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Abstract

It is known that there is a finite affine (or projective) plane of order n if and only if there is a
sharply two-transitive set of permutations of degree n. This paper deals with a generalization of
this theorem, in which finite sets are replaced by isolated sets, cardinalities by isols and certain
effectiveness conditions are imposed on the two systems involved which are trivially satisfied in
the finite case.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 02F40, secondary 05B25.

1. Introduction

We use the word "family'" for a collection of permutations on some set;
a family is therefore not necessarily a group under composition. Let SP be a
family of permutations on some set S of cardinality i£ 2. Then SP is sharply
two-transitive (STT), if
/ \ f for a,b,c,dES, a / c, fe^ d, ^ has exactly one member / such that

\f(a) = b and f(c) = d.
In the special case that S is finite, (a) implies
,,, ffor a,bES, / £ 0>, f(a)/ b, SP has exactly one member g such that

I g(a)= b and g ( x ) ^ / ( x ) , for all x E S,
but this is no longer true if S is infinite, Hall (1943). It is known (Hall (1943),
Dembowski (1968), p. 140) that for n S 2,
, -, f f/iere is an affine (or projective) plane F of order n if and only if there is an

1 STT family SP of permutations on some finite set of cardinality n.
It is the purpose of this paper to generalize (c) to the case where S is an

isolated set of nonnegative integers and certain effectiveness conditions are
imposed on the affine plane F and the STT family SP.
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[2] Two-transitive families of permutations 363

2. Preliminaries

The word "number" will be used for nonnegative integer, "set" for
collection of numbers, the letter e for the set of all numbers, F for the class of
all r.e. sets and Q for the class of all finite sets. If / is a mapping from some
subcollection of e" into e, we write 8f for the domain of / and pf for the range
of /. Effectiveness will be expressed in terms of the existence of certain partial
recursive functions. We shall assume the reader to be familiar with the basic
terminology concerning RETs, that is recursive equivalence types, and their
elementary properties, Dekker and Myhill (1960). We often use the proposi-
tion that the sets a and /3 are recursively equivalent [written: a — /3] if and
only if there is a one-to-one function / from a onto /3 such that both / and / " '
have partial recursive extensions.

All affine planes and STT families to be considered will be countable. We
define an affine plane as an ordered triple F = (8, v, inc.), where 5 (the set of
all points) and v (the set of all lines)are disjoint sets, 8 U v has an infinite
complement (to permit completion to a projective plane without getting
outside e), inc. is a subcollection of 8 x v and the three classical axioms hold.
The lines / and m of F are parallel, if / = m or / and m have no point in
common. The parallel relation [written: ||] defines a partition of v; the
members of this partition are the parallel sets of F. Every affine plane has at
least three parallel sets. Let a, b £ 8, a/ b, I, m G v, not (/1| m). Then we
write a • b for the line joining a and b, and / D m for the point in which / and
m intersect. Let p G 8, I G v. Then 8, = {x G 5 | x inc. /}. If a is any set we
write (a *• a)~ for {(x, y)G a x a | x/ y}; in the special case that aCv,
(a x a)~ = {(x, y) G a x a \ not (x || y)}. With F we associate the functions Lr ,

Pr, Or:

8Lr = (5xSy, Lv{a,b)=a-b,

8Pr = (vXv)~, Pr(l,m)=ir\m,

8Q, = 8 x v, Qv{p, I) = line through p which is || /.
DEFINITION Dl . The affine plane F = (8, v, inc.) is an affine co-plane, if
(1) there are three mutually disjoint r.e. sets 5, v, f such that 8 C8, v C v

and f is infinite.

(2) the functions Lr , Pr, Or have partial recursive extensions.

Affine o>-planes were introduced in (Dekker, 1977), where the following
propositions were proved. If / and m are lines of an affine co-plane
F = (8, v, inc.), then 8, = 8m. Call N = Req 8, the order of F [written: o[F]. F is
called isolic (immune), if N is an isol (infinite isol) or equivalently, if 8 and v
are isolated (immune) sets. We have
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364 J. C. E. Dekker [3]

(d) Req 8 = N2, Req v = N2+N, every parallel set of V has RET N,
for an arbitrary affine w-plane r = (8, v, inc.) of order N. Moreover,
writing c = 2*°,

f there are exactly c affine w-planes; among these there are c mutually
I nonisomorphic immune ones.

