MACKEY BOREL STRUCTURE FOR THE QUASI-DUAL OF A SEPARABLE C*-ALGEBRA

HERBERT HALPERN

1. Introduction. Let A be a separable C*-algebra. Two representations π and π_1 of A on the Hilbert spaces H and H_1 , respectively are said to be *quasi-equivalent* (denoted by $\pi \sim \pi_1$) if projections of $H \bigoplus H_1$ on the invariant subspaces H and H_1 of $(\pi \bigoplus \pi_1)(A)$ have the same central support in the commutant $(\pi \bigoplus \pi_1)(A)'$ of $(\pi \bigoplus \pi_1)(A)$, or equivalently, if there is an isomorphism ϕ of $\pi(A)''$ onto $\pi_1(A)''$ such that $\phi(\pi(x)) = \pi_1(x)$ for all $x \in A$ (cf. [5, § 5]). A representation π of A is said to be a *factor representation* if the center of $\pi(A)''$ consists of scalar multiples of the identity. The relation \sim partitions the set of factor representations of A into quasi-equivalence classes. Let \tilde{A} be the set of all quasi-equivalence classes of factor representations of A. Let $[\pi]$ denote the quasi-equivalence class containing the representation π .

Let *H* be any Hilbert space and let $\operatorname{Rep}(A, H)$ be the space of all representations of *A* on *H* with the topology of pointwise convergence, i.e., $\pi_n \to \pi$ if and only if $\pi_n(x)\zeta \to \pi(x)\zeta$ for all $x \in A, \zeta \in H$. For each $\pi \in \operatorname{Rep}(A, H)$, let $H(\pi)$ denote the *essential subspace* of π , i.e. the orthogonal complement of the subspace $\{\zeta \in H | \pi(x)\zeta = 0 \text{ for all } x \in A\}$. The subspace $H(\pi)$ is invariant under $\pi(A)$. For every π let π' denote the restriction of π to $H(\pi)$. Let $\operatorname{Fac}(A, H)$ be the set of all non-zero representations π of *A* on *H* such that the restriction π' of π to $H(\pi)$ is a factor representation on $H(\pi)$ and, for each $n = 1, 2, \ldots, \infty$, let

 $\operatorname{Fac}_n(A, H) = \{ \pi \in \operatorname{Fac}(A, H) | \dim H(\pi) = n \}.$

Let Fac(A, H) and $Fac_n(A, H)$ have the topology induced by Rep(A, H).

From now on let H be a fixed separable infinite dimensional Hilbert space and let $\{H_n | n = 1, 2, ..., \infty\}$ be an increasing sequence of subspaces of Hwith dim $H_n = n$ and $H_{\infty} = H$. Let $\operatorname{Fac}_n(A, H_n)$ be the space of all nonzero factor representations of A on H_n . The family M of all subsets X of \tilde{A} such that each set $\{\pi \in \operatorname{Fac}_n(A, H_n) | [\pi] \in X\}$ is a Borel set in $\operatorname{Fac}_n(A, H_n)$ is a σ -ring and M is called the *Mackey Borel structure* of \tilde{A} (cf. [5, § 7]).

A state f of A is said to be a *factor state* of A if the canonical representation π_f induced by f is a factor representation (cf. [5, § 2]). Let F(A) be the space of all factor states of A with the relativized w^* -topology. We say the factor states f and g are quasi-equivalent (denoted by $f \sim g$) if $\pi_f \sim \pi_g$.

Now let \sim be the map of Fac(A, H) (respectively Fac_{∞}(A, H_{∞}), F(A)) into

Received December 6, 1972 and in revised form, June 29, 1973.

 \tilde{A} given by $\sim(\pi) = [\pi']$ (respectively $\sim(\pi) = [\pi]$, $\sim(f) = [\pi_f]$). In this note we show that \sim is surjective and the Mackey Borel structure of \tilde{A} is the quotient Borel structure, i.e., X is a Mackey Borel set in \tilde{A} if and only if $\sim^{-1}(X)$ is Borel.

