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so-called geometric level structures, the levels encountered in the boundary are smooth if the ambient
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1. Level Structures overeMg

In this first section we give a preliminary exposition of the theory of level structures
over M, ,, the coarse moduli scheme for smooth curves wittlistinct marked
points, from a stack (orbifold) theoretical point of view. Soét , be the corres-
ponding stack (orbifold), and(, , its Knudsen's compactification. In the sequel
we will actually switch very often between algebraic (stacks’) and analytic (or-
bifolds’) formalism, according to our necessities. We will abuse notation in that
the symbolsm, ,,, M, ,, etc., will mostly denote stacks over the field of complex
numbersC, but sometimes (in Proposition 2.6 notably) they denote stacks over
SpecZ).

Given a closed compact oriented surfaf;g, with » distinct points removed,
the Teichmiller groud’, ,, is usually defined as the group of isotopy classes of
orientation preserving homeomorphisms which fix the punctures pointwise. We
will use the following algebraic characterization. Lt , be a group abstractly
isomorphic to the fundamental group $f ,, so its standard presentation is

My = {@t1, .0, g, 61, .0, 8,8, - - S1fan, @q] - - - [ag, @, ]).

Let A(g, n) be the group of automorphisms Hf, , which fix the conjugacy class
of every §; and induce the identity oi/>(I1, o, Z) (actually this last condition
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is needed only for thea = 0 case). We will refer to its elements gsometric
automorphism®f I, ,. The inner automorphism&(g, n) of I, , clearly form a
normal subgroup of\(g, n). It is well known (in case: = 0O it is a classical result
due to Nielsen) that there is a canonical isomorphism

[en =A(g,n)/1(g,n).

In Teichmdaller theory devel structurei is a normal subgrouﬁg)n of Iy ,, of
finite index. The quotienMg*ﬂ = Tg,n/Fg,n is a (finite) Galois cover of/, ,,
which is algebraic by the generalized Riemann existence theoreh’gnlfacts
freely onT, ,, the levelk is said to befing since in that cas@f} , represents a
moduli functor for pointed curves with some extra structure. The levisl said
to begeometricif there exists an invariant subgroup (which means stable by geo-
metric automorphism of the fundamental group) of I, ,, such thatf‘g,n is the
kernel of the natural representatioy , — Out(Hg,n/K*).

It can be enlightening to rephrase the above definitions in terms of orbifolds.
The fundamental group and orbifold universal cover in the category of orbifolds
share properties similar to those in the case of manifolds. In our case we can
rephrase part of Teichmuller theory by saying that the universal covet of
is represented by a smooth analytic spdgg and that the group of deck trans-
formations for the covef,, — M, , equals the grougd’,, = m1(M,,,a).
Furthermore M, , is the orbifold quotient off, , by the action ofl’, , and so
it is an analytic orbifold.

In this setting a level structure is just a (finite) étale Galois cover of the smooth
analytic orbifold M, ,,

M, —— My
and it is ‘fine’ when it is represented by an analytic vanMy

We say that the level structuse dominates the level structudg (the notation
iS A2 = A1) when MAZ is an étale cover OM“ This is clearly equivalent to
F*?—‘n < F*l therefore the set of level structure W|th the relation of domination is a
Iattlce equwalent to the lattice of finite index normal subgroupE of.

As we mentioned above, the stagk, , has been given a canonical compacti-
fication .M, , by Deligne, Mumford and Knudsen. A nice way to restate a classical
result of Teichmdaller theory is then the following.

PROPOSITION 1.1The stacKorbifold) M, , is simply connected

Proof. We will prove thatM, , has only trivial étale covers. Lef —— M, ,
be an étale cover, then the suborbiféld= = (M, ,) hasT, , as universal cover.
By general theory we know that a local chart #6ris completely determined by
the monodromy representation

(B33 A) — T,,/m(U),
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whereC — B33+ is a modular family of:-pointed stable curves, giving a local
chartB3%—3t" M_g,, for the orbifold, andA is the locus inB corresponding to
singular curves. For eveff’] € M, , we can takeB O [C] so small thafC] is the
most degenerate curve in the family— B. The monodromy representation sends
a standard generator @f (B\A), given by a simple loop around the irreducible
component ofA corresponding to a certain singularity @h to the Dehn twist
along the corresponding vanishing cycle®n

The mapr is étale if and only if this representation is trivial for every possible
B and in that case every Dehn twist isiia(U). We have thatr;(U) = I', , Since
the Teichmiller group is generated by Dehn twists. So the gioup/m1(U) is
trivial and therefore every étale cover #f, , is trivial.

COROLLARY 1.2.The schem@/, , is simply connected

Proof. The natural map of orbifoldsW(,, — M, ,, induces a surjection on
fundamental groups (indeed it is easy to see that every connected étale cover of
M, , can be pulled back to an étale connected covetef,). m

Now we come to the definition of the compactified level structures. There is a
canonical way to compactify a level structu/&ef\ . OverM, ,; namely we just take

the normalization of the proper stadk, , in the function field of the stack(*

g.n"
We thus obtain a proper stadk}, ,

We say that the level is an Abelian level if it is geometric withl, ,/K*
equal toH1(S, 0, Z/1Z). We will usually denote an Abelian level lg)) (hence the

corresponding normal subgroup By> and the variety by ;”,1) If » dominates an

abelian levell), with I > 3, then bothm?* | and.MA are known to be represented
by a scheme (for the latter, see [2]). We WI|| assume that this is the case throughout
the whole paper, and we will use the same notation for both stack and variety.

We know that the universal cune, , — M, , is isomorphic toM, ,.1, and
from the universal property of the fiber product it follows easily that the universal
curve for the leveh over M’ ,, which is just the pull-back o€, ,, is isomorphic

g.n’
A
to M, ;- We can actually prove more.

PROPOSITION 1.3The puII back onMg , Of the universal curve oveM, , is
canonically isomorphic totlg 1
Proof. We first prove that the pull baak* of the stable CurveM, 11 — Mg,

g, n
on eMk is normal. OvereMA n» the pull-back ofM, .1 is clearly smooth. The

completlon of a local ring at a closed point of the boundary is either isomorphic to

é@,p[[x]] orto O — e, y11/xy — 1"

wherer is a regular element |(9 . In both cases it is normal becau@glr »
g)l g.ne
is normal.
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From this description we also see t@ is smooth in codimension one. Now
we want to apply Serre’s criterion for normality (see [4], Chapter |V, Section 5.8).
We only have to verify tha@;n satisfies property, of Serre. By Remark 6.4.3 in
Chapter IV of [4], it is enough to verify this property on the completed local rings,
in which case it is satisfied because they are normal.