DEFINITION D2. An w-STT family of permutations is an ordered triple
Sf = (T, o-,p), consisting of a nonempty set x, a set a of cardinality s 2 and a
function p from x x a into a such that:

(1) p has a partial recursive extension and for each / G T , p(t,x) is a
permutation of cr,

(2) given any elements a, b, c, d G a with a^ c, b/ d, there is a unique
tGr such that p(t, a)= b, p(t,c)=d and this / can be effectively found.

REMARKS Rl . We often write p, (x) instead of p(t,x), in particular if we
wish to keep t temporarily fixed. Thus & = {p, 11 G T}; we call T the index set
of SP and a the base set of 9*. In view of (2), the mapping t—* p, from r into
the family of all permutations of a is one-to-one.

R2. Condition (2) can be made more precise: there is a function
q(a,b,c,d) with a partial recursive extension such that

8q ={(a, b,c,d)Eo-4\a^c&b^d}, pq CT,

and for (a, b, c, d) G 8q, the number ( E T with the desired properties equals

q(a,b,c,d).
R3. Let Sf-= (T,o-,p) be an w-STT family (of permutations) on a set a.

Suppose that r — T* and that q{x) is a partial recursive one-to-one function
with rC8q, q(r)= T*. Put t3>* = (r*, a,p*), where

p*(t*,x) = p[q'\t*),x], for t*Er*, x G a.

Then &* is also an w-STT family. This shows that only Req T is relevant for
the existence of a function p such that (x, a,p) is an w-STT family on a. We
therefore say that there exists an w-STT family on a set a, if there is an
ordered pair (x,p) such that (r,a,p) is an w-STT family on the set a.

3. Eight Propositions

Let a- be a finite set of cardinality g 2 . Then there exists an w-STT
family on cr if and only if there exists an STT family on o\ Moreover, the
existence of an STT family on cr clearly depends only on the cardinality of cr.
This suggests the following recursive analogue.
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PROPOSITION Cl . Whether there exists an w-STT family of permutations
on the set cr depends only on Req cr. In other words, if cr — cr*, there exists an
w-STT family on cr if and only if there exists an w-STT family on cr*.

PROOF. Let & = (T, <T,p) be an w-STT family on cr. Assume cr ~ cr*, say
aCSf, f(cr)= cr*, for some partial recursive one-to-one function /. Put
p*(t,x) = fp[t,f'(x)], for t GT,XG<X*, then 9>* = (T, cr*,p*) is an OJ-STT

family on cr*.

DEFINITION D3. Let Sf = (T, a,p) be an o>-STT family on a. Then Req r
is the order of & [written: o(2P)] and Reqcr is the degree of 9 [written:

PROPOSITION C2. Let SP = (T,o-,p) be an w-STT family on cr. Then T is
isolated if and only if a is isolated, that is, o($P) is an isol if and only if d(SP) is
an isol.

PROOF. We shall show that

(*) T has a subset in F— Q O cr has a subset in F — Q.

For suppose tn is a one-to-one recursive function with pt Cr. Let a and b be
distinct elements of cr, cn = p(tn, a), dn = p(tn, b), for n G e. Then cn and dn

are recursive functions with pcpdCcr. Note that i/ k implies
(Ci,d,}^(ck,dk). Hence either pc or pd is an infinite r.e. subset of cr. Now
suppose that sn is a one-to-one recursive function with ps C cr. Put a = s0,
b = Si, c = 52, dn = sn+3, for n G e ; then a ^ c, b ̂  dn, for n G e; hence there is
a function rn from e into T such that p(rn, a)= b, p(rn,c)= dn. The function rn

is one-to-one and recursive; hence its range is an infinite r.e. subset of T.

DEFINITION D4. An a>-STT family ^ = (T, cr,p) is isolic if the sets r and
cr are isolated.

PROPOSITION C3. Let SP = (T,<J,P) be an isolic a>-STT family of degree N.
Suppose that a, b E a (where a = b or a/ b) and jab = { / £ T \p(t, a)= b).
Then ty has N — 1 members which map a onto b, that is, Req TO(, = N — 1.

PROOF. Assume the hypothesis. Let c G a, c/ a. Henceforth we keep a,
b, c fixed. Define a function fb by: 8fb = cr - (b) and for x G 8fb,

fb(x)= unique t E.r with p, (a) = b and p, (c) = x.

