Let us consider first the case in which theγi are nonseparating simple closed
curves;γ1 = f (γ2) implies τγ1 = τf (γ2) = f · τγ2 · f −1, and henceτγ1 · τ−1

γ2
∈

0λg,n. But for nonseparating curves we know thatτ kγi ∈ 0λg,n only for |k| at least

2 (see Proposition 1.1). This relation yields a singularity in each point ofMλ
g,n

corresponding to a singular curve for whichγ1 andγ2 are vanishing loops.
It remains to rule out the case in which theγi are separating loops. LetSi and

S ′i be the connected components ofS\γi , such thatSi has least genus. We have that
f (S1) = S2, maybe upon interchangingS2 andS ′2 in case they have equal genus.
Now f maps a nonseparating curve inS1 to a nonseparating curve inS2, and by
the above argument this yields a singularity. 2
A consequence of the previous proposition is the following.

PROPOSITION 2.2.Letλ be as in Proposition2.1, then every irreducible bound-

ary component ofMλ
g,n, lying overMg−1,n+2→ Mg,n, is isomorphic toMλ0

g−1,n+2,
for some levelλ0 with smooth compactification.

Proof. LetX be an irreducible component of the boundary ofMλ
g,n, lying over

Mg−1,n+2 → Mg,n. We know that the dense open stratumX0 of X is an étale
Galois cover ofMg−1,n+2 and, hence, by definitionX0 is isomorphic toMλ0

g−1,n+2,
for some levelλ0. From the previous proposition we know thatX is a smooth
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compactification ofMλ0
g−1,n+2. Furthermore, it is finite overMg−1,n+2. HenceX is

isomorphic to the normalization ofMg−1,n+2 in the function field ofMλ0
g−1,n+2. 2

In case the levelλ is geometric, we are able to give a simple complete description
of the irreducible components of the boundary lying over the divisors inMg,n

parametrizing reducible curves.

THEOREM 2.3.Letλ be a geometric level structure overMg,n with smooth com-
pactification. LetX, respectivelyX0, denote the closed, respectively open, stratum
in Mg,n lying aboveMg1,n1+1 ×Mg2,n2+1. ThenX0 is canonically isomorphic to
Mλ1

g1,n1+1 ×Mλ2
g2,n2+1, whereλ1 andλ2 are geometric levels naturally induced by

λ. Furthermore, its closureX is smooth and canonically isomorphic toMλ1
g1,n1+1×

Mλ2
g2,n2+1.
Proof. As in the previous proof, we have thatX0 is an étale Galois cover of

Mg1,n1+1×Mg2,n2+1, henceπ1(X
0, P ) is a normal subgroup of0g1,n1+1×0g2,n2+1,

so we have to prove that if(a1, a2) ∈ π1(X
0, P ), then(a1,1) and(1, a1) are already

in π1(X
0, P ).

By assumption,Mλ
g,n is smooth in an analytic neighbourhood ofX0, thus, ifα

is a loop inX0 whose class is(a1, a2) in π1(X
0, P ), we can lift it along the normal

line bundleN
X0/Mλ

g,n
to a loopα̃ in Mλ

g,n.

We choose aλ-Teichmüller structure for the universal curveCλ
g,n → Mλ

g,n, i.e.
a 0λg,n orbit of Teichmüller markings, and we denote the corresponding marked
Riemann surface bySg,n.

If γ is a vanishing loop onSg,n corresponding to the specialization to[C] ∈ X0,
we denote the two connected component ofSg,n\γ by S1 and S2 (cf. the proof
of Proposition 2.1). LetC1 andC2 be the two corresponding irreducible com-
ponents ofC, and choose markings onTg1,n1+1 andTg2,n2+1 compatible with this
correspondence.

Deformation theory tells us that the complex analytic deformation of the curve
C along the normal direction atX0 is given by the smoothing of the singular point
of C, and that it is trivial outside a small neighbourhood of the singularity. On the
other hand we can assume the deformation ofC alongα trivial inside the same
small neighbourhood.

Thus the lifting ofα̃ to Tg,n can be represented in0g,n as a product̃a1 · ã2 of two
homeomorphisms supported respectively onS1 andS2 and trivial inside a small
neighbourhood ofγ , such that they project toa1 anda2 in π1(X

0). We are reduced
then to prove that either̃a1 or ã2 (and hence both) project to the identity onπ1(X

0),
which in turn is equivalent to show thatã1 is in the same class as some power ofτγ
in 0g,n/0λg,n.

