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ABSTRACT. The main homogenization schemes used to model the behaviour of poly-
crystalline ice are assessed by studying the particular case of a two-dimensional polycrystal
which represents natural S2-columnar ice. The results of the uniform-stress, uniform-strain-
rate and one-site self-consistent models are compared to finite-element computations. The
comparisons were made using the same model of grain, described as a continuous trans-
versely isotropic medium, in the linear and non-linear cases. The uniform-stress and uni-
form-strain-rate models provide upper and lower bounds for the macroscopic fluidity
which are too far from each other to be useful when a degree of anisotropy relevant to ice is
considered. Although the self-consistent model gives a weak representation of the inter-
action between a grain and its surroundings, due to the strong anisotropy of the ice crystal,
the resulting macroscopic behaviour is found to be acceptable when compared to the results

from finite-element computations.

INTRODUCTION

A number of models have been developed recently to ac-
count for the anisotropic behaviour of polar ice and for the
evolution of its fabric, in order to improve ice-sheet flow
models. Most of these models are based on a “micro—macro”
approach which aims at deriving the mechanical properties
of a polycrystal of ice (the macroscale) from the knowledge
of the behaviour of its constituent grains (microscale). The
macroscopic properties are then obtained as averages of the
microscopic properties by using a homogenization proce-
dure. Micro-macro models differ from each other by the
homogenization methods and the associated hypotheses
which are used. Beside this class of models, Morland and
Staroszczyk (1998) and Staroszczyk and Morland’s (in
press) phenomenologically based model incorporates all
the mechanisms possibly involved on the grain scale into
one internal variable (the total current strain). By construc-
tion, this model cannot provide any information on what
can be experienced by an individual grain at the microscale,
but it should prove to be very efficient to solve large-scale
flow of ice sheets. Most of the micro-macro models devel-
oped to model the anisotropic behaviour of ice are based
on the assumption of a uniform state of stress in the poly-
crystal (Lliboutry, 1993; Azuma, 1994; Van der Veen and
Whillans, 1994; Mangeney and others, 1997, Godert and
Hutter, 1998; Gagliardini and Meyssonnier, 1999), and a
few are based on a self-consistent scheme (Castelnau and
others, 1996; Meyssonnier and Philip, 1996). Taylor-type
models based on the assumption of a uniform strain rate in
the polycrystal, and widely used in the metallurgy commu-
nity, have been dismissed by glaciologists due to the very
strong anisotropy of ice.

A comparison of the uniform-stress, uniform-strain-rate,
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and self-consistent models has been given by Castelnau and
others (1996). The aim of the present paper is to assess the
results given by these three types of micro-macro models
by comparison to finite-element simulations. As a first ap-
proach, the macroscopic behaviour of a two-dimensional
polycrystal is studied, which makes the numerical computa-
tions easier. Nonetheless, this problem is not purely aca-
demic since its solution can be applied to natural S2-
columnar ice loaded in its plane of isotropy. On the other
hand, since the general trends observed in a two-dimen-
sional situation are likely to occur in the modelling of a
three-dimensional polycrystal, this work is relevant to the
problem of modelling the anisotropic behaviour of polar ice.

GRAIN AND S2-ICE CONSTITUTIVE MODELS

A further simplification, which allows analytical calcu-
lations, is made by modelling the ice grain as a continuous
incompressible medium. The hexagonal symmetry of ice is
taken into account by assuming that the grain is transversely
1sotropic with its rotational symmetry axis parallel to the ice
crystal ¢ axis. When the behaviour is linear, this model is
fully equivalent to the description of crystal viscoplasticity
by dislocation glide in the basal-, prismatic- and pyramidal-
slip systems (see the Appendix). In the non-linear case this
equivalence 1s no longer satisfied, however, the transversely
isotropic model of grain should be acceptable when basal
glide is the dominant mechanism (see the Appendix).

S2 ice grows from the surface of calm water in a unidirec-
tional temperature gradient. Owing to the process of growth,
the grains are elongated columns aligned along the direction
of growth, and their ¢ axes are oriented randomly in the
plane perpendicular to that direction (see Fig. 1). Therefore
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the polycrystal of S2 ice exhibits macroscopically transverse
isotropy.