Clearly, fb maps a-(b) one-to-one into rab and has a partial recursive
extension. Let t' G Tat. Put x ' = p,(c); then x ' can be computed from ('; also,
fb(x')=t'. Thus fb maps a - (b) onto ra6 and / t 1 has a partial recursive
extension. It follows that a - (b) — Tab, i.e., that Req rab = Req a - 1 = N - 1.
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REMARK R4. Note that given two elements ft, x E <r with b/x, the
element fb(x) can be computed.

PROPOSITION C4. Every isolic <w-STT family of degree N has order
N(N-l).

PROOF. Let 0> = (x, cr,p) be an isolic w-STT family and let a,c
be distinct elements of <r. In this proof we keep a and c fixed. Define a
function g by:

8g = {/(ft, x) e e\b,xEa&b/x}, gj(b,x) = fb (x),

where fb(x) is the function defined in the proof of C3. In view of R4 the
function g has a partial recursive extension. Let /(ft, x), j(b',x')E Sg and
/(ft,x)//(ft',x'). If b^b', Tab and Tab' are disjoint; hence fb(x)ETab and
fb (x')E Tay imply fb (x)^ fb (*')• If o n t n e other hand b = b', we have x/ x'
and /(, (x)^ fb (x') since/b is one-to-one. We have shown that g is one-to-one.
Since x = U {Tab \b E T}, while fb maps <r - (ft) onto Tab, for ft 6 x, we see that
pg = T. Assume ( £ T ; then gj(b,x) = t, for ft = p, (a) and x = p, (c). Hence
g '(/) can be computed from t, and g~' has a partial recursive extension. Thus
T — Sg and

= Req T = Req Sg = Req/[(o- x a) ] = N2- N = N(N - 1).

COROLLARY. If 8P = (T, cr,p) is an isolic a»-STT family, the set cr is infinite
if and only if the set T is infinite, that is, a is immune if and only ifTis immune.

DEFINITION D5. An w-STT family 3P = (T, <r, p) is finite (immune), if the
sets r and o- are finite (immune).

DEFINITION D6. An o>-STT family Sf = (T,cr,p) is locally finite if for
every two nonempty finite sets x0, o"0 with T0 CT, CT0 C cr, there exist finite sets
T*, cr* with T0CT*CT, cr0Ca-*Ca such that $>* = (T*,a*,p*) with p* =
p |T*X a* is an w-STT family. Moreover, 9 is recursively locally finite if
given the nonempty finite sets T0, O"O such sets x* and o-* can be effectively
found.

PROPOSITION C5. Every isolic w-STT family is recursively locally finite.

PROOF. We may assume without loss of generality that the sets cr and x
of the w-STT family 01 = (x, a,p) are immune. Let nonempty finite sets x0, <x0

with x0Cx, CTOCCT be given. Suppose that a, ft, c, d are elements of cr with
a/ c, ft7^ d; from now on we keep these elements fixed. We may assume
without loss of generality that a, ft, c, d E cr0, for otherwise we adjoin them to
o-0- Put p0 = p | x0 x (To, SPo = (T0, <TO, p0); then we can effectively test whether 9a
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is an w-STT family; if it is, we are done. Now suppose that 0>o is not an o-STT
family and that q is the function mentioned in R2. We now adjoin (i) to a0

every element of the form p, (a,), where t G T0, ax G cr0, (ii) to r0 any element
of the form q{at, a2, ai, a*), where {au a2, a3, a4) belongs to atDSq. This
yields finite sets TU ax with T0CTICT, CT0C(TI Ccr. We continue this process
until it terminates, that is, until we obtain finite sets rk, crk which are closed
under the operations (i) and (ii). This will happen after finitely many steps,
since the extension process is effective, while T and a are immune. Let T*, cr*
be the finite sets obtained when the process terminates. Then 9* =
(T*,(T*,P*) with p* = p | T * X c r * i s a finite w-STT family such that <T0C(T* C
cr, To C T * CT. Note that T * and cr * can be computed from T0, cr0, p and q.

