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Abstract. We use geometric information obtained from the generic initial ideal of a hyperplane
section of a surface in P4 not of general type to bound the degree of such a surface.
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This is a continuation of the papers of Braun and Fløystad [BF] and Cook [C] on
the bound on the degree of smooth surfaces not of general type in P4.

We will prove the following:

THEOREM 1. Let S be a smooth surface of degree d in P4 not of general type.
Then d 6 66.

The new idea in this paper is to bound the degree of the sporadic zeros of a
generic hyperplane section of the surface by considering the geometric implications
of having sporadic zeros in high degree. First, we need to collect various theorems
and formulae from earlier sources.

1. If S is a smooth surface in P4 then it satisfies the double point formula ([H,
pg. 434])

d2 � 5d� 10(� � 1) + 2(6�OS �K2) = 0: (1)

2. The following result of Ellingsrud and Peskine gives us some initial bounds.

PROPOSITION 2 ([EP]). If S is a smooth surface not of general type in P4, then for
� = 5; 6 or 7, either degS 6 5(�+1)(��2)=(��4) or S lies on a hypersurface,
V� , of degree �.

In particular, deg S 6 66 or S � V7, so we may assume that S lies on
a hypersurface of degree 7. Furthermore it is known ([K]), that if S lies on a
hypersurface of degree 3 then deg S 6 8: Therefore we may assume that S lies on
a hypersurface of minimal degree s = 4; 5; 6 or 7.
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3. If S is a surface not of general type and the degree of S > 5 then K2 6 9.
([BPV])

4. In [BF], �OS is bounded from below, using generic initial ideal theory, in
terms of invariants arising from a generic hyperplane section C of S:

Let C[x0; x1; x2; x3] be the ring of polynomials of P3 under the reverse lexi-
cographical ordering. Let C be a curve in P3, then the generic initial ideal of C ,
gin(IC), is generated by elements of the form xi0x

j
1x

k
2 .

DEFINITION. A monomial xa0x
b
1x

c
2 is a sporadic zero of C if xa0x

b
1x

c
2 =2 gin(IC),

but there exists c0 > c such that xa0x
b
1x

c0

2 2 gin(IC).
Let �t is the number of sporadic zeros in degree t and assume�t = 0 for t > m.
Let � be a generic hyperplane section of C . Then

gin(I�) = gin(IC)sat
x3=0;

where the saturation is with respect to x2. The generic initial ideal of � is of the
form

gin(I�) = (xs0; x
s�1
0 x

�s�1
1 ; : : : ; x

�0
1 );

where
P
�i = d and �i+1 + 2 > �i > �i+1 + 1. The �0 > �1 > � � � > �s�1 > 0

are called the connected invariants of �.
In [BF] they show that

�OS >

s�1X
t=0

��
�t + t� 1

3

�
�

�
t� 1

3

��
�

mX
t=0

�t(t� 1): (2)

5. If � is the genus of C , then

� = 1 +
s�1X
i=0

��
�i
2

�
+ (i� 1)�i

�
�

mX
t=0

�t: (3)

Combining all these facts we obtain

18 > 2K2 = d2 � 5d� 10(� � 1) + 12�OS

> d2 � 5d� 10

 
s�1X
i=0

��
�i
2

�
+ (i� 1)�i

�
�

mX
t=0

�t

!

+12

 
s�1X
t=0

��
�t + t� 1

3

�
�

�
t� 1

3

��
�

mX
t=0

�t(t� 1)

!
: (4)

6. By the work of Gruson and Peskine ([GP]) on the numerical invariants of
points in P2 we have, for d > (s� 1)2 + 1

1 +
s�1X
i=0

��
�i
2

�
+ (i� 1)�i

�
6
d2

2s
+ (s� 4)

d

2
+ 1 = G(d; s): (5)
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7. Braun and Floystad ([BF]) show that if s > 2 and d > (s� 1)2 + 1

s�1X
t=0

��
�t + t� 1

3

�
�

�
t� 1

3

��
> s

 
d
s +

s�3
2

3

!
+ 1�

�
s� 1

4

�
: (6)

Thus

18 > d2 � 5d� 10

 
d2

2s
+ (s� 4)

d

2
�

mX
t=0

�t

!