By the universal property of the normalization we can conclude that we have a

finite map
M ur
Mg,nJrl Xmgv,, Mg, - Mg n+1-
By a previous remark we know that this map is also birational, hence it is an
isomorphism. O

E. Looijenga has proved the existence of level structures Mesuch that their
compactification is a smooth variety (see [13]), and other levels with a similar prop-
erty have been defined by M. Pikaart and A. J. De Jong (see [18]). The following
proposition shows that the stable curve one has over such a smooth covering does

not yield a smooth covering 6f(;, ;.

PROPOSITION. 1.4The stable curveu*

g.n+
2 defined onM, ,.
Proof. For every proper subgrouﬁA < I'y» we can find a Dehn twist,

which does not belong tEiA . We consider a nelghbourhooda\mA of [C] where
C has one singularity such thatis a vanishing cycle. A local chatf around[C]
will be given by the ramified cover

U — B3g73+n,

t — 1"

1 over M}, is singular for any level

Here B is the base of the universal deformationtfandm is the smallest natural
number such that”" e Fg
The pull-back ovely of the local equatiornxy = ¢ for the singularity in the

special fiber ove, is thenxy = ", yielding a singularity form* O

g,n+1"

2. The Deligne—Mumford Boundary of Geometric Level Structures

A description of the boundary for the stackofointed stable curves(, , was
given by Knudsen in [11, Il, Sec. 3]. In this section we will give an analogous
one for the boundary of geometric level structures (i.e. corresponding to geometric
subgroups of the Teichmuller group).

Let us recall Knudsen’s results. L&t = {1, ho, ..., h,,} and K = {kq, ko, ...,
k,,} be complementary subsets{df 2, ..., n} of cardinalityn, andn,, respectively.
Let g1 andg, be nonnegative integers with= g1+ g» and satisfying the condition
thatn; > 2if g; = 0. There are finite morphisms

IBO: cA'(g—l,n-i-z - Mg,n
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and

Ber.go, H, K Mgy ny+1 X Mgy np1 —> Mg .

These two maps can be described as followiClfis a point ofM,_1 ,,,+1, then
Bo([C)) is the class of the curve obtained by identifying the labeled pdints and
P, of C to anode. Similarly, if[C1], [C2]) is a point of M, ;1 X Mg, n,+1, then
Ba1.20.11,k ([C1l, [C2]) is the class of the curve obtained framLl C; by identifying
the pointsP,, 1 € C1 andP,,.1 € C, to a node.

These maps define closed substads, and By, ;, 1.k Of M, ., which are
irreducible components of the boundary, and all the irreducible components of the
boundary can be obtained in this way. In gengighnd g, ., » x are not embed-
dings. This can be seen as follows. Each irreducible component of the boundary
corresponds in a unique way to a certain kind of singularity on a curve of genus
g. The fact that on the same curve we can have several singularities of the same
type translates into the statement that the corresponding irreducible component
of the boundary has self-intersection. Moreover, the Bapnd, forn = 0 and
g1 = & = g/2, the mapp,,»,» factorize over the projection to the quotient
My_1.1+2/S2, respectively,S?(M, 2.1). In the first case the symmetric group acts
by permuting the two last labeled points on the curve and in the second by permut-
ing the two components of gengg2.

Let us consider more closely the preimages of these boundary divisors in the
coveringsM’.,. In the cases we are considering we have a Galois morphigm

—+ M,., which ramifies only over the Deligne-Mumford boundary &g ,.

Purity of branch locus (see [20] Theorem 3.1) tells us that the ramification locus
must be a union of irreducible boundary components. This means that the re-
striction of r to each open stratum (MA is étale. Here we are referring to the
natural stratification of the Deligne— Mumford compactification. Thus in the square
diagrams

/ /

g
Xo Mg_1n12 X1

Bo \ Bo

) ™ P s
M5 Mg M Mg n

Mgl,nﬁl 2 Mgz,anrl

’
ﬂgl,gz \581& ’

whereX, and X, are connected components of the fiber products, the maae
Galois étale morphisms.

Differently from gy and ,, ¢,, the morphismg, andg,, ., are isomorphisms
onto their images as soon as the levelominates an Abelian level. To show this
we have to prove that the action 8f on 8;(Xo) andﬂ;/z)g/z(xl) is not trivial.

This is clear for a poin{C] € ﬁ;/z’g/z(xl), because the action induced by
permuting the two genug/2 components of always moves some nontrivial cycle

in the homology ofC, thus it cannot leavfC] fixed.
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For [C] € B,(Xo), the action, which is induced by permutation of the two
distinguished points on the normalizatiéhof C, topologically is given by half a
Dehn twist along a simple closed curgebounding the two distinguished points.
Its action on the homology aof is that of reversing the orientation of the cycle
supported on the pinched genus 0 surface bounded] by it is never trivial if the
homology is taken at least with coefficientsdrimZ with m > 3.

We can now prove

PROPOSITION 2.1Let A be a level structure oved/, , such that its compacti-

fication Mk is smooth, then an irreducible component of the boundary does not
have self- mtersectlon hence it is smaoth

Proof. From the local monodromy description of the smooth Galois cover
@ — M., we know that the Deligne-Mumford boundary &, is a di-
visor with normal crossings, hence it suffices to prove that there are no irreducible
boundary components with self-intersection.

Suppose there is an irreducible boundary diviBarith self intersection. Take a
small neighbourhood of D and a point in U\ D. Then the fibre over admits (at
least) two modelsS, x1, ..., x,, y1) and(S, xi, ..., x,, ¥2), where(S, x4, ..., x,)
represents the smoothpointed curvex, and they; are simple closed nonisotopic
curves onS\xy, ..., x, which we can and will choose disjoint. The hypotheses
imply the existence of an elemeyitin Fg,n such thatf (y1) = y».

Let us consider first the case in which theare nonseparating simple closed
curveS'yl f(y2) impliest,, = 174, = f -1, f% and hence,, - 7! €

Y2
. But for nonseparating curves we know th’ét € Fg , only for |k| at least

2 (see Proposition 1.1). This relation yields a singularity in each poiri/pf
corresponding to a singular curve for whighandy, are vanishing loops.