2. Borel structures. For every $n = 1, 2, ..., \infty$, let J_n be the space of all partial isometries of H with domain support H_n taken with the *-strong topology and let U_n be the subgroup of J_n of all partial isometries of J_n whose range support is also H_n . Then the pair (U_n, J_n) can be made into a transformation group by defining the action of U_n on J_n as $(u, j) \rightarrow ju^*$. If both J_n and U_n are *polonais* spaces (i.e. they are separable and metrizable by a complete metric) and if the function $(u, j) \rightarrow ju^*$ is continuous (U_n, J_n) is said to be a polonais transformation group. A subset T_n of J_n is said to be a transversal of J_n/U_n if T_n intersects each equivalence class $\{jU_n | j \in J_n\}$ in precisely one point. (cf. [6]). The first lemma applies to L. T. Gardner's analysis [8, Lemma 1] of polonais transformation groups to a wider class of objects needed in studying quasi-equivalence relations.

LEMMA 1. For every $n = 1, 2, ..., \infty$, the pair (U_n, J_n) is a polonais transformation group and J_n/U_n has a Borel transversal T_n .

Proof. Since the proof for $n = \infty$ is found in [8, Lemma 1], we assume that n is finite. Let $\{\zeta_i\}, \{\zeta_i'\}$ and $\{\zeta_i''\}$ be sequences of unit vectors that are dense in the sets $\{\zeta \in H_n | ||\zeta|| = 1\}, \{\zeta \in H \ominus H_n | ||\zeta|| = 1\}$ and $\{\zeta \in H | ||\zeta|| = 1\}$ respectively. Let

$$S_{ik} = \{ x \in L_1(H) | \operatorname{lub}_j | (x\zeta_i, \zeta_j'') | > 1 - k^{-1} \}$$

for all $i, k = 1, 2, \ldots$, and let

$$S_{ijk} = \{ x \in L_1(H) | | (x\zeta_i', \zeta_j'') | < k^{-1} \}$$

for all $i, j, k = 1, 2, \ldots$. The sets $S_{ik}, S_{ik}^*, S_{ijk}, S_{ijk}^*$ are open subsets of $L_1(H)$ with the *-strong topology. Thus the sets

$$J_n = (\bigcap S_{ik}) \cap (\bigcap S_{ijk})$$
$$U_n = J_n \cap J_n^*$$

are G_{δ} sets in $L_1(H)$. Because $L_1(H)$ is a polonais space in the *-strong topology, the spaces J_n and U_n are polonais in the *-strong topology.

The remainder of the proof showing that (U_n, J_n) is a transformation group and that J_n/U_n has a Borel transversal can be proved in the same way as Lemma 1 in [8].

Now let θ_n be the map of $\operatorname{Fac}_n(A, H_n) \times J_n$ into $\operatorname{Rep}(A, H)$ given by $\theta_n(\pi, j) = j\pi j^*$. We have the following proposition.

PROPOSITION 2. For every $n = 1, 2, ..., \infty$, the subset $\operatorname{Fac}_n(A, H)$ is a Borel subset of $\operatorname{Rep}(A, H)$ and the restriction θ_n' of θ_n to $\operatorname{Fac}_n(A, H_n) \times T_n$ is a Borel

isomorphism of $\operatorname{Fac}_n(A, H_n) \times T_n$ onto $\operatorname{Fac}_n(A, H)$ such that $\theta'_n(\pi, j) \sim \pi$ for all $(\pi, j) \in \operatorname{Fac}_n(A, H_n) \times T_n$.