In the following, the material-symmetry reference frame
of a grainis denoted by R, and that of the S2-ice polycrystal
by R. The rotational symmetry z3 axis of R is the grain ¢
axis, whereas the T3 axis of R corresponds to the long direc-
tion of the columnar grains. Both grain and polycrystal are
incompressible, so their constitutive relation for linear beha-
viour can be expressed in R and R, respectively, by

4o —1

833 = 2m12 dss,

S12 = 2miadya, (1)

where s is the deviatoric stress tensor and d denotes the
strain-rate tensor (cf. Lliboutry, 1993). The parameters in
Relation (1) are defined as follows:

s11 — S22 = 2m12(di1 — da2) ,

S93 = 2mi9fdas, 831 = 2m128d31,

M2 1s the viscosity for shear in the plane of isotropy
(fEl, xQ):

o is the ratio of the axial viscosity along the x3 axis to the
axial viscosity in the plane of isotropy (1, x2) (i.e. visc-
osities corresponding to uniaxial compression along
these axes),

B is the ratio of the viscosity for shear parallel to the
plane of isotropy to 7;2.

When o = =1 the medium is isotropic and Relation (1)
reduces to the Newtonian viscous law with 719 =7, ie.
Sij = 27’]d¢j.

A generalization of (1) to the non-linear behaviour (see
Meyssonnier and Philip, 1999) is obtained by replacing 712
in (1) by an apparent viscosity defined as

77* — Afl/n ﬁ(()lfn)/n _ Afl,rifn, (2)
where
2 2 2 2 2 2
Yo = (da — 1)dg3 + (di1 — da2)” + 4dyy + 48(ds3 + dy) ),
(3)

and
2 2 s 4, 2
833+ (811 — 822)" + 457y + — (853 + 83,).

2
474 =

¢ da-—1

The two invariants ¥, and 7, are linked by

Yo = AT (5)
When the medium is isotropic &« = 8 = 1, Yo = 7 = 2d;;d;j,
T, = T = s;;5ij/2 and Relation (5) reduces to Glens law
with fluidity parameter A.

Relations (1) and (2) are valid for both the grain, with
the x3 axis corresponding to the grain c axis, and the poly-
crystal, with the T3 axis corresponding to the long direction
of the columns. In the following, the parameters relative to
the polycrystal are overlined.

FINITE-ELEMENT SIMULATIONS

Owing to the strong anisotropy of the single crystal, the visco-
plastic deformation of a grain loaded in a plane which con-
tains its ¢ axis can be considered as two-dimensional and this
plane strain assumption can be extended to model the flow of
S2 ice loaded 1n its plane of isotropy. The two-dimensional
problem was solved in the S2-polycrystal reference frame R
with the Z3 axis perpendicular to the plane of the flow.

The finite-element solution was obtained using a mixed
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C- axis

basal plane

Fig. 1. Structure of S2-columnar ice; the ¢ axis of each columnar
grain is perpendicular to its long direction; in the S2-polycrys-
tal, the long axes of the grains are parallel to the same direction,
shown as the Z.axis, and the grains c axes are randomly distrib-
uted in the (X,Y) plane ( perpendicular to the Z.axis ).

(velocity-pressure) formulation where the isotropic pressure
acts as a Lagrange multiplier to enforce incompressibility
(Meyssonnier, 1989). The S2-ice polycrystal was modelled
by a regular array of 1024 hexagonal grains with the same
dimensions in order to avoid additional stress concentra-
tions due to geometric defects at the triple points. Each
grain was modelled by six six-node triangular elements with
a quadratic interpolation of the velocities and a linear inter-
polation of the pressure.

The reference frame of each grain R was such that its
and z3 axes were in the plane of flow, the x5 axis, parallel to
the basal plane, being at angle ¢ with respect to the ; axis
of R. The basal-plane orientation of each hexagonal grain
was fixed by assigning the same constant value ¢ to the
orientation of its six constituent triangular elements. The
grain behaviour was modelled using Relations (1) and (2)
with n =1 and 3. The finite-element system was obtained
by computing the viscosity matrix corresponding to (1) with
the apparent viscosity 7}, given by (2) in R before expres-
sing it in R.