Here we come to the part of the proof in which we need the fact that our level is
geometric. We have chosenã1 · ã2 such that it fixes a neighbourhood ofγ in Sg,n,
so let us takep in S2 and inside such neighbourhood. By hypothesisã1 · ã2 acts
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on π1(Sg,n, p)/I like an inner automorphism. Let us take a set of generators for
π1(Sg,n, p) compatible with the decomposition ofSg,n in S1 andS2. The support of
ã1 is onS1, hence it acts trivially on the generators supported onS2. On the other
hand, modulo inner automorphisms,ã1 acts on the generators supported onS1 like
ã−1

2 , which is supported onS2, and hence it can act onS1 only like conjugation
by γ k, for somek. This proves that̃a1 ≡ τ kγ mod0λg,n for somek, which yields
(a1,1) ∈ π1(X

0), as it was to prove.
To conclude we have to describe explicitly the levelsλ1 andλ2 as geometric

level structures. Any geometric automorphism ofπ1(Si) can be lifted to a geomet-
ric automorphism ofπ1(Sg,n), thus Ii := 5gi,ni+1∩ I , i = 1,2, is an invariant
subgroup of5gi,ni+1, and it is clear thata ∈ 0λig,n, i = 1,2, if and only ifa acts on
5gi,ni+1/Ii, i = 1,2, like an inner automorphism. Therefore, the levelsλi, i = 1,2,
are the geometric levels defined byIi, i = 1,2. 2

Now we will describe some explicit geometric level structures which yield regu-
lar coverings ofMg,n. Let (S, x1, . . . , xn) be a punctured surface of genusg and let
5g,n be a group abstractly isomorphic to the fundamental group ofS\{x1, . . . , xn}.
So we have a presentation

5g,n
∼= 〈α±1, . . . , α±g, δ1, . . . , δn|δn · · · δ1[α1, α−1] · · · [αg, α−g]〉.

We write5g if n = 0. Let5[k]g,n be thekth term in the lower central series, i.e.

5[1]g,n := 5g,n, 5[k+1]
g,n := [5g,n,5

[k]
g,n].

We have that[5[k]g,n,5[l]g,n] ⊂ 5[k+l]g,n and this implies that the associated graded
Abelian group Gr(5g,n) := ⊕k>15

[k]
g,n/5

[k+1]
g,n carries the natural structure of a Lie

algebra. The Lie bracket is induced by the commutator bracket.
Suppose for a moment thatn = 0 and writeLk for the quotient5[k]g /5[k+1]

g . No-
tice thatL1 is nothing else thanH1(S,Z). It is proven in [12, Thm.] that the Lie al-
gebraL• is freely generated overZ byL1 with the unique relation

∑g

i=1[ai, a−i] =
0, wherea±i is the image ofα±i in L1. Writeω for the intersection form

∑g

i=1 ai ∧
a−i , then there are exact sequences describingL2 andL3

0→ Z → L1 ∧ L1 [ , ]- L2→ 0,

where 1 is mapped to the intersection formω ∈ L1 ∧ L1, and

0→ ∧3L1 i- L1⊗ L2 [ , ]- L3→ 0,

wherei(a ∧ b ∧ c) = a ⊗ [b, c] + b ⊗ [c, a] + c⊗ [a, b].
In casen > 1 we need a finer filtration if we insist on the property that the asso-

ciated graded be determined by the first homology of the curve. First we introduce
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the weight filtration, defined as follows. Consider the surjective homomorphism
5g,n→ 5g obtained by filling in the punctures; writeN for its kernel. Define

W 15g,n := 5g,n,

W 25g,n := N ·5[2]g,n,
Wk+15g,n := [5g,n,W

k5g,n] · [N,Wk−15g,n].
In terms of a standard presentation as above

5g,n
∼= 〈α±1, . . . α±g, δ1, . . . , δn|δn · · · δ1[α1, α−1] · · · [αg, α−g]〉,

we have assigned weight 1 to theα±i and weight 2 to theδj . We clearly have
Wk5g,n ⊃ 5[k]g,n ⊃ W 2k−15g,n. PutV n(k)5g,n := 5[k]g,n, wheren(k) := 1+ 2+
· · · + k = k(k + 1)/2 and putV n(k)+l5g,n := (5[k]g,n∩Wk+l5g,n) · 5[k+1]

g,n for
l ∈ {0, . . . , k}. ThusV k5g,n is the lift of the induced weight filtration on the
quotients5[k]g,n/5[k+1]

g,n ; notice that there arek + 1 graded sub-quotients.
Notice thatV n(k)+l5g,n = V n(k+1)5g,n if n = 1 and 16 l 6 k. We write

M• for the associated graded of the filtrationV ∗5g,n. For the convenience of the
reader, we list the first few terms of the filtrationV ∗.

5g,n⊃W 25g,n ⊃ 5[2]g,n ⊃W 35g,n ⊃ W 45g,n ·5[3]g,n ⊃ 5[3]g,n ⊃W 45g,n

V 1

www
⊃V 25g,n

www
⊃ V 35g,n

www
⊃V 45g,n

www
⊃ V 55g,n

www
⊃ V 65g,n

www
⊃V 75g,n.

www
As in the case without punctures, we have that[V k5g,n, V

l5g,n] ⊂ V k+l5g,n,
so thatM• is again a Lie algebra. It is generated overZ by a±i for i = 1 to g in
degree 1 anddj for j = 1 to n in degree 2 (where thedj are the images of theδj
in M2) with the unique relation

g∑
i=1

[ai, a−i] +
n∑
j=1

dj ,

see [12, Thm.]. Filling in the punctures provides us with canonical isomorphisms
M1 ∼= L1 andM2 ∼= Ker(H1(C\{x1, . . . , xn},Z) → H1(C,Z)). Notice thatM1

andM2 induce onH1(C\{x1, . . . , xn},Z) its weight filtration, which implies that
also in this case the associated graded is determined by the homology provided
it is equipped with its weight filtration. We have the following identifications,
which are easily proved using the rank formulas from [10, Prop. 1] and the obvious
surjections from the right-hand side onto the left-hand side

M1 ∼= L1 ∼= H1(C,Z),

M2 ∼= Ker(H1(C\{x1, . . . , xn},Z)→ L1),
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M3 ∼= L1 ∧ L1,

M4 ∼= L1⊗M2,

M5 ∼= M2 ∧M2,

M6 ∼= (L1⊗M3)/i(∧3L1),

Generators forM3, M4, M5 andM6 are, respectively,[a±i , a±j ], [a±i , dj ], [di, dj ]
and[a±i , [a±j , a±k]].