It remains to rule out the case in which theare separating loops. L&t and
S! be the connected componentsSafy;, such thats; has least genus. We have that
f(S1) = S2, maybe upon interchangingy and S, in case they have equal genus.
Now f maps a nonseparating curveSnto a nonseparating curve i§y, and by
the above argument this yields a singularity. O

A consequence of the previous proposition is the following.

PROPOSITION 2.2Let A be as in Propositior2.1, then every irreducible bound-

ary component oMA o lying overM, 1,12 — M, ,, is isomorphic toM 2 g2
for some levek with smooth compactification L

Proof. Let X be an irreducible component of the boundaryWyf ,, lying over
Mg_1,12 = M, ,. We know that the dense open stratuffl of X is an étale
Galois cover ofM,_1 .+, and, hence, by definitioA is isomorphic toM S a2
for some levelly. From the previous proposition we know th#tis a smooth
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compactification OWQELHZ. Furthermore, it is finite oveM,_1 ,,». HenceX is
isomorphic to the normalization of(,_; . in the function field ofMQELHZ. O

In case the level is geometric, we are able to give a simple complete description
of the irreducible components of the boundary lying over the divisora(ip,
parametrizing reducible curves.

THEOREM 2.3.Let A be a geometric level structure ovaf, , with smooth com-
pactification. LetX, respectivelyX©, denote the closed, respectively open, stratum
in M, , lying aboveM,, ,, 11 X Mg, ,+1. ThenX? is canonically isomorphic to

A2 . .
erngr1 X Mes o1, Wherer, and 1, are geometric levels naturally induced by

A. Furthermore, its closuré&l is smooth and canonically isomorphicclseﬁgin1+l X
A2

g2.n2+1"

Proof. As in the previous proof, we have th&® is an étale Galois cover of
Mgy i1 X Mgy npt1, hencer,(X°, P) is a normal subgroup dfy, p1 X Topnptts
so we have to prove that(f, ao) € 71(X°, P), then(as, 1) and(1, a;) are already
in71(X°, P). L

By assumptionM} , is smooth in an analytic neighbourhood %¥, thus, if«
is a loop inX° whose class iga1, a) in 71(X°, P), we can lift it along the normal
line bundleNyo7; - to a loopa in M} .

We choose a-Teichmiiller structure for the universal cur@g ,, — M}, i.e.

a Fg_,n orbit of Teichmdiller markings, and we denote the corresponding marked
Riemann surface by, .

If y is a vanishing loop o8, , corresponding to the specialization[t] € X°,
we denote the two connected componentSpf,\y by S; and S, (cf. the proof
of Proposition 2.1). LetC; and C, be the two corresponding irreducible com-
ponents ofC, and choose markings df, ,,+1 andT7g, ,,+1 compatible with this
correspondence.

Deformation theory tells us that the complex analytic deformation of the curve
C along the normal direction &° is given by the smoothing of the singular point
of C, and that it is trivial outside a small neighbourhood of the singularity. On the
other hand we can assume the deformatior ailong « trivial inside the same
small neighbourhood.

Thus the lifting ofa to 7, , can be represented It , as a produci; - a, of two
homeomorphisms supported respectivelySarand S, and trivial inside a small
neighbourhood of, such that they project @, anda, in 71(X°). We are reduced
then to prove that eithér; or a, (and hence both) project to the identity (X ©),
which in turn is equivalent to show tha{ is in the same class as some powet,of
iNTy,/T5,

Here we come to the part of the proof in which we need the fact that our level is
geometric. We have choseén - a, such that it fixes a neighbourhood pfin S, ,,
so let us takep in S, and inside such neighbourhood. By hypothésis a, acts
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on m1(S,.., p)/1 like an inner automorphism. Let us take a set of generators for
m1(S,,», p) compatible with the decomposition §f ,, in S1 andS,. The support of

ai is on S, hence it acts trivially on the generators supportedsoron the other
hand, modulo inner automorphisnds,acts on the generators supportedSetike

a,*, which is supported o1,, and hence it can act afy only like conjugation

by y*, for somek. This proves thafi; = rﬁ mod Fg_n for somek, which yields

(a1, 1) € m1(X9), as it was to prove.

To conclude we have to describe explicitly the levie{sand A, as geometric
level structures. Any geometric automorphisnyfs;) can be lifted to a geomet-
ric automorphism ofry(S, ,), thusf; := I, ,,41N 1, i = 1,2, is an invariant
subgroup ofll,, ,,+1, and it is clear that € ijn, i =1,2,ifand only ifa acts on
[, n4+1/1i,i = 1, 2, like aninner automorphism. Therefore, the levels = 1, 2,
are the geometric levels defined hyi = 1, 2. O

Now we will describe some explicit geometric level structures which yield regu-
lar coverings oM, ,. Let (S, x4, ..., x,) be a punctured surface of gengiand let
I, , be a group abstractly isomorphic to the fundamental group, pfs, . .., x,}.

So we have a presentation

Hg,n ; <a:|:l’ AR ] a:l:ga 815 ceey 8n|6n T Sl[alv C(_l] e [aga a—g])'

We write I if n = 0. LetT1%], be thekth term in the lower central series, i.e.

[ ._ [k+1] . k]
I, =g, I, o= g, I

We have tha{r}), mi} 1 c MM and this implies that the associated graded
Abelian group GfT1, ,) := @111} /M1 carries the natural structure of a Lie
algebra. The Lie bracket is induced by the commutator bracket.

Suppose for a moment that= 0 and writeL* for the quotienT1{"!/ TT**4. No-
tice thatL' is nothing else thaii1(S, Z). It is proven in [12, Thm.] that the Lie al-
gebral* is freely generated over by L* with the unique relatioy_%_;[a;, a_;] =
0, wherea,; is the image ofv; in L. Write » for the intersection formy %, a; A
a_;, then there are exact sequences describfgnd L3

0>2Z—> LAl 250,

where 1 is mapped to the intersection fagne L' A L1, and
0 A s ter2 Ll 130,

wherei(a AbAc)=a®[b,c]+b®[c,a]l +c® [a, b].

In casen > 1 we need a finer filtration if we insist on the property that the asso-
ciated graded be determined by the first homology of the curve. First we introduce

https://doi.org/10.1023/A:1001731524036 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001731524036

GALOIS COVERS OF MODULI OF CURVES 179

the weight filtration, defined as follows. Consider the surjective homomorphism
I1, , — II, obtained by filling in the punctures; writ€ for its kernel. Define

1 —
W=, , = I ,,

k+1 . k k—1
W, , = [T, WAL, ] - [N, WA, .