The macroscopic parameter A in Relation (2) was derived
from the total dissipated power computed when simulating a
uniaxial compression with the direction of loading in the
plane of isotropy of the polycrystal. Two types of conditions
were tried. The first corresponded to the simulation of a com-
pression test by prescribing a constant vertical component of
the velocity on the two horizontal sides of the polycrystal, with
a condition of perfect sliding in the horizontal direction. The
second consisted of applying a constant vertical-stress vector
on the horizontal sides. A condition of free surface on the two
other faces was assumed for both types. It was verified that for
each type of condition applied to the same polycrystal, the
macroscopic behaviour was unchanged if loading was exerted
on the vertical faces instead of the horizontal ones (owing to
the condition of plane strain dz3 = 0, the incompressibility
condition gives dyy = —822, and Relation (1) for the poly-
crystal leads to S33 = 0, therefore 511 = —S22).

The results presented were obtained by fixing the value of
« at | and varying the value of 3, which characterizes the re-
lative resistance to glide in the basal plane, from 8 =1 (iso-
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Fig. 2. Evolution of the normalized macroscopic flurdity as a
Sunction of 3 given by homogenization models ( Reuss: uni-
Sorm-stress; Taylor: uniform strain rate; S.C: one-site self-
consistent ) compared to finite-element results for n = I.

tropy) to 8 = 0.001 which seems to be a lower bound for the
single crystal (Duval and others, 1983; Mansuy and others,
1999). In the linear case, five computations were performed
for each value of 8 on five polycrystals with different random
distributions of the grain orientations. Owing to the large
number of grains involved, for a given (3 the values of A were
not significantly different from a polycrystal to the other (the
maximum deviation from the mean value was about 5% for
8 = 0.00], decreasing to 1% for 8 = 0.1). The influence of the
type of applied boundary condition was relatively more pro-
nounced, the velocity-type condition leading to lower values
of A than the stress-type condition (about 20% lower for 3 =
0.001,15% for 8 = 0.01,4% for = 0.1, and less than 1 % lower
for 8 > 0.5). By prescribing the same velocity to the bound-
aries of the grains with different orientations which are
located at the ends of the polycrystal, the velocity-type con-
dition gives results which tend to be closer to those obtained
with the uniform-strain-rate model. The stress-type condi-
tion is less constraining, because it is expressed as an inte-
gral-type boundary condition in the finite-element formu-
lation. As a consequence, only the results obtained by apply-

g, 3. Evolution of the normalized macroscopic fluidity as a
Sunction of 3 given by homogenization models ( Reuss: uni-

Jorm=stress; Taylor: uniform strain rate; S.C: one-site self-
consistent) compared to finite-element results for n = 3.
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ing the stress-type condition were considered. Since the num-
ber of grains per polycrystal seemed large enough to make
the macroscopic viscosity independent of the spatial distribu-
tion of the grains, only one polycrystal was considered for the
non-linear case with n = 3. The computed values of A are
shown in Figures 2 and 3.

HOMOGENIZED BEHAVIOUR
Notation

To simplify the expression of the analytical results under the
assumption of plane strain, the Z; and Ty axes of the poly-
crystal reference frame R are denoted by X and Y respect-
ively. For a grain, the x5 and z3 axes of R are denoted by z
and ¥, so that the ¢ axis of the grain is along the ¥y axis, and
the basal planes are parallel to the x axis at angle ¢ relative
to the X axis of R. Loading is exerted in the (X,Y) = (z,v)
plane. The components of vectors and tensors are written
with lower-case indices when expressed in R and with
upper-case indices when expressed in R. Only the quantities
related to the polycrystal are overlined. The viscosity in the
basal plane of the grain is denoted by 7., = 1, whereas the
viscosity of the polycrystal in its plane of isotropy (X,Y) is
denoted by 7yy = 7. Finally, the mean value of a quantity @
dependent on the grain orientation ¢ is defined by

<Q>= %/OWQOP) dp. (6)

Uniform-stress model

The uniform-stress model is based on Reuss’ assumption
that each grain behaves as an isolated crystal subjected to
the state of stress applied on the polycrystal boundary. It
provides a lower bound for the mean viscosity of the aggre-
gate (Kocks and others, 1998). With the assumption of plane
strain applied to the polycrystal, Relation (1) implies
Szz = 8., = 0, and with the assumption of a uniform state
of stress, s = 5, Relation (1) for the grain becomes
1 2a+1_ 1 =3