In order to obtain a filtration with finite quotients, we setV k,l5g,n := V k5g,n ·
5l
g,n, where5l

g,n means the subgroup of5g,n generated by alllth powers. We write
Mk,l for the quotientV k,l5g,n/V

k+1,l5g,n and ld for l/gcd(l, d). [18, Lem. 6.3]
implies immediately the following.

LEMMA 2.4. Notations as above. Then we have

M1,l ∼= L1/ lL1 ∼= H1(C,Z/ lZ),

M2,l ∼= M2/ lM2,

Mi,l ∼= Mi/l2M
i for i ∈ {3,4,5},

M6,l ∼= M6/A,

where the sublatticeA is given as follows. The quotientM6 is generated by ele-
ments[x, [y, z]], wherex, y and z can be taken from the set{a±i |i = 1, . . . , g}.
In fact, we obtain a basis if for every pair of distinct elements(x, y) we only
take, say,[x, [x, y]] and [y, [x, y]] and for every triple(x, y, z) of distinct ele-
ments, we only take, say,[x, [y, z]] and [y, [z, x]]. (This is the Jacobi relation.)
The submoduleA is generated by elements of the forml6[x, [x, y]], l6[y, [x, y]]
andn[x, [y, z]] +m[y, [z, x]] such thatl6|n,m and l2|n+m.

Finally, we note that whether an element of5g,n is in V k,l5g,n for k 6 7 can
be read off from the associated graded.

Another reason for which we need the weight filtration is that the lower central
series is notstrict. This can be seen as follows. Lete be a simple closed loop
dividing S into the connected componentsS1 andS2 such thatS1 has genush and
carriesm of then marked points. The inclusionS1 ↪→ S induces an inclusion of
fundamental groups

5h,m
∼= 〈{α±i}hi=1, {δj }mj=1ε|

m∏
j=1

δj

h∏
i=1

[αi, α−i]ε〉

5g,n

?∼= 〈{α±i}gi=1, {δj }nj=1|
n∏
j=1

δj

g∏
i=1

[αi, α−i]〉,
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which is not strict, i.e. it is not true in general that5h,m ∩5[k]g,n = 5[k]h,m. Consider

for example the casen = m > 0, thenε is contained in5[2]g,n but not in5[2]h,m (as
one easily sees, this is the only ‘obstruction’).

We want to prove that the first steps of the filtration are strict in some cases.

LEMMA 2.5. Notations as above. Letl be an integer at least3 and letk be an
element of{2, . . . ,7}. Then we have

5h,m ∩V 2,l5g,n = V 2,l5h,m,

5h,m ∩V 4,l5g,n = V 4,l5h,m if and only ifl odd orm = 0 or 0< m < n.

k 6= 2,4 : 5h,m ∩V k,l5g,n = V k,l5h,m, if and only ifm = 0 or 0< m < n,

Proof.The inclusions ‘⊃’ are trivial. The first equality follows directly from the
observation

5h,m/W
2,l5h,m

∼= H1(S1,Z/ lZ) ↪→ H1(S,Z/ lZ) ∼= 5g,n/W
2,l5g,n,

whereas equality in casek = 3 follows from the observation that the natural map

H1(S1\{x1, . . . , xm},Z/ lZ)→ H1(S\{x1, . . . , xn},Z/ lZ)

is injective if and only if eitherm = 0 or 0< m < n.
For the other equalities, notice that Lemma 2.4 applies to bothS andS1, so

that we only have to consider elements involvingε. These are the ‘only’ elements
whose behaviour with respect to the filtrationV k depends on the integersm andn.

First supposem = 0. Thenε ∈ V 35g,n andεd ∈ V i,l5g,n if and only if l2 | d,
for i ∈ {4,5,6,7}. The same holds for5h,m instead of5g,n.

Next suppose 0< m < n. Thenε is contained inV 25g,n but not inV 35g,n

andεd ∈ V i,l5g,n if and only if l|d, for i ∈ {4,5,6,7}. The same holds for5h,m

instead of5g,n.
Finally suppose 0< m = n. Thenε is contained inV 35g,n andV 25h,m but

not inV 35h,m and we use the lines above.
This finishes the casek = 4; for the casesk = 5,6 andk = 7 we still need to

consider the elements[α±i , ε] and[δj , ε].
If m = 0, then[αi, ε] ∈ V 65g,n and if 0< m < n, then[αi, ε] is contained in

V 45g,n but not inV 55g,n. The same holds for5h,m instead of5g,n. If 0 < m = n
then[αi, ε] is contained inV 65g,n andV 45h,m but not inV 55h,m. It follows that
in casek = 5 or 6 and 0< m < n, we haveV k,l5g,n ∩5h,m 6= V k,l5h,m, since
[αi, ε] is contained in the left-hand side but not in the right-hand side.

