ON PARTIAL SUMS OF LAGRANGE'S SERIES WITH APPLICATION TO THE THEORY OF QUEUES

P. D. FINCH

(received 6 December 1962)

1. Introduction

Lagrange's theorem on the reversion of power series may be stated in the following form (e.g. Whittaker and Watson [3]).

THEOREM L. Let k(z) be a function of z analytic on and inside a contour C surrounding a point x and let y be such that for all points z on C

(1.1) |yk(z)| < |z-x|.

Then the equation

$$(1.2) z = x + yk(z),$$

regarded as an equation in z, has one root, ζ , in the interior of C and if $\phi(z)$ is any function of z analytic on and inside C

(1.3)
$$\phi(\zeta) = \phi(x) + \sum_{m=1}^{\infty} \frac{y^m}{m!} \frac{d^{m-1}}{dx^{m-1}} \left[\{k(x)\}^m \phi'(x) \right].$$

By a partial sum of Lagrange's series we mean an expression of the form

(1.4)
$$\phi^{n}(x) = \phi(x) + \sum_{m=1}^{n} \frac{y^{m}}{m!} D^{m-1}[\{k(x)\}^{m} D\phi(x)]$$

where $D \equiv d/dx$. In this paper we consider expressions $\phi_j^n(x)$ of the form (1.4) where $\phi(x) = \phi_j(x) = x^j$, $x \ge 0$, $j \ge 0$. We show that the $\phi_j^n(x)$ satisfy a certain set of difference equations which occur in the theory of queues. This result gives a simple proof of a conjecture of Finch [2] which has since been proved by Brockwell [1] using quite different methods.

2. The difference equation of partial sums

We prove the following

THEOREM. Let

$$(2.1) k(z) = \sum_{j=0}^{\infty} k_j z^j$$

be analytic in some region surrounding the point x, and let

(2.2)
$$\phi_{j}^{n}(x) = \phi_{j}(x) + \sum_{m=1}^{n} (y^{m}/m!) D^{m-1}[\{k(x)\}^{m} D\phi_{j}(x)]$$

where $\phi_i(x) = x^i$ and $D \equiv d/dx$. Then, $\phi_0^n(x) \equiv 1$ and

(2.3)
$$\phi_{j}^{n+1}(x) - x\phi_{j-1}^{n+1}(x) = y \sum_{i=0}^{\infty} k_{i} \phi_{j+i-1}^{n}(x), \qquad j \ge 1, n \ge 1.$$

PROOF. By definition $\phi_0^n(x) = \phi_0(x) \equiv 1$. For $j \ge 1$ we obtain from (2.2)

(2.4)
$$y \sum_{i=0}^{\infty} k_i \phi_{j+i-1}^n(x) = x \phi_{j-1}(x) - x \phi_{j-1}^{n+1} + \sum_{m=1}^{\infty} \frac{y^m}{m!} \psi_j^m(x),$$

where

(2.5)
$$\psi_j^m(x) = x D^{m-1}[\{k(x)\}^m D\phi_{j-1}(x)] + m D^{m-2}[\{k(x)\}^{m-1} D\{\phi_{j-1}(x)k(x)\}].$$

Expanding the terms on the right of (2.5) by Leibnitz' theorem and rearranging we obtain

(2.6)
$$\psi_j^m(x) = \sum_{s=0}^{m-1} {m-1 \choose s} [D^s\{k(x)\}^m] [xD^{m-s}\phi_{j-1}(x) + (m-s)D^{m-1-s}\phi_{j-1}(x)].$$

It can be verified readily or proved easily by induction that

$$xD^{m-s}\phi_{j-1}(x) + (m-s)D^{m-1-s}\phi_{j-1}(x) = D^{m-1}\phi_j(x).$$

Thus from (2.6)

$$\psi_j^m(x) = D^{m-1}[\{k(x)\}^m D\phi_j(x)].$$

Substituting in (2.4) we obtain (2.3). This proves the theorem.

COROLLARY. If k(z) is analytic at z = 0 then the quantities

(2.7)
$$\phi_{j}^{n} = (j/m) \sum_{m=j}^{n} \{(m-j)!\}^{-1} [D^{m-j}\{k(x)\}^{m}]_{x=0}, \qquad n \geq j \geq 1,$$

satisfy the equations

(2.8)
$$\phi_j^{n+1} = \sum_{i=0}^{\infty} k_i \phi_{j+i-1}^n$$

with $\phi_0^n \equiv 1$ and $\phi_j^n = 0$, $1 \leq n < j$ and initial conditions $\phi_0^1 = 1$, $\phi_1^1 = k_0$, $\phi_j^1 = 0, j > 1$.

The corollary is proved easily by putting x = 0, y = 1 in the theorem.

3. Application to the queueing system GI/M/1.

Consider the queueing system GI/M/1 in which the times at which customers arrive form a renewal process with inter-arrival distribution A(x) and in which the service-time distribution is exponential with parameter μ . Let P_j^n be the probability that the *n*th arrival finds *j* customers in the system, then

(3.1)
$$P_{j}^{n+1} = \sum_{i=0}^{\infty} k_{i} P_{j+i-1}^{n}, \qquad n \ge 1, j \ge 1$$

$$k_m = (m!)^{-1} \int_0^\infty (\mu x)^m e^{-\mu x} dA(x)$$

and
$$k(z) = \sum_{m=0}^{\infty} k_m z^m$$
 is analytic at $z =$

Write $Q_j^n = \sum_{m=j}^{\infty} P_m^{n+1}$, then Q_j^n is the probability that the (n+1) the arrival finds j or more customers in the system, and from (3.1)

0.

(3.2)
$$Q_j^{n+1} = \sum_{i=0}^{\infty} k_i Q_{j+i-1}^n, \qquad n \ge 1, j \ge 1,$$

with $Q_0^n \equiv 1$.

If the queueing system starts from emptiness, so that $P_0^1 = 1$, $P_j^1 = 0$, j > 0, we have $Q_0^1 = 1$, $Q_1^1 = k_0$ and $Q_j^1 = 0$ j > 1. Since the Q_j^{n+1} are uniquely determined by the Q_j^n we can appeal to the corollary of the theorem of the last section and deduce

(3.3)
$$Q_j^n = (j/m) \sum_{m=j}^n \{(m-j)!\}^{-1} [D^{m-j} \{k(x)\}^m]_{x=0}, \qquad n \ge j \ge 1.$$

When k'(1) > 1 a limiting distribution of queue size exists and $Q_j^n \to q^j$, $j \ge 1$ where 0 < q < 1 and q is the only root within the unit circle of the equation z = k(z). When $k'(1) \ge 1$ there is no root of this equation within the unit circle and a limiting distribution of queue size does not exist, in this case $Q_j^n \to 1$, $j \ge 1$.

Equation (3.3) establishes the conjecture of Finch [2] that the probabilities Q_i^n are given by the partial sums of the Lagrange series for q^i . As noted earlier this result has been proved by Brockwell, [1].

References

- [1] Brockwell, P. J., The transient behaviour of the queueing system GI/M/1, Journ. Aust. Math. Soc.
- [2] Finch, P. D., The single Server queueing system with non-recurrent input process and Erlang Service time, Journ. Aust. Math. Soc.
- [3] Whittaker, E. T. and Watson, G. N., Modern Analysis (Cambridge Univ. Press, 1950).

University of Melbourne.

where

[3]