In terms of a standard presentation as above

Hg,n ; <a:|:l’ L a:l:g, 81, LA ] 8l‘l|8n e 81[“1’ a—l] Tt [ag, a—g])a

we have assigned weight 1 to the; and weight 2 to theS;. We clearly have
Wi, , D T o W&, . Putv®1, , = Hg"]n, wheren(k) :== 1+ 2+
= k(k + 1)/2 and putv"<’<>+lng,n = (O nwh, ) - ik for

[ € {0,... k} Thus V11, , is the lift of the induced weight filtration on the
quotientsH n/ g lk+11: notice that there arke+ 1 graded sub-quotients.

Notice thatv"<k>+lng,,, = V"&br, , if n = Land 1< [ < k. We write
M- for the associated graded of the filtratidriIl, ,. For the convenience of the
reader, we list the first few terms of the filtratid.

M, ,DW?I,, D 0% >wn,, O w'n,, -0 > n® >w'n,,

g.n

vtovd,, DV, DV, D VM, D V°M,,DV,,.

As in the case without punctures, we have fHétIl, ,, V'I1, ] € VI, ,,
so thatM* is again a Lie algebra. It is generated o¥eby a.; fori = 1tog in
degree 1 and; for j = 1 ton in degree 2 (where the; are the images of th&
in M?) with the unique relation

8
Zal, _ +Zd,
i=1

see [12, Thm.]. Filling in the punctures provides us with canonical isomorphisms
M' = LY and M? = Ker(Hy(C\{x1, ..., x,},Z) — Hq(C,Z)). Notice thatM?*

and M? induce onH.(C\{x1, ..., x,}, Z) its weight filtration, which implies that

also in this case the associated graded is determined by the homology provided
it is equipped with its weight filtration. We have the following identifications,
which are easily proved using the rank formulas from [10, Prop. 1] and the obvious
surjections from the right-hand side onto the left-hand side

M= L' Hi(C,2),
M? = Ker(Hy(C\{x1, ..., x,}, Z) — LY,
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M3=LA LY,
M= L' M?,
M® = M? A M?,
M® = (L' @ M%) /i(A3LY),

Generators foM3, M*, M®andM?® are, respectivelay,, ax;], [aw;, d;], [d;, d;]
andla.;, [a+;, aw]l.

In order to obtain a filtration with finite quotients, we 3¢€t'I1, , := V*I1, , -
Hi,,n, wherel‘[fq,n means the subgroup of, , generated by alth powers. We write
M*! for the quotientV*'T1, ,/ VLTI, , andl, for [/gcdd, d). [18, Lem. 6.3]
implies immediately the following.

LEMMA 2.4. Notations as above. Then we have

MY =YL = H(C,Z/12),
M = M?/IM?,

MY =M/ I,M for i e {3,4,5),
M& = MC/A,

where the sublatticel is given as follows. The quotied® is generated by ele-
ments[x, [y, z]], wherex, y and z can be taken from the sét.;|i = 1,..., g}.
In fact, we obtain a basis if for every pair of distinct elemettsy) we only
take, say|x, [x, y]l] and [y, [x, y]] and for every triple(x, y, z) of distinct ele-
ments, we only take, saj, [y, z]] and [y, [z, x]]. (This is the Jacobi relation.)
The submodulet is generated by elements of the folgfx, [x, y11, le[y, [x, ¥]]
andn[x, [y, z]]1 + m[y, [z, x]] such thatg|n, m andls|n + m.

Finally, we note that whether an elementI®f , is in V*/I1, , for k < 7 can
be read off from the associated graded.

Another reason for which we need the weight filtration is that the lower central
series is nosstrict. This can be seen as follows. Letbe a simple closed loop
dividing S into the connected componerfisand S, such thatS; has genug and
carriesm of then marked points. The inclusiofij — S induces an inclusion of
fundamental groups

m h
= (o Vg, (8,Y]_ael [ [ 8; ] Jlowir aile)

j=1 =1

n 8
Mgn= (o ¥y, 48;Yial [ T 85 ] Jlew i),
j=1 i=1
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which is not strict, i.e. it is not true in general thag, , N T, = I1}) . Consider
for example the case = m > 0, thene is contained N2, but not inT1}?), (as
one easily sees, this is the only ‘obstruction’).

We want to prove that the first steps of the filtration are strict in some cases.

LEMMA 2.5. Notations as above. Létbe an integer at leasB and letk be an
element of2, ..., 7}. Then we have

Hh,m N Vz’lng,n = Vz’lnh,mv
., N V41, , = v4m,, ifand only iff odd orm =0 or 0 <m < n.
k#2,4: TN Vk’ll'lg,n = vkim,,,,, ifand only ifm =0 or 0 <m < n,

Proof. The inclusions 5’ are trivial. The first equality follows directly from the
observation

M/ W2 T = Hi(81, 2/12) <> Hi(S,Z/1Z) = g,/ W T,
whereas equality in cage= 3 follows from the observation that the natural map
Hi(S1\{x1, ..., xn}, Z/1Z) — H1(S\{x1,...,x,},2Z/12)

is injective if and only if eithern =0 0or0< m < n.

For the other equalities, notice that Lemma 2.4 applies to So#imd S;, so
that we only have to consider elements involvingrhese are the ‘only’ elements
whose behaviour with respect to the filtratith depends on the integevsandn.

First supposen = 0. Thens € V311, , ande¢ € Vi'Tl, , if and only if ;| d,
fori € {4,5, 6, 7}. The same holds fdf, , instead ofll, ,.

Next suppose O< m < n. Thene is contained inV2I1, , but not inV3I1, ,
ande? € Vi1, , if and only if/|d, for i € {4, 5, 6, 7}. The same holds fofl, ,,
instead off 1, ,.

Finally suppose O< m = n. Thene is contained inv3I1, , and V21, but
not in V311, ,, and we use the lines above.

This finishes the cage = 4; for the caseg = 5, 6 andk = 7 we still need to
consider the elemente,;, ¢] and[$;, ].

If m =0, then[y;, €] € V61'Ig,n and if 0 < m < n, then[w;, €] is contained in
V4, , but not inV°I1, ,. The same holds fdf,, ,, instead off1, ,. If 0 < m =n
then[o;, ] is contained inV°I1, , and V11, but not inV°I1,,.,. It follows that
in casek = 5 or 6 and O< m < n, we haveV*'Tl, , N1, # V&I, since
[«;, €] is contained in the left-hand side but not in the right-hand side.