Finally we consider the elements[δj , ε]. If m = 0, then[δj , ε] is not contained
in 5h,m at all. If 0< m < n, then[δj , ε] is contained inV 55g,n and inV 55h,m. If
0< m = n then[δj , ε] is contained inV 75g,n andV 55h,m but not inV 65h,m and
we conclude as above. This finishes the casesk = 5,6 or 7. 2

https://doi.org/10.1023/A:1001731524036 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001731524036


182 M. BOGGI AND M. PIKAART

Let0g,n be the Teichmüller group of(S, x1, . . . , xn), as defined in the introduction.
We have the injective homomorphism

0g,n→ Out+(5g,n),

whose image can be described as the subgroup of Out+(5g,n)which sends everyδj
to a conjugate ofδj , and Out+(5g,n) is the index 2 subgroup of Out(5g,n) inducing
the identity onH2(S). It is clear that the subgroupsV k5g,n are geometric (but not
characteristic ifn > 2). The corresponding geometric subgroup of0g,n will be
denoted by

0k,lg,n := Ker(0g,n→ Out(5g,n/V
k,l5g,n)).

If n = 0, we dropn from the notation. Denote byMk,l
g,n the moduli stack of curves

with the geometric level structure defined byG = 5g,n/V
k,l5g,n. Proceeding as in

[3] or in [18], it is not difficult to see that it is actually defined over Spec(Z[1/#G]).
It is representable over an algebraic closed field ifk > 2 andl > 3. Let us observe
that the levels02,l

g,n are just the Abelian levels0(l)g,n, defined in Section 1.
From Theorem 2.1 and the previous lemma it follows.

PROPOSITION 2.6.If and l > 3, then the structural morphismMk,l
g,n →

Spec(Z[1/ l]) is smooth if

• k = 3,5,6 or 7, l is odd andn = 1;
• k = 4 and l is odd;
• g = 2.

Furthermore the geometric levels which arise in the boundary components of re-
ducible curves are of the same type.

Proof. To prove that the complex algebraic varietyMk,l
g,n is smooth, we have only

to apply Lemma 2.5 to the smooth geometric levels onMg defined in [18], and then
successively to the ones generated in the boundary of them. By [18, Prop. 2.3.6],
we can then conclude that the same statement holds for the corresponding stack
over Spec(Z[1/ l]). 2

Remark2.7. In casek = 3,5,6 or 7 we need the restriction to the casen 6 1
since the induction, mentioned in the above proof, does not work. Namely, one
starts withn = 0, this inducesm = 0. Then we have proven the casen = 1. In the
next stepm can be either 0 or 1. In the first case we get nothing new, in the second
case we havem = n so our argument does not apply (cf. Lemma 2.5).

This in particular extends the theorem of Looijenga on the existence of smooth
Galois covers forMg (see [13]) to then-pointed case.

An explicit description of the monodromy along the boundary ofM
k,l
g,n, in case

it is smooth, can be deduced from the one given forM
k,l
g in [18, Thm. 3.1.3].
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To fix notations, let us recall how the monodromy representation is defined.
Let (C, x1, . . . , xn) be a complex stablen-pointed curve of genusg with singular
pointsP1, . . . , Ps . Let 0 = 0(C) be its dual graph; an edge for each pointPj ,
a vertex for an irreducible component ofC. Let π : (C, C) → (B,0) be a local
universal deformation ofC, whereB ⊂ C3g−3+n is a polydisc neighbourhood of
0. The coordinateszi are chosen such thatzj = 0, 16 j 6 s parametrizes curves
where the singular pointPj subsists. The discriminant locus1 ⊂ B of π is thus
given byz1 . . . zs = 0. PutU = B\1, let x ∈ U and choosey ∈ Cx = π−1(x).
The fundamental group ofU is an Abelian group, freely generated by simple loops
around the divisorszj = 0, thus naturally isomorphic to the free Abelian group
on the edges of0, i.e., π1(U, x) ∼= ⊕

e∈Edges(0) Ze. This provides us with the
monodromy representation

ρ:π1(U, x)→ Out(π1(Cx\{x1, . . . , xn}, y)).

The pointsPj determine nontrivial distinct isotopy classes of circles onCx\
x1, . . . , xn, which have pairwise disjoint representativescj .

In particular we get an induced representation in the automorphism group, mod-
ulo inner automorphisms, of the quotient of the fundamental group by the invariant
subgroup defining the level. As we saw in Section 2 this representation is equiv-
alent to the explicit description of a small neighbourhood of a pointP ∈ Mλ

g,n

as a Galois cover of a neighbourhood of the point[C] ∈ Mg,n. More precisely
(ρ−1(0λg,n)) = l1·Z⊕l2·Z⊕ · · · ⊕ls ·Z if and only if the Galois coverMλ

g,n→Mg,n

is locally equivalent, in the aforementioned neighbourhoods, to the cover of poly-
discs

B3g−3+n→ B3g−3+n,
(z1, . . . , z3g−3+n) 7→ (z

l1
1 , . . . , z

ls
s , zs+1, . . . , z3g−3+n).

