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MACKEY BOREL STRUCTURE FOR THE QUASI-DUAL 
OF A SEPARABLE C*-ALGEBRA 

H E R B E R T HALPERN 

1. I n t r o d u c t i o n . Let A be a separable C*-algebra. Two representations 
7T and 7Ti of A on the Hilbert spaces H and Hlt respectively are said to be 
quasi-equivalent (denoted by -K ~ m) if projections of H 0 Hi on the invar iant 
subspaces H and Hi of (? r© in)(A) have the same central support in the 
com m uta n t (T 0 m) (A)' of (TT 0 m) (A), or equivalently, if there is an 
isomorphism <f> of TT(A)" onto iri(A)'f such t ha t <j)(ir(x)) = wi(x) for all 
x £ A (cf. [5, § 5]). A representation ir oî A is said to be a factor representation 
if the center of ir{A)" consists of scalar multiples of the identi ty. The relation 
^ part i t ions the set of factor representations of A into quasi-equivalence 
classes. Let Â be the set of all quasi-equivalence classes of factor representat ions 
of A. Let [w] denote the quasi-equivalence class containing the representation T. 

Let H be any Hilbert space and let Rep(^l , H) be the space of all represen­
ta t ions of A on H with the topology of pointwise convergence, i.e., irn —» T if 
and only if wn(x)Ç —> 7r(x)f for all x G A, f £ H. For each T £ Rep (^4, i f ) , 
let H(w) denote the essential subspace of x, i.e. the orthogonal complement of 
the subspace {f 6 i7|7r(x)f = 0 for all x £ ^4}. The subspace H(ir) is invar iant 
under w(A). For every TT let ir' denote the restriction of ir to H(w). Le t 
Fac (A, i7) be the set of all non-zero representations T of A on H such t h a t 
the restriction ir' of 7r to i^(7r) is a factor representation on H(TT) and, for each 
w = 1, 2, . . . , oo, let 

Facn(A,H) = {TT Ç F a c ( 4 , # ) | d i m #(*•) = n} . 

Let Fac (A, H) and Facw(^4, H) have the topology induced by Rep (A, H). 
From now on let H be a fixed separable infinite dimensional Hilbert space 

and let \Hn\n = 1, 2, . . . , oo} be an increasing sequence of subspaces of i 7 
with dim Hn = tt and Hœ = H. Let Facw(^4, ifw) be the space of all nonzero 
factor representat ions of A on Hn. T h e family M of all subsets X of Â such 
t ha t each set {x G Facw(^4, i ^ ) | | V ] Ç I | is a Borel set in Facw(^4, i7w) is a 
(7-ring and i f is called the Mackey Borel structure of Â (cf. [5, § 7]). 

A s ta te f of A is said to be a factor state of A if the canonical representat ion 
Tf induced by f is a factor representation (cf. [5, § 2]). Let F (A) be the space 
of all factor s ta tes of A with the relativized w*-topology. We say the factor 
s t a t e s / and g are quasi-equivalent (denoted by / ~ g) if 717 ~ irg. 

Now let ^ be the map of Fac {A, H) (respectively Facœ(^4, Hœ), F (A)) into 
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Â given by ~(w) = [V] (respectively ~(TT) = [ir], ~(f) = [717]). In this 
note we show t h a t ~ is surjective and the Mackey Borel s t ruc ture of Â is the 
quot ient Borel s t ructure , i.e., X is a Mackey Borel set in Â if and only if 
~-l(X) is Borel. 

2. Borel s t r u c t u r e s . For every n = 1, 2, . . . , 00, let Jn be the space of 
all part ial isometries of H with domain suppor t Hn t aken with the *-strong 
topology and let Un be the subgroup of Jn of all part ial isometries of Jn whose 
range suppor t is also Hn. T h e n the pair (Uni Jn) can be made into a t rans­
formation group by defining the action of Un on Jn as (u, j) —> ju*. If both 
Jn and Un are polonais spaces (i.e. they are separable and metr izable by a 
complete metr ic) and if the function (u, j) —*ju* is cont inuous (Un, Jn) is 
said to be a polonais t ransformation group. A subset Tn of Jn is said to be a 
transversal of Jn/Un if Tn intersects each equivalence class {jUn\j G Jn) in 
precisely one point, (cf. [6]). T h e first lemma applies to L. T . Gardner ' s 
analysis [8, Lemma 1] of polonais t ransformation groups to a wider class of 
objects needed in s tudying quasi-equivalence relations. 