_ 11
Sz = Sz
2nda —1 W onda — 1

Ty
(7)

Note that the d., component is non-zero. The average visc-

dzz = dz

osity of the polycrystal is obtained by expressing the macro-
scopic strain rate d as the mean value <d > of the grains
strain rates. Using Relation (7) to express the components
of d in the reference frame R of the polycrystal as functions
of Sxyx and Sxy, the averaging formula (6) leads to

A 1(a+2 1
DA _t(er2 ®

n A 2\4a-1 g
in the case of a linear behaviour. For non-linear behaviour,
the apparent viscosities given by Relation (2) are expressed

in terms of 7, and T, given by (4). For n = 3 the averaging
procedure gives, after a simple but lengthy calculation,

A 3|/a+2 2+2a—|—2 1
4o —1

The two solutions forn =1and n = 3 satisfy dyy =<dyy>=

9)

A8 3Gia_1 3

0. The evolution of A as a function of § (for v = 1) is shown in
Figures 2 and 3. Note that A tends towards infinity as 3 tends
towards zero.
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Uniform-strain-rate model

The Taylor-type models assume a uniform strain rate in the
polycrystal. They provide an upper bound for the mean
viscosity of the polycrystal (Kocks and others, 1998). With
the assumption of plane strain applied to the polycrystal
and to the grains, Relation (1) with d = d becomes

200+ 1 4o — 1= _
3 Ay, 3 gy Szy= 277ﬁdzy-

(10)

The macroscopic behaviour is obtained by expressing S as

Sgz =21 Syy=—21

the average of s, using (10) expressed in R, and (6). In the
linear case the calculation is simple and gives
n A 2

7 A a+fp ()

For n = 3, the apparent viscosities given by (2) are ex-

pressed in terms of ¥, and 7, given by (3). Since the expres-
sion for 7 involves a non-integer power of ., the results
cannot be obtained in an analytical form. The two solutions
satisfy 577 =< szz >=0.The evolution of A as a function of
B (for o = 1) is shown in Figures 2 and 3. Note that A tends
towards a finite value as (3 tends towards zero.

SELF-CONSISTENT ONE-SITE MODEL

The one-site version of the self-consistent model does not
take into account the actual interaction of a grain with its
neighbourhood, but considers each grain as an inclusion
embedded in a homogeneous equivalent medium (HEM)
which has the mean properties of the aggregate. Doing so,
all the grains with the same orientation are represented by
a unique grain which is assumed to interact with the average
of all the possible neighbours of these grains, that is the
HEM. The first step consists in solving the inclusion
problem to obtain the interaction formula which gives the
strain rate in the inclusion as a function of the boundary
conditions applied at infinity to the polycrystal. Then the
macroscopic properties are derived by homogenization.

For the present application, owing to the assumption of
plane strain, the grain is considered as a two-dimensional
circular anisotropic inclusion embedded in a two-dimen-
sional isotropic equivalent medium. The detailed solution
of the inclusion problem is given by Meyssonnier and Philip
(1999). The solution for the points inside the inclusion in the
linear case is
r = Lamr ) dxy = LE.’M/’

14+ A 1+ X0
where A =7/ = A/A and d is the strain rate applied to
the HEM at infinity. Self-consistency is obtained by expres-

d; (12)

sing the macroscopic strain rate d as the mean value of d
(expressed in R), in which 7 is taken as the macroscopic
viscosity to be determined. By assuming that all the grains
have the same cylindrical shape and are oriented at ran-
dom, the mean value of d is given by (6), and the self-consis-
tency equation is obtained as

1 1

T+ha 1+A3 0 (13)

whose solution is

(14)
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Note that for a linear behaviour and for inclusions having
the same shape, expressing self-consistency on the stresses
leads to the same equation. Under the assumption of plane
strain, the expression (3) for 7, is 72 = 4(ad?, +ﬁd§y).
With the self-consistent solution (14), the following relation
between the grain parameters o, 3 and the viscosity ratio A

holds

@« __ B _ B (15)
1+X)? (1+A8)° (Va+vB?®
so that
73240(76253 (16)

(Va+v0B)

Equation (16) shows that the one-site self-consistent solution
of the linear problem is such that the power dissipated in a
grain does not depend on its orientation.