Proof. The map θ_n is continuous since J_n is taken with its *-strong topology. We show that θ_n' is a one-one function. Let π , π_1 be in Fac_n(A, H_n) and j, j₁ be in T_n . If $j\pi j^* = j_1\pi_1 j_1^*$, then the ranges of j and j_1 coincide. This follows from the fact that both $\{\pi(x)\zeta | x \in A, \zeta \in H_n\}$ and $\{\pi_1(x)\zeta | x \in A, \zeta \in H_n\}$ are dense in H_n ; otherwise, the projection corresponding to the closure would be a nontrivial projection in the center of the von Neumann algebra generated by $\pi(A)$ or $\pi_1(A)$. This proves that $j^*j_1 = u \in U_n$ and thus that $j = j_1$ and $\pi = \pi_1$. Hence the map θ_n' is one-one. Because $\operatorname{Fac}_n(A, H_n) \times T_n$ is a Borel subset of $\operatorname{Fac}_n(A, H_n) \times J_n$ and in particular is a standard Borel space (i.e. is isomorphic to a Borel subspace of a polonais space) [5, 7.1.2, 3.7.1, Lemma 1; 1, p. 5] and because $\operatorname{Rep}(A, H)$ is a standard Borel space [5, 3.7.1] and in particular is a countably generated Borel space, the image of $\operatorname{Fac}_n(A, H_n) \times T_n$ under θ_n' is a Borel subset of Rep(A, H) [1, Proposition 2.5]. Now it is clear that $\theta_n'(\pi, j)' \sim \pi$ and that dim $H(\theta_n'(\pi, j)) = n$. Therefore, the image of θ_n' is contained in Fac_n(A, H). Thus, it remains to be shown that θ_n' maps onto $\operatorname{Fac}_n(A, H)$. If $\pi \in \operatorname{Fac}_n(A, H)$, there is a $j \in J_n$ and a $\pi_1 \in \operatorname{Fac}_n(A, H_n)$ with $j\pi_1 j^* = \pi$. But j may be written as $j = j_1 u$ for $j_1 \in T_n$ and u in U_n . Because the restriction π_2 of $u\pi_1 u^*$ to its invariant subspace H_n is a nonzero factor representation, we see that π is in the image of θ_n by expressing π as $\pi = \theta_n'(\pi_2, j_1)$. Hence the image of θ_n' is precisely $\operatorname{Fac}_n(A, H)$.

COROLLARY 3. The set Fac(A, H) is a Borel subset of Rep(A, H).

Proof. The set Fac(A, H) may be written as $Fac(A, H) = \bigcup Fac_n(A, H)$.

We now give the first characterization of the Mackey Borel structure for Å.

THEOREM 4. The map $\sim : \pi \to [\pi | H(\pi)] = [\pi']$ of Fac(A, H) into \tilde{A} is surjective and the quotient Borel structure of Fac(A, H)/ $\sim = \tilde{A}$ is the Mackey Borel structure.

Proof. If π is a nonzero factor representation of A and if ζ is a nonzero vector in $H(\pi)$, then π is quasi-equivalent to the representation π restricted to the invariant subspace $K = \operatorname{clos}\{\pi(x)\zeta | x \in A\}$ (cf. [5, 5.3.5]). Since K is separable the representation π is quasi-equivalent to a representation $\pi_1' = \pi_1 | H(\pi_1)$ with π_1 in Fac(A, H) obtained by identifying K with a subspace of H. Thus the map $\pi \to [\pi']$ of Fac(A, H) into \tilde{A} is surjective.

For every $n = 1, 2, ..., \infty$, let η_n be the natural injection of $\operatorname{Fac}_n(A, H_n)$ into $\operatorname{Fac}_n(A, H)$. It is clear that the map η_n is continuous and that $\pi \sim \pi_1$ for π , π_1 in $\operatorname{Fac}_n(A, H_n)$ if and only if $\eta_n(\pi)' \sim \eta_n(\pi_1)'$.