We want to obtain the coefficients of the monodromy at a pointP ′ ∈ Mλ1
g′,n+1

from those atP ∈Mλ
g,n.

In order to do this we assume for simplicity thatC is union of two components
C1 andC2, with C1 of genusg′, C2 smooth of genusg′′, andg′ + g′′ = g. The
point P ′ will then be lying over[C1] ∈ Mg′,n+1. We assume furthermore that
z1 = 0 is a local equation for the divisorMg′,n+1 × Mg′′,1 ⊂ Mg,n, and that
the projectionMg′,n+1 ×Mg′′,1 → Mg′,n+1 is given in our local coordinates by
(0, z2, . . . , z3g−3+n) 7→ (z2, . . . , z3g′−3+n+2).

With these assumptions the Galois coverMλ1
g′,n+1→Mg′,n+1 will be equivalent,

near the pointsP ′ and[C1], to the cover of polydiscs

B3g′−3+n+1→ B3g′−3+n+1,

(z2, . . . , z3g′−3+n+2) 7→ (z
l2
2 , . . . , z

ls
s , . . . , z3g′−3+n+2),
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hence the kernel of the corresponding monodromy representation is

Kerρλ1
g′,n+1 = l2 · Z ⊕ · · · ⊕ ls · Z.

In particular it is clear now how to deduce the monodromy along the boundary

for Mk,l
g,n from the description of that ofM [k],lg given in Theorem 3.1.3 of [18]?,

using that the lower central series coincides with the weight filtration in the non-
pointed case. Let us keep the notations introduced at the beginning and let us
denote moreover byE(0) (respectivelyB(0)) the set of all edges (respectively
those corresponding to separating bounding simple closed curves) and byBun(0)

(respectivelyBun1 ) those elements ofB(0) which are unmarked (respectively un-
marked and of genus 1). As in [18] let us define, forn, l ∈ Z, nl = n/gcd(l, n).
We have then

PROPOSITION 2.8.The kernel of the local monodromy representation forM
k,l
g,n

over a neighbourhood of[C] ∈Mg,n is

If k = 4 and l is odd:
ρ−1(0k,lg,n) =

⊕
e∈E(0) l · Ze⊕

⊕
e∈B(0) Ze.

If k = 5 or 6, l is odd andn = 1 :
ρ−1(0k,lg,n) =

⊕
e∈E(0) l · Ze⊕

⊕
e∈Bun(0) Ze.

If k = 7, l is odd andn = 1 :
ρ−1(0k,lg,n) =

⊕
e∈E(0) l · Ze⊕

⊕
e∈Bun1 (0) l3Ze.

Remark2.9. In the casesk = 5 or 6 andl is odd, or in casek is at least 7 andl is

odd or divisible by 4, one can prove thatMk,l
g,n is nonsingular (see [19, Thm. 3.3.3]).

An easy consequence of the previous proposition (combined with the remark)
is the following.

COROLLARY 2.10.For every finite coverX of Mg,n(C) which is étale(in the
orbifold sense) overMg,n(C) there exists a finite smooth Galois cover ofMg,n(C)
dominatingX.

Proof. LetH be the subgroup of0g,n such that dividing out Teichmüller space
byH we obtainX ×Mg,n

Mg,n. By taking the intersection of all normal subgroups
containingH we may suppose thatH is normal (and still of finite index).

Let (Sg, x1, . . . , xn) be an oriented closedn-pointed surface of genusg and let
D0 be a Dehn twist around a nonseparating simple closed curve andDi,m, for i =
? [18, Sec. 5.1] contains a minor error: it is falsely claimed that there always exists a loopα

as described. However we can chooseα intersecting a minimal number (but at least one) of the
edges involved inσ , show that the edges ofσ it hits are linearly independent and span a primitive
submodule ofH1(S) and proceed as in [18, Sec. 5.1].
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1, . . . , [g/2] andm = 0, . . . , n be a Dehn twist around a simple closed curve which
separatesSg into two submanifolds of genusi andg − i carryingm, respectively,
n−m of the marked points. Letl0, respectively,li,m be the minimal positive integer
such thatH containsDl0

0 , respectively,Dli,m
i,m and setl equal to 12 times the lowest

common multiple ofl0 and allli,m. LetHl be the intersection ofH with 07,l
g,n, this

is again a normal subgroup of finite index contained inH .
We claim that, for any integerm and any Dehn twistτγ , the groupHl contains

τmγ , if and only if07,l
g,n containsτmγ . The ‘only if’ part is trivial sinceHl is contained

in 07,l
g,n. Let us prove the other implication. Proposition 3.5 tells us that07,l

g,n contains
τmγ only if eitherγ bounds an unmarked genus one surface andl/6 dividesm or γ
is a separating simple curve andl/2 dividesm or we are not in one of the above
two cases andl dividesm. In all these cases, we see thatτmγ is contained inHl as
well.