An estimate of the non-linear behaviour can be obtained
by assuming a uniform apparent viscosity in the inclusion
and in the HEM (Gilormini, 1996; Kocks and others, 1998).
Since 7, is independent of the grain orientation ¢ for n =1,
it can be shown that (14) and (16) are still valid for n = 3.
The self-consistent solution (14), written with the expres-
sions for the apparent viscosities of the inclusion and of the
HEM given by (2), becomes
n* A*l/n 7§17ﬂ>/n 1 .
T 1/ S a=m/m - JaB’ (17)

The macroscopic fluidity parameter A is then obtained
from (17) and (16) as

A ( 2 et 1

A Ma++B VaB

A=

(18)

DISCUSSION

Comparisons of the results obtained with the three homoge-
nization methods and with the finite-element computations
are shown in Figures 2 and 3 in the form of log—log dia-
grams. The uniform-stress and uniform-strain-rate models
provide upper and lower bounds which are too far from
each other to be useful. This gap increases as  decreases:
for 3= 10" the ratio of the two bounds is about 250 for
n = 1 and about 7.5 x10* for n = 3. In the range of 3 rele-
vant for ice, the ratio of A given by the self-consistent model
(Relation (18)) to the values derived from the finite-element
computation is between 1/3 and 3, depending on the value of
n. Therefore, as far as the finite-element simulations can be
considered, at least in principle, as the best representatives
of the actual behaviour of the polycrystal, the self-consistent
solution (18) is acceptable.

Inspection of Figures 2 and 3 shows that the parameter
0 of the uniform-stress model can always be tuned to fit a
given value of A (for this model 3 should not be considered
as an intrinsic parameter for the ice-crystal behaviour, but
as a model parameter to be adjusted so as to account for the
interactions between grains which cannot be accounted for
otherwise). This possibility is very limited with the uniform-
strain-rate model which gives a maximum value of A about
2 for n =1, and 5 for n = 3. The intercomparison of the
three homogenization methods done by Castelnau and
others (1996) led to the same conclusion.

The self-consistent model is based on the assumption
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Iig. 4. Ratio of the average of the power dissipated by the
grains to the macroscopic dissitpated power corresponding to
the one-site self-consustent solution ( for any n ).

that the neighbourhood of a grain can be considered as a
homogeneous medium. For S2 ice, and under the condition
of plane strain, this leads to a non-negligible difference
between the power dissipated by the macroscopic medium
P and the mean power dissipated by the grains <7P>.
Using Relations (3), (16) and (18), <P > =<,7, > is found
for any n as

<P>:4ﬂﬁ (19)

Va+VB)?'
The ratio <P > /P is less than unity for any value of 8/«
different from 1, and tends towards zero with 3 (see Fig. 4). It
is less than 60% in the range 0.001 < 3 <0.05 relevant to ice.
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This discrepancy is inherent in the one-site model which does
not take satisfactorily into account the grain-to-grain inter-
action. It is all the more important as the grain anisotropy is
stronger, and it can explain the results shown in Figures 2 and
3 : the finite-element simulation accounts for the interaction
between grains in a better way, and gives a lower macro-
scopic fluidity than the self-consistent model for n = 1,
whereas, for n = 3, the stronger stress perturbation obtained
with the finite-element simulation leads to a higher fluidity,
due to the non-linearity of the constitutive law. Figure 5 is an
additional illustration of the interaction between grains
obtained by the finite-element method, and seems to indicate
that there is no direct correlation between the orientation of a
grain and its state of deformation. However, the discrepancy
between the finite-element and one-site self-consistent results
should be reduced when the polycrystal exhibits a strong fab-
ric with the ¢ axes gathered along the same direction, since
the incompatibilities between grains should decrease com-
pared to those arising in an isotropic polycrystal.