Now let X be a subset of \tilde{A} and let $X' = \{\pi \in \operatorname{Fac}(A, H) | [\pi'] \in X\}$. We notice that $\eta_n^{-1}(X') = \{\pi \in \operatorname{Fac}_n(A, H_n) | [\pi] \in X\}$. On the one hand, assuming that X' is a Borel set in $\operatorname{Fac}(A, H)$, we show that X is a Mackey Borel set. In fact, the set $\eta_n^{-1}(X')$ is a Borel set in $\operatorname{Fac}_n(A, H_n)$ due to the continuity of

HERBERT HALPERN

 η_n . Hence, by the definition of the Mackey Borel structure, the set X is a Mackey Borel set. On the other hand, assuming that X is a Mackey Borel set, we show that X' is a Borel set in Fac(A, H). Because $\eta_n^{-1}(X')$ is a Borel subset of Fac_n(A, H_n), we have that $\eta_n^{-1}(X') \times T_n$ is a Borel subset of Fac_n(A, H_n) \times T_n . This means that the set

$$X_n = \theta_n'(\eta_n^{-1}(X') \times T_n)$$

is a Borel subset of $\operatorname{Fac}_n(A, H)$ and hence a Borel subset of $\operatorname{Fac}(A, H)$ (Proposition 2). We show X' is a Borel set in $\operatorname{Fac}(A, H)$ by showing that $X' = \bigcup X_n$. If $\pi \in X_n$, then π' is quasi-equivalent to a representation π_1 in $\eta_n^{-1}(X')$. We see that $\pi' \sim \pi_1 \sim \eta_n(\pi_1)'$ and consequently that $\pi \in X'$ since $\eta_n(\pi_1) \in X'$. Hence we get that $\bigcup X_n \subset X'$. Conversely, if $\pi \in X'$ and if dim $H(\pi) = n$, there is a $(\pi_1, j) \in \operatorname{Fac}_n(A, H_n) \times T_n$ such that $\theta_n(\pi_1, j) = \pi$ (Proposition 2). Since $\pi_1 \sim \pi'$, we get that $[\pi_1] \in X$ and consequently that $\pi_1 \in \eta_n^{-1}(X')$. Hence, $\pi \in X_n$. This proves that $X' \subset \bigcup X_n$. Therefore, we obtain that $X' = \bigcup X_n$.

Before giving the next characterization of the Mackey Borel structure we need another lemma.

LEMMA 5. For each n = 1, 2, ..., there is a continuous map $\phi = \phi_n$ of $\operatorname{Fac}_n(A, H_n)$ into $\operatorname{Fac}_{\infty}(A, H_{\infty})$ such that $\pi \sim \phi(\pi)$ for every $\pi \in \operatorname{Fac}_n(A, H_n)$.

Proof. Let K be the direct sum of countably infinitely many copies of H_n . For each $\pi \in \operatorname{Fac}_n(A, H_n)$, let π_0 be the representation in $\operatorname{Fac}_{\infty}(A, K_{\infty})$ given by the direct sum of countably infinitely many copies of π (cf. [5, 5.3.1 (v)]). Let u be an isometric isomorphism of the separable infinite dimensional space K onto the separable infinite dimensional space H. Then the map $\phi(\pi) = u\pi_0 u^{-1}$ maps $\operatorname{Fac}_n(A, H_n)$ into $\operatorname{Fac}_{\infty}(A, H_{\infty})$. Since $\pi_0 \sim \pi$ [5, 5.3.5], we get that $\phi(\pi) \sim \pi$. Now all that remains is the demonstration that ϕ is continuous. Let $\pi_i \to \pi$ in $\operatorname{Fac}_n(A, H_n)$ and let $\zeta, \xi \in H$. There are sequences $\{\zeta_m\}$ and $\{\xi_m\}$ in H_n such that $\sum ||\zeta_m||^2 < +\infty$ and $\sum ||\xi_m||^2 < +\infty$ so that $u^{-1}\zeta =$ $(\zeta_n) \in K$ and $u^{-1}\xi = (\xi_m) \in K$. Now given $x \in A$ and $\epsilon > 0$, there is a natural number m_0 and an index i_0 such that