+12

 
s

 
d
s +

s�3
2

3

!
+ 1�

�
s� 1

4

�
�

mX
t=0

�t(t� 1)

!

= d2 � 5d� 10

 
d2

2s
+ (s� 4)

d

2

!
+ 12s

 
d
s +

s�3
2

3

!

+12
�

1�
�
s� 1

4

��
�

mX
t=0

�t(12t� 22): (7)

We will use Equation (7) to get an initial bound on the degree and then, using
Mathematica c and Equation (4), we will improve the bound.

Thus, we need to find the smallest possible upper bound for
Pm

t=0 �t(12t� 22)
or equivalently A =

Pm
t=0 �tt.

We will bound A by bounding the number of sporadic zeros and then by
bounding the degree of the sporadic zeros by geometric considerations.

The bound on the number of sporadic zeros

Let  = G(d; s) � �. Any bound on  will also bound the number of sporadic
zeros (see Equations (3) and (5)). By [EP],  6 d(s� 1)2=2s. Furthermore, if S is
a surface not of general type (of degree > 5) we have K2 < 6�, substituting this
into the double point formula (1), we get � > (d2 � 5d+ 10)=10 and thus

X
�t 6 1 +

s�1X
i=0

��
�i
2

�
+ (i� 1)�i

�
�
d2 � 5d+ 10

10
; (8)

or

 6
d2

2s
+ (s� 4)

d

2
�
d2 � 5d

10
:

Taking the minimum of the bounds for , we get, for s = 4;  6 9d=8, for
s = 5;  6 d, for s = 6;  6 d(90� d)=60 and for s = 7;  6 d(70� d)=35.

The bound on the degree of sporadic zeros

For Equations (7) and (4) to hold for large degree, A will need to be large. If we
have sporadic zeros in large degree this would improve our chances of making A
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large enough. Furthermore, every generator of gin(IC) of the form xa0x
b
1x

c
2 with

c > 0 gives us a sporadic zero in each degree i for a + b 6 i 6 a + b + c � 1.
Thus we could obtain the largest upper bound on A by assuming that there were
one generator of gin(IC) of the form x�0

1 xz2 where z is the maximum number of
sporadic zeros. Then A 6

P�0+z�1
�0

t: But (as we saw in [C]) this bound is much
too big.

Let us consider the following situation. Suppose C � P
3 is a smooth curve

such that gin(IC) has at least three generators, one of which, M , is of degree r and
all the others are of degree 6 r � 2.

LEMMA 3. C has a secant line of order r.
Proof. Every minimal generator of gin(IC) either arises from a minimal gen-

erator of IC or from a generator of gin(IC) in one degree lower. (See [B])
Let J be the ideal generated by elements of IC in degree6 r�1. By considering

the Hilbert function associated to J , we see that degree (V (J)) = degree (C) + 1.
Hence, V (J) = C [X and X � L a line.

Let f be the generator of IC in degree r corresponding to M and let F =
ff = 0g. By Bezout’s Theorem F \L in r points (up to multiplicity) and all these
points must lie on C . Let F \ L =

P
mipi where pi are the points of C .

Claim. L meets C at pi with multiplicity mi.

Proof of Claim. C is locally cut out at pi by polynomials F1 and F2 of degree
r. The line L = fl1 = l2 = 0g meets V (F1) and V (F2) at pi with multiplicity mi

and thus

length

 
OP3;pi

l1; l2; Fj

!
= mi;

for j = 1; 2.
However

OP3;pi

l1; l2; Fj
=

O
P

1;pi

Fj jl1=l2=0
;

and Fj jl1=l2=0 = tmi where t is the local defining equation of pi in L.
Hence

length
�

OP3;pi

l1; l2; F1; F2

�
= mi;

and this is the intersection multiplicity of L and C at pi. 2

Let us now return to the case where S � P
4 is a smooth surface not of general

type. Suppose that for generic hyperplanes H = fh = 0g, the generic hyperplane
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section Ch of S is such that gin(ICh
) has at least three generators, one in degree

r > d=2 and all others in degree 6 r � 2 and hence, by Lemma 3, Ch has an
r-secant line, Lh.