Finally we consider the elemeni&;, ¢]. If m = 0, then[§;, ] is not contained
in I, , atall. If 0 < m < n, then[3,, ¢] is contained inV°I1, , and iNV°I1,, ,,. If
0 < m = nthen[§,, ¢] is contained inV'T1, , and V°I1,,, but not inV°I1,, ,, and
we conclude as above. This finishes the casesb, 6 or 7. O
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LetI', , be the Teichmuller group @fS, x4, ..., x,), as defined in the introduction.
We have the injective homomorphism

I,, — Outh(I,,),

whose image can be described as the subgroup 6f(@lyt,) which sends every;
to a conjugate of;, and Out (I1, ,,) is the index 2 subgroup of Out, ,) inducing
the identity onH,(S). It is clear that the subgroupé‘Il, , are geometric (but not
characteristic ifr > 2). The corresponding geometric subgroupl@f, will be
denoted by

I = Ker('y,, — Out(I, ./ V*'Tl, ).
If n = 0, we dropn from the notation. Denote byl“ the moduli stack of curves
with the geometric level structure defined @y= I, ,/ V*'I1, ,.. Proceeding as in
[3] orin[18], itis not difficult to see that it is actually defined over S@Ed /#G]).

It is representable over an algebraic closed field3 2 and/ > 3. Let us observe

that the leveld"2!, are just the Abelian levelE{,, defined in Section 1.
From Theorem 2.1 and the previous Iemma it follows.

PROPOSITION 2.6If and I > 3, then the structural morphismis, —
SpecZ[1/1]) is smooth if

e k=3,560r7,/isoddand: = 1;
e k =4 and! is odd
e g=2.

Furthermore the geometric levels which arise in the boundary components of re-
ducible curves are of the same type

Proof. To prove that the complex algebraic variewﬁjf, is smooth, we have only
to apply Lemma 2.5 to the smooth geometric levelsiondefined in [18], and then
successively to the ones generated in the boundary of them. By [18, Prop. 2.3.6],
we can then conclude that the same statement holds for the corresponding stack
over Spe¢Z[1/1]). O

Remark2.7. In case = 3,5, 6 or 7 we need the restriction to the casel 1
since the induction, mentioned in the above proof, does not work. Namely, one
starts withn = 0, this inducesn = 0. Then we have proven the case- 1. In the
next stepn can be either 0 or 1. In the first case we get nothing new, in the second
case we have: = n so our argument does not apply (cf. Lemma 2.5).

This in particular extends the theorem of Looijenga on the existence of smooth
Galois covers forM, (see [13]) to the:-pointed case.

An explicit description of the monodromy along the boundary\/ljﬁ, in case
it is smooth, can be deduced from the one giverMgr’ in [18, Thm. 3.1.3].
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To fix notations, let us recall how the monodromy representation is defined.
Let (C, x1, ..., x,) be a complex stable-pointed curve of genug with singular
points Py, ..., P;. LetI" = I'(C) be its dual graph; an edge for each poit
a vertex for an irreducible component 6f Let 7: (G, C) — (B, 0) be a local
universal deformation of, where B ¢ C3~3*" is a polydisc neighbourhood of
0. The coordinates; are chosen such that = 0, 1 < j < s parametrizes curves
where the singular poin®; subsists. The discriminant locus C B of 7 is thus
given byz;...z; = 0. PutU = B\A, letx € U and choose € G, = n~(x).
The fundamental group d@f is an Abelian group, freely generated by simple loops
around the divisorg; = 0, thus naturally isomorphic to the free Abelian group
on the edges of’, i.e., 11 (U, x) = D.cedgesr) Ze- This provides us with the
monodromy representation

p:m1(U, x) = Out(m1(Ce\{x1, ..., xn}, ¥)).

The pointsP; determine nontrivial distinct isotopy classes of circles@n
x1, ..., x,, Which have pairwise disjoint representatives

In particular we get an induced representation in the automorphism group, mod-
ulo inner automorphisms, of the quotient of the fundamental group by the invariant
subgroup defining the level. As we saw in Section 2 this representation is equiv-
alent to the explicit description of a small neighbourhood of a p&int aMg)n
as a Galois cover of a neighbourhood of the pd@t € M, ,. More precisely

(p~MT%s,)) =1-Z®l-Z& - -- ®l,-Z if and only if the Galois covem’: , — M,

is locally equivalent, in the aforementioned neighbourhoods, to the cover of poly-
discs

B3g73+n N B3g73+n ’

I1 l
(Zl, cee Z3g—3+n) = (Z]_ PRI ZSS, Ts41s - v Z3g—3+n)-

We want to obtain the coefficients of the monodromy at a pBine M

- g .n+1

from those atP € M} ,.

In order to do this we assume for simplicity th@atis union of two components
C, and C,, with C; of genusg’, C, smooth of genug”, andg’ + ¢” = g. The
point P” will then be lying over[C1] € M, ,.1. We assume furthermore that
z1 = 0 is a local equation for the divisa#, .1 x My 1 C M, ,, and that
the projectionM, 11 x Mg 1 — Mg 41 IS given in our local coordinates by
0,22, ...,23g-34n) P> (22, ..., 23¢"~31n+2)-

With these assumptions the Galois coMéj,{nH — M 41 Will be equivalent,

near the point®’ and[C,], to the cover of polydiscs

! !
B3¢ -3+l _ p3e —3+n+1’

I l
(ZZ, e Z3g’—3+n+2) = (ZZa DR} Z;a s Z3g’—3+n+2)’
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hence the kernel of the corresponding monodromy representation is

Al

Kerpg,’nH:[z.Z@ Bl - Z.

In particular it is clear now how to deduce the monodromy along the boundary

for M} from the description of that oM}’ given in Theorem 3.1.3 of [18]

using that the lower central series coincides with the weight filtration in the non-
pointed case. Let us keep the notations introduced at the beginning and let us
denote moreover b¥ (") (respectivelyB(I")) the set of all edges (respectively
those corresponding to separating bounding simple closed curves) agiti @y)
(respectivelyB;") those elements aB(I") which are unmarked (respectively un-
marked and of genus 1). As in [18] let us define, #iof € Z, n; = n/gcdl, n).