DefineXl to be the normalization ofMg,n in the function field of the quotient

of Teichmüller space byHl, thus it dominates bothX andM7,l
g . It follows from

the local monodromy description as explained in the paragraphs preceding Pro-
position 3.5 and from what we said above that all ramification indices along all

irreducible components of the boundary divisor ofXl coincide with those ofM7,l
g .

Thus the coveringXl → M
7,l
g is not only étale over the locus parametrizing smooth

curves but even generically étale over the boundary. Furthermore,Xl is normal by

definition andM7,l
g is smooth (by Proposition 3.4, sincel is divisible by 4), so

purity of branch locus (see [20, Thm. 3.1]) applies and tells us that this cover is
actually etale. ThusXl, being an étale cover of a smooth variety, is smooth.2

3. Simple Connectivity of Some Covers

Fix an oriented closed compact reference surfaceSg = Sg,0 and writeSg,1 for Sg
left out one point. The inclusionSg,1 ↪→ Sg induces an isomorphism on homology
H1(Sg,1,Z) ∼= H1(Sg,Z), so we will writeH for both of them. We will denote
by Dα the (say right-handed) Dehn twist around a simple closed curveα. We
will call a Dehn twistseparatingif α is a separating curve (so if we gaveα an
orientation, its homology class would be what was previously called a bridge). A
bounding pair mapis a homeomorphism ofSg of the formDαD

−1
β , whereα andβ

are disjoint homologous simple closed curves not in the same isotopy class (their
oriented homology classes form a cut pair). LetKg resp.Kg(l) be the subgroup of
the mapping class group0g generated by separating Dehn twists, resp., by these
and bylth powers of all Dehn twists. Let Torg,i be the Torelli group fori is 0 or
1, which, by Johnson’s work (see [7]), is known to be generated by bounding pair
maps. It clearly contains separating Dehn twists.

PROPOSITION 3.1.If g > 3, n > 0 the groups0(l)g,n are generated by lth powers
of Dehn twists around not separating closed curves and by bounding pair maps.
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Proof. Consider the following diagram, wherei is either 0 or 1.

0
(l)
g,i

- Ker(rl) - 1

1 - Torg,i - 0g,i

?
- Sp(H)

?
- 1

Sp(H1(Sg,0,Z/ lZ))
?
rl

By a result of Mennicke (see [15, 10 Satz]), the kernel of the morphism induced
by reduction modulol, Ker(rl: Aut(H) → Aut(H1(Sg,Z/ lZ))), is generated by
lth powers of symplectic transvections, i.e. by images oflth powers of Dehn twists.
Combined with Johnson’s result, this implies that0

(l)
g,i is generated by all bounding

pair maps and by alllth powers of Dehn twists. To extend the result to alln let us
just observe that the kernel of the natural map0(l)g,n+1 → 0(l)g,n is equal to that of
0g,n+1→ 0g,n, thus it is spanned by bounding pair maps. 2
PROPOSITION 3.2.The group0(l)2 equals06,l

2 and is generated by lth powers
of all Dehn twists and by separating Dehn twists. Forn > 1 the groups03,l

2,n are
generated by lth powers of Dehn twists, separating Dehn twists and bounding pair
maps.

Proof. Clearly we haveK2(l) ⊂ 0
6,l
2 ⊂ 0(l). Birman proved that the Torelli

group in genus 2 is normally generated by one separating Dehn twist, see [2,
Thm. 2]. Arguing as in the proof of the previous proposition, we obtain the desired
results. 2
PROPOSITION 3.3.For g > 2, l > 3, n > 0, andk an algebraically closed field

of characteristic not dividingl, the moduli spacesM(l)
g,n(k) are simply connected.

Proof.Clearly it is enough to prove the proposition over the complex numbers.
As we saw in Section 1,0(l)g,n is the fundamental group ofM(l)

g,n. Using the local
monodromy description, we can interpret the statements of Proposition 3.1 and
3.2 as saying that this fundamental group is generated by ‘small’ loops around the
divisor at infinity of the compactified variety. Indeedlth powers of Dehn twists
around not separating closed curves and Dehn twists around separating curves
correspond respectively to simple loops around branches of the divisor of singular

irreducible or singular reducible curves inM(l)
g,n, while bounding pair maps corres-

pond to simple loops around the loci where two branches, belonging to the same
irreducible component of the divisor of singular irreducible curves, meet.

This easily implies that these compactifications are simply connected. 2
PROPOSITION 3.4.If g > 3 and l odd, the groups06,l

g and06,l
g,1 are generated by

lth powers of all Dehn twists and by separating Dehn twists.
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Proof. We have to prove thatKg(l) = 06,l
g . The inclusionKg(l) ⊂ 06,l

g fol-
lows from [18, Sec. 4.1]. Thus we have0(l)g ⊃ 06,l

g · Torg ⊃ Kg(l) · Torg. So
by Proposition 3.1, we know that06,l

g · Torg equalsKg(l) · Torg. Thus it suf-
fices to prove that06,l

g ∩Torg equalsKg(l)∩Torg, because06,l
g /Kg(l) contains

(06,l
g ∩Torg)/(Kg(l)∩Torg) as a normal subgroup with quotient(06,l

g · Torg)/
(Kg(l) · Torg).