PROPOSITION C6. Let 0" = (T, <T,p) be an w-STT family. If 9 is isolic, it
satisfies the following condition: given .any elements t G T, a,bE.a with
p(t,a)^ b, there is a unique t' G T such that p(t', a)= b and p(t',x)^ p(t,x),
for all x G a, and this number t' can be effectively found from t, a, b.

PROOF. Assume the hypothesis. Since (b) holds for a finite STT, we may
suppose without loss of generality that T and cr are immune. Let t G T,
a, b G o- be given. Put T0 = (/), a0 = (a, b); then we can by C5 compute finite
sets T*, a* such that T 0 C T * C T , <T0C<T* Ca and *3>* = (T*, <r*,p*) with
p* = p |T*Xcr* is a finite o>-STT family. Since 9* is finite, we can
from T*, cr*, p* compute the unique t'E.T* such that p(t', a) = b and
p(t', x)^ p{t, x), for all x G cr*. If we can show that p(t', x)/ p(t, x), for all
x G a - o-*, we are done. Let x G <r - cr*; then there are finite sets f and <r
such that T* C f C T, cr* U (jf)C <r C cr and # = (f,a,p) with p = p | f x c r i s a
finite to-STT family. Let t be the unique element in f such that p(t, a) = b
and p(T,x)/p(t,x), for all x G a. Since cr* C cr it follows that f = f'; hence
p(r', x)^p(t, x), for all x G cr, in particular, p(t',x)?^ p(t,x).

PROPOSITION C7. Lef 3P = (T, a,p) be an isolic w-STT family. Then there
is an effective procedure which enables us, given t G T, S G cr, to find the unique
solution in a of the equation p,(x)= s.

PROOF. Let x0 be the desired solution. If the sets T and a are finite, x0

can be found by computing p, (x), for each x G a. If the sets T and a are
immune, we can reduce the problem to the finite case by C5.

PROPOSITION C8. Let SP = (T, cr,p) be an isolic OJ-STT family and let

t,t'&T,t/ t'. Then the equation

(I) p,(x) = p, (x), for x G cr,
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has at most one solution. Moreover, given t and t' we can (a) effectively decide
whether (I) has a solution, and (b) compute the solution, if there is one.

PROOF. Assume the hypothesis. Suppose (I) had two distinct solutions in
a, say x, and x2; put y, = p(f, x^, y2 = p(f, x2); then y, / y2, and since 9 is
STT, we conclude t = t', contrary to the hypothesis. Hence (I) has at most one
solution in cr. If the set cr is finite, we can compute p(t, x), p(t', x) for all x G cr
and thereby solve the problem. Now suppose that cr is infinite, then so is x.
We may assume an element a G cr as known. From a we compute b = p(t,a),
b' = p(t',a). If b = b' we have already found the unique solution of (I),
namely, x = a. Henceforth we assume fc/ b', i.e., p(t,a)^ b'. According to
C6 we can compute the unique f"E x such that

(1) p(t",a)=b' and p(t",x)^ p{t,x), for all x G cr.

By C5 we can construct finite sets x*, cr* such that a G cr*, t,t',t"E. x* and
for p* = p | x * x o - * , <3>* = (r*,cr*,p*) is an w-STT family. We claim that

(2) (I) has a solution in cr <=> (I) has a solution in cr*.

If we can establish (2) we are done, for (2) reduces the problem to the
solvability of (I) in the finite set cr*. Only the conditional from the left to the
right requires a proof. Assume that (I) has a solution in cr, say x = x. If /" were
equal to t', (I) would have no solution in cr by (1); hence t" / t'. Suppose that
XGCT-CT-*. Since x is the only solution of (I) in cr, we conclude that
p(t, x)/ p(t', x), for x G cr*. Using (1) and the fact that p* = p |x*x<x*, we
obtain

p*(t',a)=b' and p*(t',x)^ p*(t,x), for x G cr*,

p*(t",a)=b' and p*(t",x)/p*(t,x), for x G cr*.

Then an application of C6 to the finite w-STT family &>* would yield t' = t"
which is false. Thus x G cr* and (I) has a solution in cr*.

4. The main result

PROPOSITION C9. With every isolic to-STT family of degree N we can
associate an isolic affine w-plane of order N.