 $\sum\{||\zeta_m||^2|m \ge m_0\} < \epsilon/2, \quad \sum\{||\xi_m||^2|m \ge m_0\} < \epsilon/2,$

and

$$\left|\left(\pi_{i}(x)\zeta_{m},\xi_{m}\right) - \left(\pi(x)\zeta_{m},\xi_{m}\right)\right| \leq \epsilon/m_{0}$$

for $m \leq m_0$ and $i \geq i_0$. Thus we have that

$$\begin{aligned} |(\phi(\pi)(x)\zeta,\xi) - (\phi(\pi)(x)\zeta,\xi)| \\ &\leq \sum |(\pi_{\iota}(x)\zeta_{m},\xi_{m}) - (\pi(x)\zeta_{m},\xi_{m})| \\ &\leq \epsilon + \epsilon ||x|| \end{aligned}$$

whenever $i \ge i_0$. This means that ϕ is continuous.

We now show that it is not at all necessary to consider $\operatorname{Fac}_n(A, H_n)$ for *n* finite when working with the Mackey Borel structure.

THEOREM 6. The map $\sim :\pi \to [\pi]$ of $\operatorname{Fac}_{\infty}(A, H_{\infty})$ into \tilde{A} is surjective and the quotient Borel structure of $\operatorname{Fac}_{\infty}(A, H_{\infty})/\sim = \tilde{A}$ is the Mackey Borel structure on \tilde{A} .

Proof. Let π be a nonzero factor representation of A on a separable Hilbert space $H(\pi)$. As in Lemma 5, the direct sum of countably infinitely many copies of π gives a factor representation that is quasi-equivalent to π and is unitarily equivalent to a factor representation in Fac_{∞}(A, H_{∞}). This proves that the map \sim is surjective.

Now let X be a subset of \tilde{A} and let $X' = \{\pi \in \operatorname{Fac}_{\infty}(A, H_{\infty}) | [\pi] \in X\}$. First let X' be a Borel set of $\operatorname{Fac}_{\infty}(A, H_{\infty})$. We show that $X \in M$ by showing that $X'_n = \{\pi \in \operatorname{Fac}_n(A, H_n) | [\pi] \in X\}$ is Borel in $\operatorname{Fac}_n(A, H_n)$. Because the map ϕ_n of $\operatorname{Fac}_n(A, H_n)$ into $\operatorname{Fac}_{\infty}(A, H_{\infty})$ constructed in Lemma 5 is continuous, it is sufficient to show that $X'_n = \phi_n^{-1}(X')$. However, this relation is clear since $\phi_n(\pi) \sim \pi$ for all $\pi \in \operatorname{Fac}_n(A, H_n)$. Thus we get that $X \in M$. Conversely, let $X \in M$. By definition of the Mackey Borel structure, the set X' is a Borel subset of $\operatorname{Fac}_{\infty}(A, H_{\infty})$. This proves that the quotient Borel structure of $\operatorname{Fac}_{\infty}(A, H_{\infty})/\sim = \tilde{A}$ is the Mackey Borel structure.

The next theorem characterizes the Mackey Borel structure in terms of the factor states. We first clarify the relation between the factor states of a C^* -algebra A without identity and the factor states of the C^* -algebra A_e with identity adjointed (cf. [5, 1.3.7]).

LEMMA 7. Let A be a C*-algebra without identity. Let f_0 be the unique element of $F(A_e)$ that vanishes on A. Then the map e of F(A) into $F(A_e)$ mapping each element into its unique extension to A_e is a Borel isomorphism onto the Borel set $F(A_e) - \{f_0\}$ of $F(A_e)$.