L E M M A 1. For every n = 1, 2, . . . , 00, the pair (Uny Jn) is a polonais trans­
formation group and J J Un has a Borel transversal Tn. 

Proof. Since the proof for n = GO is found in [8, L e m m a 1], we assume tha t 
n is finite. Le t {f t}, {f /} and {f / '} be sequences of uni t vectors t h a t are dense 
in the sets {f £ Hn\ ||f|| = 1}, {f G H Q Hn\ \\?\\ = 1} and {f G H\ ||f|| = 1} 
respectively. Let 

sik = {x e Lx(ff)| iub,| (xf,, r/01 > 1 - fe-1} 
for all i, k = 1 , 2 , . . . , and let 

Sm = K LX{H)\ | (3Cf / , r / , ) l < fr"1} 

for all f, j , k = 1, 2, . . . . T h e sets Sik, Sik*, Sijk, Sijk* are open subsets of 
Li(H) with the *-strong topology. T h u s the sets 

Jn = (n 5tt) n (n 5„*) 

are G5 sets in L i (i7). Because L i (iJ) is a polonais space in the *-strong topology, 
the spaces Jn and Un are polonais in the *-strong topology. 

T h e remainder of the proof showing t h a t (Un, Jn) is a t ransformation group 
and t h a t J J Un has a Borel transversal can be proved in the same way as L e m m a 
1 in [8]. 

Now let dn be the m a p of Facw(^4, Hn) X Jn into Rep {A, H) given by 
0n(?r> j) = jnj*. W e have the following proposition. 

PROPOSITION 2. For every n = 1, 2, . . . , 00, the subset Facw(^4, H) is a Borel 
subset of Rep (A, H) and the restriction dn' of Bn to Facn(^4, Hn) X Tn is a Borel 
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isomorphism of Facw(^4, Hn) X Tn onto Facw(-4, H) such that 0n
f (ir, j)f ~ TT for 

all (TJ) £ Facn(A,Hn) X Tn. 

Proof. The map 6n is continuous since Jn is taken with its *-strong topology. 
We show tha t 0n' is a one-one function. Let ir, in be in Facw(^4, Hn) and j,ji be 
in Tn. If jirj* = jiTiji*, then the ranges of j and j \ coincide. This follows from 
the fact t ha t both {TT(X)Ç\X 6 A, f G £T„j and {iri(#)fl* G i , f G -H»} are 
dense in ifw; otherwise, the projection corresponding to the closure would be 
a nontrivial projection in the center of the von Neumann algebra generated by 
ir (A) or iri(A). This proves t ha t j*ji = u £ Un and thus t ha t j = ji and 
7T == 7Ti. Hence the map 0n' is one-one. Because Facw(^4, £Tn) X Tn is a Borel 
subset of Facw(^4, Hn) X / n and in part icular is a s tandard Borel space (i.e. is 
isomorphic to a Borel subspace of a polonais space) [5, 7.1.2, 3.7.1, Lemma 1; 1, 
p . 5] and because Rep(^4, H) is a s tandard Borel space [5, 3.7.1] and in par­
ticular is a countably generated Borel space, the image of Facw(^4, Hn) X Tn 

under 6n
r is a Borel subset of Rep (A, H) [1, Proposition 2.5]. Now it is clear 

t h a t dn'(ir, jY ~ ir and tha t dim H(6n'(ir, j)) — n. Therefore, the image of 
6n

f is contained in Fa,cn(A, H). Thus , it remains to be shown tha t 0n' maps 
onto Facn(^4, H). If T G Facw(^4, H), there is a j Ç Jn and a TI G Facw(^4, Hn) 
with jirij* = 7T. Bu t j may be writ ten as j = jiU for j 1 £ Tn and w in Un. 
Because the restriction 7r2 of UTT\U* to its invar iant subspace Hn is a nonzero 
factor representat ion, we see t h a t ir is in the image of 0n

r by expressing T as 
7T = 6n

f (w2y i i ) . Hence the image of 0,/ is precisely Facw(^4, i ? ) . 