LEMMA 4. Generically, these secant lines are secant lines of S.
Proof. Suppose for a generic h, Lh � S. Then for a generic hyperplane H ,

S \H � Lh. But generically S \H is a smooth irreducible curve, and hence must
be Lh. But then S = P

2. 2

Thus we are in the following situation. For a generic hyperplane H = fh = 0g
there exists Lh � H such that Lh is a secant line of S of order r > d=2. Let
B � G(1; 4) parametrize these secant lines in the Grassmannian of lines in P4.
Let V = [b2BLb be the union of these lines in P4.

PROPOSITION 5. S contains a plane curve of degree > r.
Proof. As any line in P4 is contained in a 2-dimensional family of hyperplanes,

the dimension of B > 2:

V \S is at most a 2-dimensional space, so if the dimension of B > 3, two lines
must meet. Let L1 and L2 be two of these intersecting lines. Let P be the plane
containing the lines. Then S intersects P in at least 2r � 1 > d points and hence
S \ P � C a plane curve. As the secant lines Li will meet C with multiplicity at
least r, the degree of C > r > d=2.

Now suppose the dimension of B = 2 and no two lines from B meet. Let

�: B �B ��� ! P4
�
;

send the pair (a; b) 2 B � B to the hyperplane containing la and lb. As all lines
from B are skew this map is well defined away from the diagonal.

If the dimension of the image of � is 4, then there exists a generic hyperplane
which contains two r-secant lines. However this contradicts the generic hyperplane
section having only one r-secant line.

If the dimension of a fiber is > 2, then S would be contained in the hyperplane
of the image. However S is non-degenerate.

Thus the generic fiber is 1-dimensional and the image of � is 3-dimensional.
That is, there is a 3-dimensional space of hyperplanes in P4 each containing a
1-dimensional family of skew r-secant lines of S.

LetH = fh = 0g be a hyperplane in the image of� containing a 1-dimensional
family of skew lines. Let Sh � H be the surface which is the union of these lines.
ISh = (fh; h).

Sh \ S = C = [b2B;lb�H(lb \ S):

All points of C lie on an r-secant line, hence if g 2 IC is a polynomial of degree
6 r�1, g must vanish on Sh. Therefore the only generator of IC in degree6 r�1
is fh (and h).
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Sh � H and S \H = Ch is a hyperplane section of S containing C and hence
ICh

� IC and so all generators of ICh
in degree 6 r � 1 are divisible by fh

Now S is contained in a hypersurface V� � P
4 of degree � 6 7 < r � 1,

where V� = ff� = 0g. Hence V�jh=0 contains Sh for generic H in the image of
� and thus V� contains the union of all these surfaces, which must form a three-
dimensional space. As V� is irreducible, any polynomial in the ideal of S of degree
6 r � 1 must be divisible by f� and so IS has only the one generator in degree
6 r � 1. But this is impossible.

Hence there must be two secant lines meeting and as in the case of dim(B) =
3 or 4, we get a plane curve of degree > r > d=2. 2

LEMMA 6. If S is a smooth surface not of general type in P4 of d > 50, S cannot
contain a plane curve of degree r > d=2.

Proof. Let C � P be a plane curve of degree r > d=2 contained in S. Let H
be a hyperplane containing P .