PROOF. Let 3? = (x, cr, p) be an isolic &>-STT family of degree N. We may
assume without loss of generality that x C{5V £ e ] y >0}, for if not, we can
according to R3 replace r by x* = {5Z+1 G e | z £ x}, since x = x*. The set cr is
recursively equivalent to some set which does not contain 0. By Cl we may
therefore assume without loss of generality that 0 £ o \ Define an incidence
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system F = (S, v, inc.) as follows: 8 = {2x3y G E \x, y G cr}, v = A U /u. U T,

where A = {2* G e j X G o-}, /^ = {3y G e | y G cr}; the inc. relation is such that

for x, y, u, v G a, / G T,

2*3y inc. 2" if and only if x = u,

2*3y inc. 3" if and only if y = v,

2*3y inc. t if and only if p,(x) = y.

The elements of 5 are called points; those of ^ //n^5. It follows from the
definition of F that

(1) any two distinct points q and r of F lie on exactly one line, say
Lr(q,r),

(2) calling two lines of F parallel if they are identical or have no point in
common, (1) implies that any two nonparallel lines u and v of F have exactly
one point in common, say Pr(u,v),

(3) for any point r and any line / of F, there is exactly one line of F
passing through r and parallel to /, say Qr(r, /),

(4) F has three noncollinear points, for if a and b are distinct elements of
cr, the points 2"3°, 2"3b, 263* are noncollinear.

We now prove that L,, Pr, Or have partial recursive extensions.
Re Lv. Let the points q = 2"36, r = 2C3J be given, where q ^ r; hence

a^ c or b^ d. Then

{ 2°, if a =c&b^ d,

3\ if a/c&b = d,

unique t G T such that p, (a) = ft, p, (c) = d, \i a/ c&b/ d.

Given q and r we can effectively decide which clause applies. Using condition
(2) of D2 we conclude that Lr(q,r) can be computed from q and r.

Re Pr- Let the nonparallel lines u and v of F be given. We may restrict
our attention to the following four cases.

(I) u G A, v G fi, say w = 2", v = 3b. Then F, (M, U) = 2a3".
(II) u E A, u G T, say M = 2". Then Pr(«, u) = 2a3p("").
(III) UG/JL, » £ r , say u = 3C. Then Pr(u, v) = 2°3C, where a is the

solution in a of pv(x)= c.
(IV) u, v G T. Note that for r , j £ < r ,

2'3y inc. u <$ pu(x)= y; 2*3y inc. u £> /?„(*)= y.

Given M and i; we can effectively decide which of the four cases holds, since A,
(i, T are separable. In the first two cases Pr(u,v) can clearly be computed
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from u and v, and in Case (III) it can be computed by C7. In Case (IV) there
are x, y £ <x such that pu (x) = y = pv (x), since u and v are not parallel; we
can then effectively solve pu(x) = pv(x) by C8. Let x' be the solution and
y' = pu (*'). Thus Pr(u, v) = 2*3y can be computed.

Re Or- Let a point r and a line / of F be given, say r = 2"3b. We
distinguish three cases.

(I) ! £ A , say / = 2C. Then Or(r, /) = 2°.
(II) /G/a , say / = 3d. Then Qr(r,/) = 3*.
(III) / G T. Let Qr(r, 0 = t. Every line in A U /u, intersects every line in

T; hence l ^ A U f i and f G T. Also,

2a3l> inc. / <=> p,(a)=b,

where we can test whether p, (a) = b; if this is the case, r inc. / and t = /. Now
suppose p,(a)/ b, that is, not (r inc./). Then the conditions on t are

(i) r inc. t, that is, p,(a)= b,
(ii) / and t have no common point, that is, p, (x)/p,(x), for all x G a.

According to C6 there is exactly one t G T which satisfies (i) and (ii) and it can
be computed from a, b and /.

We have proved that F = (S, v, inc.) is an affine w-plane. Since A =
{2* G e | x G cr}, we see that Req A = Req a = N. Then o(F) = N by (d).

DEFINITION D7. Let F = (S, v, inc.) be an affine a> -plane of order N. Then
F is normal, if there is a set a such that

(1) 0 £ o - and Reqo- = N,
(2) F has two distinct parallel sets A and y, such that

A = { 2 * 6 E | X £ ( T } ) /A ={3y G e |y GO-},

(3) 8 = {2x3y G e | x , y Go-},

(4) I dm = Im, for / G A, m G /u.

PROPOSITION CIO. With every affine w-plane of order N we can associate
a normal affine u>-plane of order N.