We have then

PROPOSITION 2.8The kernel of the local monodromy representation@
over a neighbourhood dC] € M, , is
If k=4 and ! is odd:
p‘l(F’;:fl) =Dcea)! - Ze ® D,cpr) Ze-
If k=5 o0r 6, [ isoddandn =1:
pfl(FQfl) = @eeE(r)l Led® @eeBW(r) Ze.
If k=7, 1isoddandn=1:
P*l(rﬁii,) =@ecpr ! Ze® @eeB’l‘”(I‘) [3Ze.

Remark2.9. In the cases = 5 or 6 and is odd, or in casé is at least 7 andlis
odd or divisible by 4, one can prove thit ", is nonsingular (see [19, Thm. 3.3.3]).

An easy consequence of the previous proposition (combined with the remark)
is the following.

COROLLARY 2.10.For every finite coverX of M, ,(C) which is étale(in the
orbifold sensgover M, ,(C) there exists a finite smooth Galois cove@(C)
dominatingX.

Proof. Let H be the subgroup df, , such that dividing out Teichmller space
by H we obtainX X3, M- By taking the intersection of all normal subgroups
containingH we may suppose thadf is nhormal (and still of finite index).

Let (S,, x1, ..., x,) be an oriented closed-pointed surface of genysand let
Do be a Dehn twist around a nonseparating simple closed curvé®apdfor i =

* [18, Sec. 5.1] contains a minor error: it is falsely claimed that there always exists axloop
as described. However we can choesétersecting a minimal number (but at least one) of the
edges involved irr, show that the edges eof it hits are linearly independent and span a primitive
submodule off1(S) and proceed as in [18, Sec. 5.1].
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., [g/2landm =0, ..., n be a Dehn twist around a simple closed curve which
separates, into two submanifolds of genusandg — i carryingm, respectively,
n —m of the marked points Lég, respectively/; ,, be the minimal positive integer
such thatH (:ontalnsD0 , respectlvely,Dl’ " and sef equal to 12 times the lowest
common multiple ofy and all/; ,,. Let H; be the intersection off with FEQ this
is again a normal subgroup of finite index containedfin

We claim that, for any integer. and any Dehn twist,, the groupH; contains

", ifand only if '}/ containst)". The ‘only if’ part is trivial sinceH, is contained

in F” Letus prove the other |mpI|cat|on Proposition 3.5 tells usktfgtcontains
T onIy if eithery bounds an unmarked genus one surfacelg@dlividesm or y
|s a separating simple curve af¢® dividesm or we are not in one of the above
two cases anddividesm. In all these cases, we see thﬁt is contained inH, as
well.

Define X, to be the normalization o, , in the function field of the quotient

of Teichmiiller space by, thus it dominates bot& and M.". It follows from
the local monodromy description as explained in the paragraphs preceding Pro-
position 3.5 and from what we said above that all ramification indices along all

irreducible components of the boundary divisoXgfcoincide with those OM;”.

Thus the coverinX;, — M;’l is not only étale over the locus parametrizing smooth
curves but even generically étale over the boundary. Furthermipiie,normal by

definition andM;’l is smooth (by Proposition 3.4, sinéds divisible by 4), so
purity of branch locus (see [20, Thm. 3.1]) applies and tells us that this cover is
actually etale. Thu¥;, being an étale cover of a smooth variety, is smooth. O

3. Simple Connectivity of Some Covers

Fix an oriented closed compact reference surfsice= S, o and writeS, ; for S,

left out one point. The inclusiof, 1 < S, induces an isomorphism on homology
Hi(Sg1,2Z) = Hi(S,,Z), so we will write H for both of them. We will denote

by D, the (say right-handed) Dehn twist around a simple closed curvé/e

will call a Dehn twistseparatingif « is a separating curve (so if we gawean
orientation, its homology class would be what was previously called a bridge). A
bounding pair maps a homeomorphism d, of the formDaD/gl, wherex andg

are disjoint homologous simple closed curves not in the same isotopy class (their
oriented homology classes form a cut pair). Kgtresp.K, (/) be the subgroup of

the mapping class grouP, generated by separating Dehn twists, resp., by these
and by/th powers of all Dehn twists. Let Tpr be the Torelli group fot is O or

1, which, by Johnson’s work (see [7]), is known to be generated by bounding pair
maps. It clearly contains separating Dehn twists.

PROPOSITION 3.1If ¢ > 3, > 0 the groupsl'\") are generated by Ith powers
of Dehn twists around not separating closed curves and by bounding pair maps.
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Proof. Consider the following diagram, wherés either O or 1.

@)
iy 1

Ker(r))

|

1 Torg’,' Fg’,' S[XH)

|

SP(H1(Sg.0,2/12))

By a result of Mennicke (see [15, 10 Satz]), the kernel of the morphism induced
by reduction moduld, Ker(r;: Aut(H) — Aut(Hi(S,,Z/1Z))), is generated by
Ith powers of symplectic transvections, i.e. by imagedlopowers of Dehn twists.
Combined with Johnson’s result, this implies thgt is generated by all bounding
pair maps and by alth powers of Dehn twists. To extend the result toraliét us
just observe that the kernel of the natural nﬁ%@lﬂ — I'{!) is equal to that of
[y n41 = g, thus it is spanned by bounding pair maps. O

PROPOSITION 3.2The groupl'y’ equalsI's’ and is generated bytH powers
of all Dehn twists and by separating Dehn twists. ko> 1 the groupsl“g_’fl are
generated byth powers of Dehn twists, separating Dehn twists and bounding pair
maps

Proof. Clearly we havek,(/) c TS’ c I'®. Birman proved that the Torelli
group in genus 2 is normally generated by one separating Dehn twist, see [2,
Thm. 2]. Arguing as in the proof of the previous proposition, we obtain the desired
results. O

PROPOSITION 3.3For ¢ > 2,1 > 3,n > 0, andk an algebraically closed field

of characteristic not dividind, the moduli spaceat ) (k) are simply connected

Proof. Clearly it is enough to prove the proposition over the complex numbers.
As we saw in Section I'{") is the fundamental group dif{’),. Using the local
monodromy description, we can interpret the statements of Proposition 3.1 and
3.2 as saying that this fundamental group is generated by ‘small’ loops around the
divisor at infinity of the compactified variety. Indeéth powers of Dehn twists
around not separating closed curves and Dehn twists around separating curves
correspond respectively to simple loops around branches of the divisor of singular

irreducible or singular reducible curvesMé{L, while bounding pair maps corres-
pond to simple loops around the loci where two branches, belonging to the same
irreducible component of the divisor of singular irreducible curves, meet.