Proof. Let e(f) be defined on A_e by setting e(f)(1) = 1. Then e is a oneone continuous open map of F(A) into $F(A_e)$ whose range is $F(A_e) - \{f_0\}$ (cf. [9, § 3]). Because $F(A_e)$ and consequently F(A) are standard Borel spaces (cf. [10, 3.4.5]), the map e is a Borel isomorphism of F(A) onto the Borel set (actually the open set) $F(A_e) - \{f_0\}$ [1, Lemma 2.5].

THEOREM 8. The map $\sim : f \rightarrow [\pi_f]$ of F(A) into \tilde{A} is surjective and the quotient Borel structure of $F(A)/\sim = \tilde{A}$ is the Mackey Borel structure.

Proof. First assume A has an identity element. Let ζ be a unit vector in H and let ω be the functional on L(H) given by $\omega(x) = (x\zeta, \zeta)$. For $\pi \in \operatorname{Fac}_{\infty}(A, H_{\infty})$, the canonical representation induced by the state $\omega \circ \pi$ is equivalent to a subrepresentation of π [3, Proposition 3] and thus is quasiequivalent to π [5, 5.3.5]. Thus the map ψ of $\operatorname{Fac}_{\infty}(A, H_{\infty})$ defined by $\psi(\pi) = \omega \circ \pi$ maps $\operatorname{Fac}_{\infty}(A, H_{\infty})$ into F(A). Now it is clear that ψ is continuous. We

HERBERT HALPERN

show that ψ is surjective. If $f \in F(A)$, let π be the direct sum of countably infinitely many copies of π_f . The representation π is a factor representation of A on the separable infinite dimensional space K equal to countably infinitely many copies of the representation space H(f) of f. There is an isometric isomorphism u of K onto H that takes $(\zeta_f, 0, 0, \ldots)$ into ζ . Here ζ_f is a cyclic vector for H(f) under $\pi_f(A)$ such that $(\pi_f(x)\zeta_f, \zeta_f) = f(x)$ for all $x \in A$. This means that the image under ψ of the factor representation $u\pi u^{-1}$ on H is precisely f. Hence ψ is surjective. In particular, the map \sim of F(A) into \tilde{A} is surjective since the map $\pi \to [\pi]$ of $\operatorname{Fac}_{\infty}(A, H_{\infty})$ into \tilde{A} is surjective (Theorem 6) and since $\pi \sim \pi_{\psi(\pi)}$ for every $\pi \in \operatorname{Fac}_{\infty}(A, H_{\infty})$.

Now we show that the quotient Borel structure of $F(A)/\sim = \tilde{A}$ is the Mackey Borel structure. Let X be a subset of \tilde{A} and let

$$X' = \{ \pi \in \operatorname{Fac}_{\infty}(A, H_{\infty}) | [\pi] \in X \} \text{ and } X'' = \{ f \in F(A) | [\pi_f] \in X \}.$$

Since $\pi \sim \pi_{\Psi(\pi)}$ for every $\pi \in \operatorname{Fac}_{\infty}(A, H_{\infty})$, we have that $\Psi^{-1}(X'') = X'$. Because Ψ is surjective, we also have that $\Psi(X') = X''$. If X'' is a Borel set in F(A), the set X' is Borel in $\operatorname{Fac}_{\infty}(A, H_{\infty})$ because Ψ is continuous. From Theorem 6 we obtain that $X \in M$ and consequently the quotient Borel structure is contained in the Mackey Borel structure. Conversely, if $X \in M$, then X' and its complement $\operatorname{Fac}_{\infty}(A, H_{\infty}) - X'$ are Borel subsets of $\operatorname{Fac}_{\infty}(A, H_{\infty})$. Because X' is saturated (i.e., $\pi \sim \pi_1 \in X'$ for $\pi \in \operatorname{Fac}_{\infty}(A, H_{\infty})$ implies $\pi \in X'$), its complement is also saturated. Due to the continuity of Ψ , the analytic sets $\Psi(X')$ and $\Psi(\operatorname{Fac}_{\infty}(A, H_{\infty}) - X')$ form a partition of F(A). This proves that $\Psi(X') = X''$ is a Borel set in F(A) [2, § 6, Theorem 2, Corollary]. Thus the Mackey Borel structure is contained in the quotient Borel structure. Therefore, the quotient and the Mackey Borel structures coincide in $F(A)/\sim$.