CONCLUSION

The results of the uniform-stress, uniform-strain-rate and
self-consistent models have been compared to finite-element
computations of the macroscopic behaviour of a two-dimen-
sional polycrystal. The first two models cannot provide useful
information on the mean behaviour due to the large differ-
ence exhibited in the range of the grain-anisotropy parameter
relevant to ice. The macroscopic behaviour predicted by the

Ig. 5. Power dissipated at the grain scale obtained by finite-element simulations for grains (central hexagon ) whose basal planes, shown
by the arrows, are at 45° or 135° to the direction of compression. The darkened areas show the proportion of power dissipated in a triangular
element relative to the maximum puax dissipated in a triangle in the neighbourhood of the central grain. The inner hexagon shows the mean
power dissipated per grain (total power divided by the total number of grains in the finite-element mesh) relative to Pyax. Different
polycrystals ( P,,) correspond to different random distribution of the ¢ axes. (a and b) Py, 3 = 0.00L (¢) P1,3 =01 (d) P, =
00L; (¢) Py, 3 =00L (f) Ps, 3 =0.0L
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one-site self-consistent scheme is acceptable. However it does
not take into account the interactions between grains prop-
erly and its results should be considered carefully when used
to derive local properties at the grain scale.
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APPENDIX

A classical approach used in crystal viscoplasticity (Kocks
and others, 1998) describes the dependency of the shear

S

strain rate 7° in the slip system (s) on the resolved shear

120

https://doi.org/10.3189/172756400781820598 Published online by Cambridge University Press

stress 7° acting in (s) by a power law of the form +° =
é()’TS/’rj‘ntlTS/Ti, where € is a reference strain rate and
75 characterizes the resistance to shear in (s). Denoting the
unit normal to the slip plane by n® and the unit vector in the
slip direction (Burger vector) by b® expressed in a fixed re-
ference frame, the resolved shear stress on (s) is given by
7 =sm®, where s is the deviatoric stress acting on the
crystal, and m® is the Schmid tensor of components
m;; = (bjn; + bin?)/2. The velocity gradient resulting
fromslipin (s) is L;; = §°bjn} and the corresponding strain
rate is d* = ¥*m®. The strain rate d resulting from slip on
several systems is the sum of d® over all the active systems:
d =), d’ In the following, we assume that the exponent
n® = n in the expression for ¥*, is the same for all the active
slip systems, and the reference strain rate € is omitted. Fol-
lowing Castelnau and others (1996), the resistances 7. to
shear in the basal-, prismatic- and pyramidal-slip systems
are denoted by 7,, 7, and 7, respectively.

The three glide directions in the basal plane (0,0,0,1)
are <2,1,1,0>. The prismatic planes {0,1,1,0} provide
three slip systems with the same Burger vectors as the basal
systems. According to Castelnau and others (1996), the pyr-
amidal planes provide six slip systems in the planes
{1,1,2,2}, with respective Burger vectors <1,1,2,3> out
of the basal plane.

For n =1, from the application of the above formula to
ice, the strain-rate components are calculated as

3 3l u?
d _ _ al’c _ _ 6
11 8 (s11 — s22) + i, (s11 — 822 $33),
3 212
dyy = 8 (s11 — 822) +—25 (592 — s11 — 6533),
Th Tc
2.9
ds3 = N:MC 533,
C
(A1)
3 3(p2 — p2)*
dor = —— 5o a c ;
23 i, So3 + or 523,
(12— 1i2)°
d — a C .
3= - s31 + o 831,
2,2
dipg = —s12+ Palle 512,
4Tb Tc

where p, = a/Va? + ¢ and p. = ¢/Va? + 2.

This relation is fully equivalent to the transversely iso-
tropic grain formulation. By identifying Relation (Al) with
(1), the relations between the resistances to shear on the slip
systems, the ice-lattice parameters a and ¢, and the grain
model parameters 712, ¢, 3, are obtained as

1o,

me 27, Te

Ta

2,2
1 3
Nauc) , Q= > + 3,
16”3/‘1’3 Th 8

A2
Te + 202 T, (42)

a T Te + 2(”3 - MZ)QTa

With ¢/a = 1.629, the values of & and 3 which correspond to
the ratios 7y, /7o = 7./Ta = 70 used by Castelnau and others
(1996) are a = 0.7 and B ~ 0.02. For n = 3, only the compo-
nents of d arising from glide on the basal and prismatic sys-
tems are found to exhibit rotational symmetry around the ¢
axis (in agreement with Kamb’s (1961) results).
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