To prove that06,l
g ∩Torg ⊂ Kg(l)∩Torg, first note that both sides containKg,

so again using the trivial inclusion we only have to prove that(06,l
g ∩Torg)/Kg

equals(Kg(l)∩Torg)/Kg. Note that what we have said so far carries over word for
word to the pointed case, to which we switch for a moment.

We will make use of Johnson’s results. In [8, Thm. 1 and Sec. 6], he constructs
surjective homomorphisms

τg,1: Torg,1→
3∧
H.

Furthermore, in [9, Thm. 6] it is proved thatKg,1 equals the kernel ofτg,1.
Roughly,τg,1 is obtained as follows: ifψ = DαD

−1
β is a bounding pair map, then

ψ(x)x−1 ∈ π1(Sg,1)
[2] for any x ∈ π1(Sg,1). Consider the elementψ([α])[α]−1

modulo π1(Sg,1)
[3]. This yields Torg,1 → H ⊗ π1(Sg,1)

[2]/π1(Sg,1)
[3] ∼= H ⊗

∧2H . In [8, Sect. 4], Johnson shows that the image ofτg,1 is contained inside
the submodule∧3H of H ⊗∧2H and he gives an explicit formula forτg,1(ψ).

We claim that there exist(2g3 ) bounding pair mapsφi such that their images
underτg,1 generate∧3H . Actually, this is precisely what is stated in the first para-
graph of the proof of [8, Thm. 1], nl. a genus one bounding pair map is mapped
to a generator of a unimodular sublattice and the mapτg,1: Torg,1→ ∧3H(Sg,1) is
0g,1-invariant. Letφi, i ∈ I,#I = (

2g
3 ), be such a set and letψ be an element of

(0
6,l
g,1∩Torg)/Kg. We write it as

∏
i∈I φ

li
i . The assumptionψ ∈ 06,l

g,1 implies that
for anyx ∈ H , the elementψ(x)x−1 in π1(Sg,1)

[2]/π1(Sg,1)
[3] ∼= ∧2H is actually

in π1(Sg,1)
[3],l/π1(Sg,1)

[3].
To return to the nonpointed case, we have to replaceτg,1 by

τg: Torg →
3∧
H/([Sg] ∧H),

where[Sg] ∈ ∧2H is the fundamental class ofSg and the right-hand side is a free
Z-module of rank

(2g
3

)− 2g.
From [18, Lem. 6.3] it follows that ifl is odd,π1(Sg)

[3],l generates inside the
free moduleπ1(Sg)

[2]/π1(Sg)
[3] precisely the submodule generated by alll-fold

multiples of all elements; i.e.

π1(Sg)
[3],l/π1(Sg)

[3] ∼= l ·
2∧
H/[Sg].
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Thus the imageH ⊗ π1(Sg)
[3],l/π1(Sg)

[3] → ∧3H/([Sg] ∧ H) equalsl · ∧3H/

([Sg] ∧ H). ChooseJ ⊂ I such that theτg(φi), i ∈ J yield a basis of∧3H/

([Sg] ∧ H). The assertion that
∑

i∈I liτg,1(φi) is contained in the submodule
l · ∧3H/([Sg] ∧H) implies thatl|li for all i ∈ I .

Clearly the same reasoning carries over again to the pointed case, so that the
proposition follows.

THEOREM 3.5.For g > 2, l > 3 and odd, andk an algebraically closed field

of characteristic not dividingl, the moduli spacesM6,l
g (k) andM6,l

g,1(k) are simply
connected.

Proof.The theorem follows from the same kind of arguments used in the proof
of Proposition 4.3. 2
Ivanov asked whetherH1(0) = 0 for every finite index subgroup0 of 0g, at least
wheng is sufficiently large (see [6, Question 3.2]). We can now give an affirmative
answer to this question in case0 contains06,l

g for some oddl at least 3.

COROLLARY 3.6.If g > 3, l > 3 and odd, then every subgroup of0g containing
06,l has trivial first rational homology.

Proof. Let V0 be the normalization of the Satake compactification ofMg(C)

in the function field ofM6,l
g (C) and letf :M6,l

g → V0 be the induced birational
morphism. ThenV0 is projective and the codimension of the image of the boundary

of M6,l
g underf is at least 2. So [16, Thm. 3] yields that the first homology group

of M6,l
g is zero, so the same holds for any cover it dominates. 2

Remark3.7. In the proof of the above proposition, we needg > 3 to ensure
that the condition in Mumford’s theorem is fulfilled, nl. that the codimension of
the image of the boundary underf is at least 2. If the genus is two, the dimension
of M6,l

g is 3 and, by Theorem 2.3 there are two-dimensional boundary components

of the formM6,l
1,1×M6,l

1,1. Their images in the Satake compactification remain two-
dimensional.

COROLLARY 3.8.Wheng > 3, l > 3 and odd, the Picard group ofM6,l
g is finitely

generated.
Proof. This follows from Proposition 3.6 and [5, Thm. 6.3]. (Cf. [6, Ques-

tion 3.2]). 2
In Section 2 we saw that the boundary divisors ofM

6,l
g are smooth forl odd.