Now assume A does not have an identity. Let A_e be the C*-algebra A with identity adjoined. As before let X be a subset of \tilde{A} and let $X'' = \{f \in F(A) | [\pi_f] \in X\}$. The set X is Mackey Borel if and only if $\{[\pi] \in \tilde{A}_e | [\pi|A] \in X\} = Y$ is Mackey Borel in \tilde{A}_e since A is a closed two-sided ideal in A_e [4, Proposition 2]. The set Y is Mackey Borel if and only if

$$Y'' = \{ f \in F(A_e) | [\pi_f] \in Y \} = \{ f \in F(A_e) | [\pi_f | A] \in X \}$$

is a Borel set in $F(A_e)$ due to the first part of this theorem. However, we have that e(X'') = Y''. In fact, if $f \in X''$, then $\pi = \pi_{e(f)}|A \sim \pi_f$ since the canonical representation induced by $\omega_{\xi_f} \circ \pi = f$ is quasi-equivalent to a subrepresentation of π [3, Proposition 3] and thus is equivalent to π [5, 5.3.5]. So $f \in X''$ implies $e(f) \in Y''$. Conversely, if $f \in Y''$, then $g = f |A \in F(A)$ and $\pi_g \sim \pi_f |A|$ Thus $f \in Y''$ implies $f |A \in X''$ and e(f|A) = f; so e(X'') = Y''. Now, by Lemma 7, we have that X'' is a Borel set in F(A) if and only if Y''is a Borel set in $F(A_e)$. Thus Theorem 8 for C*-algebras without identity follows from the theorem for algebras with identity. COROLLARY 9. The saturation of every point in F(A) is a Borel set in F(A).

Proof. Every point of \tilde{A} is a Mackey Borel set (cf. [5, 7.2.4]).

Remark. In [9] we showed that the saturation of every open subset of F(A) is open. This means that the hull-kernel Borel structure of \tilde{A} is weaker than the Mackey Borel structure of \tilde{A} .

3. Application to central decomposition. Using the definition of the Mackey Borel structure given in Theorem 8, we can identify the central decomposition of states (cf. [10, 3.5 ff.]) with the central decomposition of separable representations (cf. [5, 8.4]). Then, directly from the result of E. Effros [7] characterizing the measures that arise in the central decomposition of separable representations, we obtain a characterization of the measures that arise in the central decomposition of states. This gives an answer to a question raised by S. Sakai [10, p. 151].

In the sequel let \tilde{A} have the Mackey Borel structure and let F(A) have the Borel structure induced by the w^* -topology. The following result is patterned after [5, 7.3.2].

PROPOSITION 10. If X is a Borel set in F(A) such that X intersects each quasiequivalence class of F(A) in at most one point, then the map $f \to [\pi_f]$ is a Borel isomorphism of X onto a Borel subset of \tilde{A} .