Then S \H = Ch = C [ Cres.
We have

0 ! OC[Cres ! OC �OCres ! OC\Cres ! 0;

therefore

h1(OCh
) > h1(OC) + h1(OCres)

and hence

g(Ch) > g(C) + g(Cres) > g(C):

C is a plane curve of degree dC > d=2 and so

g(C) =
(dC � 1)(dC � 2)

2
� � >

(d2 � 1)(d2 � 2)

2
:

On the other hand, by the Gruson–Peskine ([GP]) bound

g(Ch) 6
d2

2s
+ (s� 4)

d

2
+ 1:

(The inequality is true for general hyperplane sections and as the projective genus
will stay constant it is true for all hyperplane sections.) Hence

d2

2s
+ (s� 4)

d

2
+ 1 >

(d2 � 1)(d2 � 2)

2
:
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This means for s = 7, degree 6 42, for s = 6, degree 6 42 and for s = 5, degree
6 50:

For s = 4 the inequality holds. However the Gruson–Peskine inequality assumes
there are no sporadic zeros. If we suppose that the number of sporadic zeros is
6 3d=4 then naively we haveA 6

P�0+(3d=4)�1
�0

t: By connectedness�0 6 d=4+3
and hence A 6 (5=32)d2 + (13=8)d � 3. Substituting back into Equation (7) we
get

0 >
d3

8
�

23
8
d2 �

17
2
d+ 33;

and hence d 6 25. Therefore we may assume that the number of sporadic zeros is
> 3d=4, then g(Ch) < d2=8 + 1� 3d=4 and we in fact get a contradiction. 2

Thus if the degree ofS > 50 andS lies on a hypersurface of degree 4, 5, 6 or 7, then
a generic hyperplane section C of S cannot have an r-secant line with r > d=2. In
terms of the generic initial ideal of C , this means that, either

(1) All generators of gin(IC) are in degree 6 d=2
or

(2) If there exists a generator of gin(IC) in maximal degree r > d=2 then there
must exist a second generator in degree r � 1.

We want to maximize A =
Pm

t=0 �tt subject to conditions (1) and (2). Let z be the
maximum number of sporadic zeros.

(i) If �0 + z � 1 6 d=2 then A 6
P�0+z�1

t=�0
t:

(ii) If �0 + z � 1 > d=2 but �0 + �1 + z � 1 6 d then A 6
Pbd=2c

t=�0
t +Pz�bd=2c+�0+�1�1

t=�1+1 t:

(iii) If�0+�1+z�1 > d let r = d(�0+�1+z)=2e thenA 6
Pr

t=�0
t+
Pr�1

t=�1+1 t:

To get a first estimate of A we have, by the connectedness of the invariants,
�0 6 d=s+ s� 1 and �1 6 d=s+ s� 2.

Using the bounds on , we get

for s = 4; A 6 153
256d

2 + 45
16d+

1
4 ;

for s = 5; A 6 9
20d

2 + 7
2d+

1
4 :

Substituting back into the original Equation (7) above, we get

for s = 4; 0 > 1
8d

3 � 523
64 d

2 � 29
2 d� 6 and hence d 6 67;

for s = 5; 0 > 2
25d

3 � 27
5 d

2 � 32d� 21 and hence d 6 71:
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We now need to consider Equation (4) which is much more accurate than
Equation (7). From point 2, we know that either deg S 6 90 or S is contained
in a hypersurface of degree 5. Furthermore, if S is contained in a hypersurface
of degree 5 then d 6 71 and if S is contained in a hypersurface of degree 4 then
d 6 67. Therefore we can write down all possible configurations of the connected
invariants �0 > �1 > � � � > �s�1 for high degree.

For example if s = 5 and d = 71 the possible invariants are

18 > 16 > 14 > 12 > 11

17 > 16 > 14 > 13 > 11

17 > 15 > 14 > 13 > 12:

(To obtain the list we used a program of Rich Liebling.)
We then obtain an upper bound on the number of sporadic zeros, z using

z 6
d2

8
�
X��

�i
2

�
� (i� 1)�i

�
+

9d
8

if s = 4;

and Equation (8) if s > 5.
We again get an upper bound onA using (i), (ii), or (iii). Substituting everything

into Equation (4) and see when the inequality holds. (We checked the inequalities
on Mathematica c.)

We get s 6 7 and

for s = 7; d 6 43

for s = 6; d 6 44

for s = 5; d 6 66

and for s = 4; d 6 65:
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