COROLLARY 3. The set Fac(^4, H) is a Borel subset of Rep {A, H). 

Proof. T h e set Fac(^4, H) m a y be wri t ten as Fac(^4, H) = U Fa,cn(A, H). 

We now give the first characterization of the Mackey Borel s t ructure for Â. 

T H E O R E M 4. The map ~ : T —» [7r|if (TT)] = [TT'] 0/ Fac(^4, iT) iwfo Â is 
surjective and the quotient Borel structure of Fac(yl, H)/~ = A is the Mackey 
Borel structure. 

Proof. If 7T is a nonzero factor representation of A and if f is a nonzero vector 
in H (ir), then w is quasi-equivalent to the representation ir restricted to the 
invar iant subspace K = c\os{ir(x)Ç\x £ A} (cf. [5, 5.3.5]). Since K is separa­
ble the representation TT is quasi-equivalent to a representation wi = 7ri|i7(7ri) 
with 7Ti in Fa.c(A, H) obtained by identifying K with a subspace of H. T h u s 
the m a p TT —> |V] of Fac(^4, H) into Â is surjective. 

For every n — 1, 2, . . . , co, let rjn be the natura l injection of Facn(A, Hn) 
into F&cn(A, iif). I t is clear t h a t the map rjn is continuous and t h a t TT ~ iri 
for 7T, 7Ti in Facw(-4, ifw) if and only if rjn(irY ~ Vn(^i)f-

Now let X be a subset of Â and let X' = {TT G F a c ( 4 , # ) | [ T T ' ] G X } . W e 

notice t h a t t}n-
l{X') = {7r £ Facw(^4, - H ^ I M £ X } . On the one hand, assum­

ing t h a t X' is a Borel set in Fac(^4, H), we show t h a t X is a Mackey Borel set. 
In fact, the set i]n~

l{Xf) is a Borel set in Facw(^4, Hn) due to the cont inui ty of 
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7]n. Hence, by the definition of the Mackey Borel s t ructure , the set X is a 
Mackey Borel set. On the other hand, assuming t h a t X is a Mackey Borel set, 
we show t h a t X' is a Borel set in Fac(A, H). Because 7]n~

l {X') is a Borel subset 
of Facw{A , Hn), we have t h a t t]n~

l (Xf) X Tn is a Borel subset of Facw{A , Hn) X 
Tn. This means t h a t the set 

Xn = 6n'(Vn-i(X') X Tn) 

is a Borel subset of FacTO(-4, i f ) and hence a Borel subset of Fac(^4, H) (Propo­
sition 2) . We show X' is a Borel set in Fac(^4, H) by showing t h a t X' — U -X"». 
If 7T 6 ^w, then 7r' is quasi-equivalent to a representat ion 7ri in rçw

_1(X'). We 
see t h a t -K' ^ TTI ~ Vni^i)' and consequently t h a t 7r G I ' since ^(71-1) G X'. 
Hence we get t h a t U Xn C X'. Conversely, if TT Ç X' and if dim H(ir) = n, 
there is a (71-1,7) £ F a c w ( 4 , £TW) X Tw such t ha t dn(irly j) = 7r (Proposition 2) . 
Since 71-1 ^ 7r', we get t h a t [7n] G X and consequently t h a t wi (E ^ r 1 ^ ' ) -
Hence, 7r G X n . This proves t h a t X' C U ^ - Therefore, we obtain t h a t 
X ' = U X». 

Before giving the next characterizat ion of the Mackey Borel s t ructure we 
need another lemma. 

L E M M A 5. For each n = 1, 2, . . . , there is a continuous map <j> = <j>n of 
Fac„(.4, Hn) into Facœ(^4, Hœ) such that w ~ <t>(ir) for every ir G Facre(^4, Hn). 