This easily implies that these compactifications are simply connected. O

PROPOSITION 3.4If ¢ > 3and! odd, the groups™$/ andI"S") are generated by
Ith powers of all Dehn twists and by separating Dehn twists
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Proof. We have to prove thak, (/) = I'y’. The inclusionk, (/) c T' fol-
lows from [18, Sec. 4.1]. Thus we hawg” > 'Y - Tor, > K,(l) - Tor,. So
by Proposition 3.1, we know that®’ - Tor, equalsK,(l) - Tor,. Thus it suf-
fices to prove thal"®' N Tor, equalsK (/) N Tor,, becausd >'/K,(l) contains
(I'®'NTor,)/(K,()NTor,) as a normal subgroup with quotied?’ - Tor,)/
(K, (1) - Tory).

To prove that"3' N Tor, C K, () NTor,, first note that both sides contalt,
S0 again using the trivial inclusion we only have to prove tﬂ@l NTor,)/K,
equals(K,(I) N Tor,)/K,. Note that what we have said so far carries over word for
word to the pointed case, to which we switch for a moment.

We will make use of Johnson’s results. In [8, Thm. 1 and Sec. 6], he constructs
surjective homomorphisms

Furthermore, in [9, Thm. 6] it is proved tha&, ; equals the kernel of, ;.
Roughly, 7, 1 is obtained as follows: ify = DDlD/gl is a bounding pair map, then
Y(x)xt € (S, )P for anyx € 71(S,.1). Consider the element ([oe])[ee]
modulo 7r1(S, 1), This yields Top1 — H & m1(S;.)?/mi(S, )P = H ®
A%H. In [8, Sect. 4], Johnson shows that the imagerof is contained inside
the submodule\3H of H ® A2H and he gives an explicit formula fat 1 ().

We claim that there exis@zg) bounding pair mapg, such that their images
underz, ; generaten3H. Actually, this is precisely what is stated in the first para-
graph of the proof of [8, Thm. 1], nl. a genus one bounding pair map is mapped
to a generator of a unimodular sublattice and the mapTor, 1 — A3H (S,.1) is
[g 1-invariant. Letg;,i € I, #I = (2§), be such a set and lgt be an element of
(M2, NTor,)/K,. We write it as[],., ¢;. The assumptiony e I'>’} implies that
for anyx € H, the elementy (x)x~1 in 71(S, 1)1?/m1(S, )P = A2H is actually
in 71(Se 1) /m1(Sg, )P

To return to the nonpointed case, we have to reptagey

3
7. Tor, > \ H/(S] A H),

where[S,] € A2H is the fundamental class 6f and the right-hand side is a free
Z-module of rank(%) — 2g.

From [18, Lem. 6.3] it follows that if is odd,1(S,)!' generates inside the
free modulery(S,)?/1(S,)™ precisely the submodule generated by!éfibld
multiples of all elements; i.e.

2
m1(S) B fra(S)P = 1 N\ H/IS,].
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Thus the imaget ® 71(S,)BM /71(S,)B — A3H/([S,] A H) equalsl - A3H/
([S,] A H). ChooseJ C I such that ther,(¢;), i € J yield a basis ofA3H/
([S,] A H). The assertion thad_,_, ;7. 1(¢;) is contained in the submodule
1-A3H/([S,] A H) implies that|/; for alli € 1.

Clearly the same reasoning carries over again to the pointed case, so that the
proposition follows.

THEOREM 3.5.For ¢ > 2,1 > 3 and odd, andk an algebraically closed field
of characteristic not dividing, the moduli spacesf,” (k) and M} (k) are simply

connected
Proof. The theorem follows from the same kind of arguments used in the proof
of Proposition 4.3. O

Ivanov asked whetheff,(I") = O for every finite index subgroup of I',, at least
wheng is sufficiently large (see [6, Question 3.2]). We can now give an affirmative
answer to this question in caﬁecontainsl"?*l for some odd at least 3.

COROLLARY 3.6.If g > 3,/ > 3 and odd, then every subgroupIof containing
'8! has trivial first rational homology
Proof. Let V, be the normalization of the Satake compactificatiomVgf(C)

in the function field ofM¢'(C) and let f: M&' — V, be the induced birational
morphism. TherV, is projective and the codimension of the image of the boundary

of MgG’l under f is at least 2. So [16, Thm. 3] yields that the first homology group
of Mé?*l is zero, so the same holds for any cover it dominates. O

Remark3.7. In the proof of the above proposition, we need> 3 to ensure
that the condition in Mumford’s theorem is fulfilled, nl. that the codimension of
the image of the boundary undgris at least 2. If the genus is two, the dimension
of Mg‘” is 3 and, by Theorem 2.3 there are two-dimensional boundary components

of the formM}; x My1. Their images in the Satake compactification remain two-
dimensional.

COROLLARY 3.8.Wheng > 3,/ > 3and odd, the Picard group dif' is finitely

generated
Proof. This follows from Proposition 3.6 and [5, Thm. 6.3]. (Cf. [6, Ques-
tion 3.2]). 0

In Section 2 we saw that the boundary divisorsigf’ are smooth for odd.
These divisors are themselves moduli of curves with level structure described in
Lemma 2.5. We can extend Theorem 3.5 to these moduli spaces.
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THEOREM 3.9.For n > Oand! > 3, the projective variet ijl is smooth and

simply connected. Moreover, the natural morphiM@:le — ijf, is a stable
curve
Proof. We will proceed by induction. The induction start is given by the simple

connectivity ofo’l (Theorem 3.5).

Soletus assume thMS;fl is simply connected. The first step consists of proving

the following lemma.

LEMMA 3.10. The natural morphism/;, ., —~ M¢', is a fibration in(connec-

ted) stable curves, which are smooth ovef",.
Proof. We claim that the induced map on fundamental groppsf‘g”

,n

FS;; is surjective. To see this let us consider the level defined by the normal sub-

group p*(l"g:flﬂ) < I’y ». To compute the ramification at infinity of the corres-

ponding Galois coveX — M, ,, we just remark thay e p*(FSZle) if and only

if there is a lifting £ in Ty .41 such thatf e TS, .

Let[C] be a point ofM, , for which we choose a representing marked Riemann
surface together with a set of disjoint closed curves such that contractings these
curves yield§C]. We use the notation of Section 2. We claim that the kernel of the
local monodromy representation fpx(l“g:le) in a suitable neighbourhood ff']

+1

is given by
@ - Ze & @ Ze,
ecE) ee B (I")

i.e. the same as that fm?;;. This can be seen as follows. The incIusijFS:le) <

r2! implies the corresponding inclusion for the kerels of the respective
monodromy representations. The reverse inclusion follows from the remark we
made at the beginning of the proof of this lemma and the local monodromy de-
scription forI'>", | given in Proposition 2.8.