PROOF. Let F = (5, v, inc.) be an affine co-plane of order N. Let a G N
and 0 £ cr. We know by (d) that every parallel set of F has RET N. Let Ao and
Ho be two distinct parallel sets of F, /0G Ao, m0G fi0', from now on we keep l0

and m0 fixed. Since Req Ao = Req fi0 = N, there exist functions /, and mx with
partial recursive one-to-one extensions such that 5/ = 5m = a, pi = Ao, pm =
/Ho- Thus Ao = l(cr), fio= m(a). Put
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8h=e, h(z) = 5z+l, T = v - (AoUno), f = h{r),

A = {2* G e | x £ o-}, /I = {3y £ e | y e a).

We now define an incidence system F = (5, v, inc.) by:

5 = {2* 3y £ e | x, y G cr}, i> = A U /I U x,

and for JC, y, M, U G cr, t G f,

2*3yinc2" if and only if x = u,

2*3yinc. 3" if and only if y = v,

2*3yinc. / if and only if Pr[l{x),m(y)]inc.h~\t).

Define a function c as follows:

8c = 8 U v, c(t)= h(t), for t G x,

c/(x) = 2*, cm(y) = 3y, for x, y G cr,

cPr[/(x),m(y) ] = 2*3y, for x, y G a.

Then c is a one-to-one function from 8 U v onto 5 U v with c(5) = 6,
c(i') = v and p inc. / if and only if c(p)inc. c{l\, for p G 8, / G t-, i.e., c is an
isomorphism from T onto f. Thus, since F is an affine plane, so is the
incidence system F. We claim that the three sets Ao, (to, T are separable. For
let pa = Pr(l0, m0) and t0 any line of x through p0. Then we have for / £ v,

I £ Ao <=> Qripo, I) =k, I G no <» O. (po, /) = wo,

/ G x O Qr(p0,l)£(l0,m0).

Since Or has a partial recursive extension, we conclude that the three sets Ao,
fi0, T are separable. Thus the function c has a partial recursive extension.
Using the fact that the sets A, /I, x are separable we see that the function c"1

also has a partial recursive extension. It follows that the isomorphism c from
F onto F has a partial recursive one-to-one extension; thus, since F is an affine
w-plane, so is F. Let / G v, I = c(l); then c(5,) = ST. Hence Req 5, = Req Sr,
that is, o(F)= o(F). Finally, F is normal by its definition.

PROPOSITION C l l . With every isolic affine co-plane of order N we can
associate an isolic w-STT family of degree N.

PROOF. Let F = (5, v, inc.) be an isolic affine <w-plane of order N. In view
of CIO we may assume that F is normal. Let cr be a set in N and A, fi two
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distinct parallel sets of F such that the four conditions of D7 are satisfied. Let
T = v — (A U \JL ). For every t G T, X £ cr, we have 2* £ A, so that f D 2* is a
well-defined point of F. Define the function p by: Sp = T X <J and for
(f ,x)£Sp,

p(f, x) = unique y £ <r such that r fl 2* = 2x3y.

For each t £ T, p(f, X) = p, (X) is a function from cr into a. Let 3? =
{p, £ a" | f £ T}. We prove that £?> is an w-STT family on cr by showing:

(1) for each t £ T, p, is a permutation of cr,
(2) p(t,x) has a partial recursive extension,
(3) given (a, c),(b, d ) £ (cr x o-)~, there is a unique t £ T with p,(a)= b,

p,(c)= d and this t can be computed from a, b, c, d.
Re (1). Let t £ T. TO show that p, is one-to-one, assume a,b & a and

a^fc. Then a ^ b implies that the points q = f n 2" = 2a3p<I'l)and r = / n 2 " =
2!)3'I<'-'>) are distinct so that t = q-r.'lf p{t,a) were equal to p(t,b), say
p(t,a)~ p(t, b) = m, the line f would have two distinct points in common with
the line 3m, namely, 2"3m and 2fc3"1; then t = 3m and t £ /i., contrary to the fact
that f £ T. Hence p, (a) ^ p, (/>). To show that p, (a) = a\ assume x £ a. The
line r intersects the line 3' E /u., say in 2'3S; then ( 0 2 ' = 2'3S and p, (r) = s.
We have proved that p, is a permutation of cr.