Proof. Let K be the direct sum of countably infinitely m a n y copies of Hn. 
For each T £ Facw(^4, Hn), let TT0 be the representat ion in Facrjo(^4, Kœ) given 
by the direct sum of countably infinitely m a n y copies of w (cf. [5, 5.3.1 (v)] ) . 
Let u be an isometric isomorphism of the separable infinite dimensional space K 
onto the separable infinite dimensional space H. Then the m a p 4>(ir) = UTTQUT1 

maps Facw(^4, Hn) into Facœ(^4, Hœ). Since 7r0 ^ ir [5, 5.3.5], we get t h a t 
<t>(ir) ~ ir. Now all t h a t remains is the demonst ra t ion t h a t </> is cont inuous. 
Let TTi-^ir in Facn(A, Hn) and let f, £ Ç i7. There are sequences }frn} and 
{£m} in Hn such t h a t Ellfmll2 < + °o and Z | | U | 2 < + 0 0 so t h a t u~^ = 
(fw) G i£ and w -1J = (£m) Ç X . Now given x Ç i and e > 0, there is a na tu ra l 
number w 0 and an index i0 such t h a t 

Z l l l f m l l V ^ Wo} < e/2, E d l f J I V ^ mo} < e/2, 

and 

for m ^ mo and i ^ io- T h u s we have t h a t 

K*wwr,{) - (*wwr,j)i 

^ e + «11*11 
whenever i ^ i0. This means t h a t <£ is continuous. 
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We now show tha t it is not a t all necessary to consider Facw(^4, Hn) for 
n finite when working with the Mackey Borel s t ructure. 

T H E O R E M 6. The map ~:ir —» [w] of F a c œ ^ 4 , Hœ) into A is surjective and the 
quotient Borel structure of Fac^C^, Hœ)/~ = A is the Mackey Borel structure 
on Â. 

Proof. Let ir be a nonzero factor representation of A on a separable Hilbert 
space H (IT). A S in Lemma 5, the direct sum of countably infinitely many copies 
of 7T gives a factor representation tha t is quasi-equivalent to -K and is unitari ly 
equivalent to a factor representation in Facœ(^4, Hœ). This proves t ha t the 
map ~ is surjective. 

Now let X be a subset of Â and let X1 = {TT Ç Facœ(^4, Hœ)\[ir] G X}. Firs t 
let X' be a Borel set of Facœ( i4, i ^ J . We show tha t i Ç I b y showing t h a t 
Xn' — {T £ Fac^(^4, i7w)||V] G X} is Borel in Facn(^4, Hn). Because the map 
4>n of Fac^(^4, Hn) into Facœ(^4, Hœ) constructed in Lemma 5 is continuous, 
it is sufficient to show tha t Xn' = <f>n~

l(Xf). However, this relation is clear 
since <t>n(j) ^ T for all w £ Facn(A, Hn). T h u s we get t ha t X £ M. Conversely, 
let X G M. By definition of the Mackey Borel s t ructure, the set X1 is a Borel 
subset of Facœ(^4, Hœ). This proves t ha t the quotient Borel s t ructure of 
FaCooC^, Ftœ)/~ = Â is the Mackey Borel s t ructure. 

T h e next theorem characterizes the Mackey Borel s t ructure in terms of the 
factor states. We first clarify the relation between the factor s tates of a C*-
algebra A wi thout ident i ty and the factor s tates of the C*-algebra Ae with 
ident i ty adjointed (cf. [5, 1.3.7]). 

L E M M A 7. Let A be a C*-algebra without identity. Let f0 be the unique element 
of F(Ae) that vanishes on A. Then the map e of F (A) into F(Ae) mapping each 
element into its unique extension to Ae is a Borel isomorphism onto the Borel set 
F{Ae) -{f0}ofF(Ae). 

Proof. Le t e(f) be defined on A e by setting e(f )(1) = 1. Then e is a one-
one continuous open map of F (A) into F(Ae) whose range is F(Ae) — { f0] 
(cf. [9, § 3]). Because F(Ae) and consequently F (A) are s tandard Borel spaces 
(cf. [10, 3.4.5]), the m a p e is a Borel isomorphism of F (A) onto the Borel set 
(actually the open set) F(Ae) — {f0} [1, Lemma 2.5]. 

T H E O R E M 8. The map ~ :f —> [irf] of F (A) into Â is surjective and the quotient 
Borel structure of F(A)/~ = Â is the Mackey Borel structure. 