It follows that X — Mf;f, is an étale morphism. The simple connectivity of

M¢E} implies that this étale morphism is actually an isomorphism and thergfore
is surjective.
Let us now consider the Stein factorizationyof

P = f
MG_’I 1> Y > ngf,,

where p’ has connected fibers anfl is finite. We have to show thaf is an

isomorphism. Pur := f~1(M8!).

Consider the factorization

6, h 6] T 6,1
Mg,n.l,_l - eg,n - Mg,n’
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where(?el is the universal curve oveM&l We know thatr is smooth and:

is étale, sop restricted toM a1 s @ smooth morphism. A smooth morphism is
separated in the sense of Deflnltlon 6.1.1(b) in [17] and applying Theorem 6.2.1
ibidem, we can conclude thatis étale.

Thus the induced map on fundamental group&’) —— I'S", is an inclusion.
Since we have proved above that = f, o p. is surjective We have that, is
surjective too. In conclusiorf, is an isomorphism and, hence, algo a

Let us finish the proof of the simple connectivity M§i+17 using thatM?} is
simply connected.

From Lemma 3.10 we have tth fl+ M¢ is a smooth fibration in curves.

Let us denote by the fiber over a point € Mg fl, and bya a point inS. We have

the following commutative diagram of fundamental groups

71(S, d) — m(My,q. @) — m(Meh, @) —— 1

.

7T1(M ,,+1, a) — 7T1(Mgn,a)

where the first row is exact.
The diagram tells us that the only nontrivial generatorsﬁgm/l ‘ni1> @) COMeE
from m1(S, a). But the compact surfacg is embedded in the famlly of stable

curvesM;le — Mf,f, in such a way that every simple loop dhbecomes a
vanishing loop for some stable curve of the family; this means that the image of

71(S) |nS|den1(M n+1) is trivial and so]rl(M n+1) =1. O

Reversing the procedure applied in the proof of Theorem 3.9, we can prove

COROLLARY 3.11.The normal subgroup, < I'y ,, for/ > 3 0dd, is generated
by Dehn twists along simple separating closed curves idingpowers of Dehn
twists along not separating simple closed curves.

Proof. If we take a simple loopr € M, with base poiniz, we know that

it bounds a closed disP contained inM . We can assume thd crosses the

boundary ofM normally. The inverse image db in Mg_ff, is then a closed disc
minus a finite number of points. This means thais homotopic inM, to the

composition of a finite number of simple loops around the boundanyfd,f. From
the local monodromy representation, we know that these correspohid ,irto
Dehn twists along simple separating closed curves/indowers of Dehn twists
along not separating simple closed curves. O

https://doi.org/10.1023/A:1001731524036 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001731524036

GALOIS COVERS OF MODULI OF CURVES 191

Acknowledgements

The authors thank E. Looijenga, R. Hain and I. Moerdijk for useful conversations.

References

1. Birman, J.: On Siegel’s modular groudath. Ann 191 (1971), 59-68.

2. Deligne, P.: Le lemme de Gabber, In: L. Szpiro (eB&minaire sur les pinceaux arithmétiques:
la conjecture de MordellAstérisquel 27 (1985), 131-150.

3. Deligne, P. and Mumford, D.: The irreducibility of the space of curves of given géhuis,

Math. IHES36 (1969), 75-109.

4. Dieudonné, J. and Grothendieck, A.: Elements de géométrie algébrique, IV. Etude locale de
schémas et de morphismes de schémas (seconde fautie)Math. IHES?4 (1965).

5. Hain, R.: Torelli groups and geometry of moduli spaces of curves, In: H. Clemens and J. Kollar
(eds),Complex Algebraic Geometrivlath. Sci. Res. Inst. Publ. 24, Cambridge Univ. Press,
1995, pp. 97-143.

6. Hain, R. and Looijenga, E.: Mapping class groups and moduli spaces of curves, to appear in
Amer. Math. Soc. Summer Conference P895.

7. Johnson, D.: Homeomorphisms of a surface which act trivially on homdRygg, Amer. Math.

Soc 75(1979), 119-125.

8. Johnson, D.: An Abelian quotient of the mapping class groupMath. Ann 249 (1980),
225-242.

9. Johnson, D.: The structure of the Torelli group Il: A characterization of the group generated by
twists on bounding curve3ppology24 (1985), 113-126.

10. Kaneko, M.: Certain automorphism groups of pfandamental groups of punctured Riemann
surfaces,). Fac. Sci. Univ. Toky86 (1989), 363-372.

11. Knudsen, F.F.: The projectivity of the moduli space of stable curves, Il. The stagks llI
The line bundles o/, ,, and a proof of the projectivity om in characteristic OMath.
Scan 52 (1983), 161-199, 200-212.

12. Labute, J.: On the descending central series of groups with a single defining rélaAilgebra
14(1970), 16-23.

13. Looijenga, E.: Smooth Deligne—Mumford compactifications by means of Prym level structures,
J. Algebraic Geom3 (1994), 283—-293.

14. Magnus, W., Karrass, A., and Solitar, @ombinatorial Group TheoryPure Appl. Math.,
Interscience, New York, London, 1966.

15. Mennicke, J.: Zur Theorie der Siegelschen Modulgrupgsgh. Ann 159(1965), 115-129.

16. Mumford, D.: Abelian quotients of the Teichmuller modular gralipAnal. Math 18 (1967),
227-244.

17. Murre, J.: Lectures on an introduction of Grothendieck’s theory of the fundamental group,
Lecture Notes, Tata Institute of Fundamental Research, Bombay, 1967.

18. Pikaart, M. and de Jong, A. J.: Moduli of curves with non-Abelian level structure, In: R.
Dijkgraaf, C. Faber and G. van der Geer (edf)e Moduli Space of Curve®rogr. Math.
129, Birkhauser, Basel, 1995, pp. 483-510.

19. Pikaart, M.: Moduli spaces of curves: stable cohomology and Galois covers, Thesis Utrecht
(1997).

20. Grothendieck, Aet al.: Séminaire de géometrie algébrique 1 — Revétements étales et groupe

fondamentaleLecture Notes in Math. 224, Springer-Verlag, Heidelberg, 1971.

https://doi.org/10.1023/A:1001731524036 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001731524036