These divisors are themselves moduli of curves with level structure described in
Lemma 2.5. We can extend Theorem 3.5 to these moduli spaces.
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THEOREM 3.9.For n > 0 and l > 3, the projective varietyM6,l
g,n is smooth and

simply connected. Moreover, the natural morphismM6,l
g,n+1 → M

6,l
g,n is a stable

curve.
Proof.We will proceed by induction. The induction start is given by the simple

connectivity ofM6,l
g (Theorem 3.5).

So let us assume thatM6,l
g,n is simply connected. The first step consists of proving

the following lemma.

LEMMA 3.10. The natural morphismM6,l
g,n+1

p- M
6,l
g,n is a fibration in(connec-

ted) stable curves, which are smooth overM6,l
g,n.

Proof. We claim that the induced map on fundamental groupsp∗:06,l
g,n+1 →

06,l
g,n is surjective. To see this let us consider the level defined by the normal sub-

groupp∗(06,l
g,n+1) < 0g,n. To compute the ramification at infinity of the corres-

ponding Galois coverX→ Mg,n, we just remark thatf ∈ p∗(06,l
g,n+1) if and only

if there is a liftingf̃ in 0g,n+1 such thatf̃ ∈ 06,l
g,n+1.

Let [C] be a point ofMg,n for which we choose a representing marked Riemann
surface together with a set of disjoint closed curves such that contractings these
curves yields[C]. We use the notation of Section 2. We claim that the kernel of the
local monodromy representation forp∗(06,l

g,n+1) in a suitable neighbourhood of[C]
is given by⊕

e∈E(0)
l · Ze ⊕

⊕
e∈Bun(0)

Ze,

i.e. the same as that for06,l
g,n. This can be seen as follows. The inclusionp∗(06,l

g,n+1) <

06,l
g,n implies the corresponding inclusion for the kernels of the respective

monodromy representations. The reverse inclusion follows from the remark we
made at the beginning of the proof of this lemma and the local monodromy de-
scription for06,l

g,n+1 given in Proposition 2.8.

It follows thatX → M
6,l
g,n is an étale morphism. The simple connectivity of

M
6,l
g,n implies that this étale morphism is actually an isomorphism and thereforep∗

is surjective.
Let us now consider the Stein factorization ofp

M
6,l
g,n+1

p′→ Y
f→ M

6,l
g,n,

wherep′ has connected fibers andf is finite. We have to show thatf is an
isomorphism. PutY := f −1(M6,l

g,n).
Consider the factorization

M
6,l
g,n+1

h- C6,l
g,n

π- M6,l
g,n,
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whereC6,l
g,n is the universal curve overM6,l

g,n. We know thatπ is smooth andh

is étale, sop restricted toM6,l
g,n+1 is a smooth morphism. A smooth morphism is

separated in the sense of Definition 6.1.1(b) in [17] and applying Theorem 6.2.1
ibidem, we can conclude thatf is étale.

Thus the induced map on fundamental groupsπ1(Y )
f∗- 06,l

g,n is an inclusion.
Since we have proved above thatp∗ = f∗ ◦ p′∗ is surjective we have thatf∗ is
surjective too. In conclusionf∗ is an isomorphism and, hence, alsof . 2
Let us finish the proof of the simple connectivity ofM6,l

g,n+1, using thatM6,l
g,n is

simply connected.
From Lemma 3.10 we have thatM6,l

g,n+1→ M6,l
g,n is a smooth fibration in curves.

Let us denote byS the fiber over a pointa ∈ M6,l
g,n, and byã a point inS. We have

the following commutative diagram of fundamental groups

π1(S, ã) - π1(M
6,l
g,n+1, ã)

- π1(M
6,l
g,n, a)

- 1
Z
Z
Z
Z~
π1(M

6,l
g,n+1, ã)

?
- π1(M

6,l
g,n, a)

?

===== 1,

where the first row is exact.
The diagram tells us that the only nontrivial generators forπ1(M

6,l
g,n+1, ã) come

from π1(S, ã). But the compact surfaceS is embedded in the family of stable

curvesM6,l
g,n+1 → M

6,l
g,n in such a way that every simple loop onS becomes a

vanishing loop for some stable curve of the family; this means that the image of

π1(S) insideπ1(M
6,l
g,n+1) is trivial and soπ1(M

6,l
g,n+1) = 1. 2

Reversing the procedure applied in the proof of Theorem 3.9, we can prove

COROLLARY 3.11.The normal subgroup06,l
g,n < 0g,n, for l > 3 odd, is generated

by Dehn twists along simple separating closed curves andlth powers of Dehn
twists along not separating simple closed curves.

Proof. If we take a simple loopα ∈ M6,l
g,n with base pointa, we know that

it bounds a closed discD contained inM6,l
g,n. We can assume thatD crosses the

boundary ofM6,l
g,n normally. The inverse image ofD in M6,l

g,n is then a closed disc
minus a finite number of points. This means thatα is homotopic inM6,l

g,n to the

composition of a finite number of simple loops around the boundary ofM
6,l
g,n. From

the local monodromy representation, we know that these correspond in0g,n to
Dehn twists along simple separating closed curves andlth powers of Dehn twists
along not separating simple closed curves. 2
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