Proof. Firs t assume A has an identi ty element. Let f be a uni t vector in H 
and let co be the functional on L(H) given by co(x) = (xf, f ) . For 
7T G Facœ(^4, Hœ), the canonical representation induced by the s ta te co o TT is 
equivalent to a subrepresentation of TT [3, Proposition 3] and thus is quasi-
equivalent to 7T [5, 5.3.5]. T h u s the map \p of Facœ(^4, Hœ) denned by \l/(ir) = 
co o 7T maps Fa,cœ(A, Hœ) into F (A). Now it is clear t h a t \f/ is continuous. We 
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show that \p is surjective. If / G F (A), let -K be the direct sum of countably 
infinitely many copies of 717. The representation IT is a factor representation of 
A on the separable infinite dimensional space K equal to countably infinitely 
many copies of the representation space H(f) of/. There is an isometric 
isomorphism u of K onto H that takes ($7, 0, 0, . . .) into f. Here f / is a cyclic 
vector for H(f) under 717(4) such that 0r/(x)f/, f/) = f(x) for all x G ^4. 
This means that the image under 1̂  of the factor representation wwu~l on H is 
precisely/. Hence ^ is surjective. In particular, the map ^ of F (A) into Â is 
surjective since the map ir —» [TT] of Facœ(A, Hœ) intoÂ is surjective (Theorem 
6) and since ir ~ 7^ ) for every T G Facœ(.4, H^). 

Now we show that the quotient Borel structure of F(A)/~ — Â is the 
]\lackey Borel structure. Let X be a subset of Â and let 

X ' = {TT G F a c ^ i ï J I M G X) and * " = { / £ F ^ l k , ] G X). 

Since TT ~ 7r̂ (7r) for every TT G Facœ(^4, Hœ), we have that yl/~l(X") = X''. 
Because \p is surjective, we also have that $(X') = X". If X" is a Borel set 
in F (A), the set X ' is Borel in Facœ(^4, Hœ) because yp is continuous. From 
Theorem 6 we obtain that X G M and consequently the quotient Borel 
structure is contained in the Mackey Borel structure. Conversely, if X G M, 
then X' and its complement Facœ(^4, Hœ) — X' are Borel subsets of 
Facœ(/1, Hœ). Because X' is saturated (i.e., 7r ^ 71-1 G X' for -K G Facœ(^4, iJœ) 
implies 7r G X ' ) , its complement is also saturated. Due to the continuity of xf/, 
the analytic sets yp(Xr) and ^(Facœ(^4, Hœ) — Xf) form a partition of F(^4). 
This proves that \P(X') = X" is a Borel set in F (A) [2, § 6, Theorem 2, 
Corollary]. Thus the Mackey Borel structure is contained in the quotient 
Borel structure. Therefore, the quotient and the Mackey Borel structures 
coincide in F{A)/~. 

Now assume A does not have an identity. Let A e be the C*-algebra A with 
identity adjoined. As before let X be a subset of Â and let X" = 
{/ G F(A)\[Tf] G X}. The set X is Mackey Borel if and only if 
{M G Âc|[7r|i4] G X) = F is Mackey Borel in Ae since i is a closed two-
sided ideal in Ae [4, Proposition 2]. The set F is Mackey Borel if and only if 

Y" = 1/ e f(4.)|[T,] e F} = {/ e F C ^ I ^ M ] e x} 

is a Borel set in F(Ae) due to the first part of this theorem. However, we have 
that e{X") = Y". In fact, if / G X", then w = Te(f)\A ~ 717 since the canoni­
cal representation induced by œçf o TT = / is quasi-equivalent to a subrepre-
sentation of TT [3, Proposition 3] and thus is equivalent to TT [5, 5.3.5]. So 
/ G X" implies e ( / ) £ Y". Conversely, if / G F" , then g =f\A £ F(A) and 
TT, — *7|4 T h u s / G F " implies/ |4 G X" and e ( / 1^) = / ; so e(jf") = Y". 
Now, by Lemma 7, we have that X" is a Borel set in i 7 ^ ) if and only if Y" 
is a Borel set in F(Ae). Thus Theorem 8 for C*-algebras without identity 
follows from the theorem for algebras with identity. 
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COROLLARY 9. The saturation of every point in F {A) is a Borel set in F (A). 