.Re (2). Given (t,x)£ T X cr, we see that p(f,x) is the unique y such that
( 0 2 " = 2 ' 3 y , that is,

p{t,x) = unique y such that P, (t,2") = 2x3y.

Since P, has a partial recursive extension so has p(t,x).
Re (3). Let (a, c), (b, d) £ (cr x cr)" be given. Then

t ET&p(t, a)= b&p(t,c)=d O t Gr&t HI" inc.3"<&f n2cinc.3d

O f £ T& 2"2>b inc. r<fe 2c3d inc. t

O / £ T<£: / = L,• (2° 36,2C 3d), since a ^ c,

<=> L,(2a3b ,2c3d)£T.

Put n = L,(2u3b,2c3d); then n is well-defined, n has the point 2"2>" in
common with 2" and the point 2c3d with 2C. However, a/c so that n
intersects two different lines in A, hence n$£ A; similarly we see that n£ (i.
Thus n £ T. Moreover, since L r has a partial recursive extension, n can be
computed from a, b, c, d. We have proved that £P is an w-STT family on the
set cr, where Req a = N.

THEOREM. There exists an isolic affine w-plane of order N if and only if
there exists an isolic a»-STT family of degree N.
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PROOF. C9 and C l l .

PROPOSITION C12. There are exactly c=2"° isolic w-STT families.
Among these there are exactly c immune ones.

PROOF. D2 implies that there are at most c w-STT families; hence it
suffices to show that there are at least c immune w-STT families. According
to (e) there are c immune affine w-planes. Denote the continuum by C. Let
{I\ | A G C} be the family of all immune affine w-planes, where the mapping
A ^ T A is one-to-one. Put NA = o(rA), for A G C. With each A G C we
associate a line /A of FA and the set SA of all points on /A. Thus NA = Req 5A, for
A G C. An infinite isol contains only Ho sets, so that {NA | A G C} is a collection
of c infinite isols. For each A £ C there is an immune affine w -plane of order
NA, hence by the Theorem also an immune w-STT family of degree NA. Thus,
since {NA | A G C} has cardinality c, there are at least c immune w-STT
families.

5. Concluding remarks

R5. Let 0», = (T,,o-,,p,) and 0>2 = (T2,o-2,p2) be two w-STT families.
Then we define

3P, g &>2 as: T iCT

0>, < 0>2 as: 9'^

Let (!?„) be an infinite sequence of w-STT families, where &„ — {rn,crn,pn),
for n G e. Then (3Pn) is an ascending (strictly ascending) chain, if 3?n § $Pn + i

(respectively, Sfn < S^n+,), for n G e. If {9n) is an ascending chain, we define
U 2Pn as the system 0> = (T, a,p) such that

T = U T", <T = | J o-n, p = U P»>
n£( nGc ntEe

where p and pn are interpreted as collections of ordered pairs. Note that C5
implies that an immune w-STT family 2P can always be expressed in the form
$> = U ^ , , where {2Pn) is a strictly ascending chain of finite w-STT families. A
similar remark can be made about an immune affine (or projective) w-plane.

R6. An w-group is an ordered pair (a,o), where (i) a Ce, (ii) o is a
group operation on a x a which has a partial recursive extension, and (iii) the
function g(x) = x', for x G a, has a partial recursive extension. These
w-groups were introduced by M. J. Hassett (1969) and also studied by C. H.
Applebaum (1971). Now consider an w-STT family of permutations 3P =
(T,a,p). In case 3" is a group, we define for u, v G r,
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u °v = unique / £ i such that p, = pupu.

We like to point out that if Sf is a group, then (r,o) is an w-group. For let
a, c G <T, where a^c, and let u, u G T. Since p(t,x) has a partial recursive
extension, we can compute the numbers r = pupv(a) and s = pupv(c). How-
ever, a/ c implies r/ s and T contains exactly one t such that p, (a) = r and
p, (c) = s; hence this / equals u °v. It follows that the group operation o has a
partial recursive extension. Let g(t)=t~\ for t £ T. Given f G r we can
compute the numbers b = p,(a) and d = p, (c). However, a^ c implies b / d
and x contains exactly one t' such that p, (b) = a and p,(d) = c; hence this t'
equals g(t). We conclude that the function g(t) also has a partial recursive
extension so that (T,O) is an ai-group.
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