Proof. Let $Y = \{(f_1, f_2) \in F(A) \times F(A) | f_1 \sim f_2\}$. The map $\psi \times \psi$ of $\operatorname{Fac}_{\infty}(A, H_{\infty}) \times \operatorname{Fac}_{\infty}(A, H_{\infty})$ onto $F(A) \times F(A)$ obtained from the map ψ defined in Theorem 8 is continuous. Since $\psi(\pi_1) \sim \psi(\pi_2)$ if and only if $\pi_1 \sim \pi_2$, the set Y is the image under $\psi \times \psi$ of the set $Y' = \{(\pi_1, \pi_2) \in \operatorname{Fac}_{\infty}(A, H_{\infty}) \times \}$ $\operatorname{Fac}_{\infty}(A, H_{\infty})|\pi_{1} \sim \pi_{2}$ and the complement of Y is the image of the complement of Y'. Because Y' is a Borel set of $\operatorname{Fac}_{\infty}(A, H_{\infty}) \times \operatorname{Fac}_{\infty}(A, H_{\infty})$ [5, 7.3.2], the set Y is a Borel set of $F(A) \times F(A)$ [2, § 6, Theorem 2, Corollary]. Therefore, the set $(X \times F(A)) \cap Y$ is a Borel set in $F(A) \times F(A)$. The map that projects a pair of $F(A) \times F(A)$ onto the second coordinate is continuous and is one-one when confined to the set $(X \times F(A)) \cap Y$. This means that the image of $(X \times F(A)) \cap Y$ under the projection is a Borel subset of F(A)[1, Proposition 2.5]. But this image is simply the saturation of X. Thus, the set $\{[\pi_t] | t \in X\}$ is a Mackey Borel set in \tilde{A} (Theorem 8). If X' is any Borel subset of X, then the same proof shows that $\{[\pi_{I}] | f \in X'\}$ is a Borel subset of A. Because $f \to [\pi_t]$ is a Borel map of F(A), it is now clear that the map $f \to [\pi_t]$ is a Borel isomorphism of X onto a Borel subset of \tilde{A} .

The following theorem can be obtained almost directly from [7] by the use of Proposition 10. For this assume A has an identity.

THEOREM 11. A probability Radon measure μ on F(A) arises from the central decomposition of a state of A if and only if there is a Borel set X in F(A) with $\mu(X) = 1$ such that the weakest Borel structure on X induced by the family of

HERBERT HALPERN

maps $f \rightarrow f(c)$, where c runs through the center of the sequential weak-operator closure of A in its enveloping von Neumann algebra, coincides with the Borel structure on X induced by F(A). Here each f in F(A) is identified with its unique extension to a σ -weakly continuous functional on its enveloping von Neumann algebra.

Proof. If the two Borel structures on X coincide, then X intersects each quasi-equivalence class in at most one point because the family of maps fails to distinguish quasi-equivalent functionals. Then X may be identified with a Borel set in \tilde{A} (Proposition 10) and the result of Effros [7] gives the theorem.

The converse is to be found in the proof of [10, 3.5.7].

Added April 9, 1974. If A is a GCR algebra, I have proved that F(A) has a Borel transversal for the relation of quasi-equivalence.

References

- L. Auslander and C. C. Moore, Unitary representation of solvable Lie groups, Memoirs Amer. Math. Soc. 62 (1966).
- N. Bourbaki, *Topologie générale* Ch. 9., Actualités Scientifiques et industrielles No. 1045 (Hermann, Paris, 1958).
- 3. F. Combes, Représentations d'une C*-algèbres et formes linéaires positives, C. R. Acad. Sci. Paris Ser. A-B 260 (1965), 5993-5996.
- 4. J. Dixmier, Quasi-dual d'une ideal dans une C*-algèbre, Bull. Sci. Math. 87 (1963), 7-11.
- 5. Les C*-algèbres et leurs représentations (Gauthier-Villars, Paris, 1964).
- 6. E. Effros, Transformation groups and C*-algebras, Ann. of Math. 81 (1965), 38-55.
- 7. The canonical measures for a separable C*-algebra, Amer. J. Math. 92 (1970), 56-60.
- 8. L. T. Gardner, On the Mackey Borel structure, Can. J. Math. 23 (1971), 674-678.
- 9. H. Halpern, Open projections and Borel structures for C*-algebras (to appear in Pacific J. Math.).
- 10. S. Sakai, C*-algebras and W*-algebras (Springer-Verlag, New York, 1971).

University of Cincinnati, Cincinnati, Ohio