Proof. Every point of Â is a Mackey Borel set (cf. [5, 7.2.4]). 

Remark. In [9] we showed t ha t the saturat ion of every open subset of F (A) 
is open. This means t ha t the hull-kernel Borel s t ructure of Â is weaker than 
the Mackey Borel s t ructure of Â. 

3 . A p p l i c a t i o n t o centra l d e c o m p o s i t i o n . Using the definition of the 
Mackey Borel s t ructure given in Theorem 8, we can identify the central 
decomposition of s tates (cf. [10, 3.5 ff.]) with the central decomposition of 
separable representations (cf. [5, 8.4]). Then , directly from the result of 
E. Efrros [7] characterizing the measures t ha t arise in the central decomposi­
tion of separable representations, we obtain a characterization of the measures 
t h a t arise in the central decomposition of states. This gives an answer to a 
question raised by S. Sakai [10, p . 151]. 

In the sequel let A have the Mackey Borel s t ructure and let F (A) have the 
Borel s t ructure induced by the w*-topology. T h e following result is pa t te rned 
after [5, 7.3.2]. 

P R O P O S I T I O N 10. If X is a Borel set in F (A) such that X intersects each quasi-
equivalence class of F (A) in at most one point, then the map f —> [717] is a Borel 
isomorphism of X onto a Borel subset of Â. 

Proof. Let Y = {(fu f2) G F {A) X F ( , 4 ) | / i ~ / 2 } . T h e m a p * X * of 
F a c œ ( 4 , Hœ) X FacœÔ4, Hœ) onto F (A) X F (A) obtained from the map if/ 
defined in Theorem 8 is continuous. Since ^(TTI) ~ ^(^2) if and only if 71-1 ~ 7r2, 
the set F i s the image under \p X yp of the set Y' = {(71-1,7r2) £ F a c œ ( 4 , Hœ) X 
F a c œ ( 4 , Hœ)\iri ~ 7r2} and the complement of Y is the image of the comple­
ment of Y'. Because Y' is a Borel set of F a c œ ( 4 , Hœ) X F a c œ ( 4 , Hœ) [5,7.3.2], 
the set F is a Borel set of F {A) X F (A) [2, § 6, Theorem 2, Corollary]. There­
fore, the set (X X F (A)) Pi F is a Borel set in F (A) X F (A). The map tha t 
projects a pair of F (A) X F (A) onto the second coordinate is continuous and 
is one-one when confined to the set (X X F (A)) P\ F . This means t h a t the 
image of (X X F (A)) P\ F under the projection is a Borel subset of F (A) 
[1, Proposition 2.5]. Bu t this image is simply the saturat ion of X. Thus , the 
set {[TT/] | / G X} is a Mackey Borel set in Â (Theorem 8) . If X' is any Borel 
subset of Xy then the same proof shows t h a t {[717]!/ G X ' | is a Borel subset 
of Â. Because /—* [717] is a Borel map of F (A), it is now clear t h a t the map 
/ —> [717] is a Borel isomorphism of X onto a Borel subset of Â. 

T h e following theorem can be obtained almost directly from [7] by the use 
of Proposition 10. For this assume A has an identi ty. 

T H E O R E M 11.-4 probability Radon measure \x on F (A) arises from the central 
decomposition of a state of A if and only if there is a Borel set X in F (A) with 
fx (X) = 1 such that the weakest Borel structure on X induced by the family of 
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maps f —>/(c), where c runs through the center of the sequential weak-operator 
closure of A in its enveloping von Neumann algebra, coincides with the Borel 
structure on X induced by F (A). Here each f in F (A) is identified with its unique 
extension to a a-weakly continuous functional on its enveloping von Neumann 
algebra. 

Proof. If the two Borel structures on X coincide, then X intersects each 
quasi-equivalence class in at most one point because the family of maps fails 
to distinguish quasi-equivalent functionals. Then X may be identified with a 
Borel set in Â (Proposition 10) and the result of Effros [7] gives the theorem. 

The converse is to be found in the proof of [10, 3.5.7]. 

Added April 9, 1974. If -4 is a GCR algebra, I have proved that F (A) has a 
Borel transversal for the relation of quasi-equivalence. 
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