MAGKEY BOREL STRUGTURE FOR THE QUASI-DUAL OF A SEPARABLE C^{*}-ALGEBRA

HERBERT HALPERN

1. Introduction. Let A be a separable C^{*}-algebra. Two representations π and π_{1} of A on the Hilbert spaces H and H_{1}, respectively are said to be quasi-equivalent (denoted by $\pi \sim \pi_{1}$) if projections of $H \oplus H_{1}$ on the invariant subspaces H and H_{1} of $\left(\pi \oplus \pi_{1}\right)(A)$ have the same central support in the commutant $\left(\pi \oplus \pi_{1}\right)(A)^{\prime}$ of $\left(\pi \oplus \pi_{1}\right)(A)$, or equivalently, if there is an isomorphism ϕ of $\pi(A)^{\prime \prime}$ onto $\pi_{1}(A)^{\prime \prime}$ such that $\phi(\pi(x))=\pi_{1}(x)$ for all $x \in A(\mathrm{cf} .[\mathbf{5}, \S 5])$. A representation π of A is said to be a factor representation if the center of $\pi(A)^{\prime \prime}$ consists of scalar multiples of the identity. The relation \sim partitions the set of factor representations of A into quasi-equivalence classes. Let \tilde{A} be the set of all quasi-equivalence classes of factor representations of A. Let $[\pi]$ denote the quasi-equivalence class containing the representation π.

Let H be any Hilbert space and let $\operatorname{Rep}(A, H)$ be the space of all representations of A on H with the topology of pointwise convergence, i.e., $\pi_{n} \rightarrow \pi$ if and only if $\pi_{n}(x) \zeta \rightarrow \pi(x) \zeta$ for all $\mathbf{x} \in A, \zeta \in H$. For each $\pi \in \operatorname{Rep}(A, H)$, let $H(\pi)$ denote the essential subspace of π, i.e. the orthogonal complement of the subspace $\{\zeta \in H \mid \pi(x) \zeta=0$ for all $x \in A\}$. The subspace $H(\pi)$ is invariant under $\pi(A)$. For every π let π^{\prime} denote the restriction of π to $H(\pi)$. Let $\operatorname{Fac}(A, H)$ be the set of all non-zero representations π of A on H such that the restriction π^{\prime} of π to $H(\pi)$ is a factor representation on $H(\pi)$ and, for each $n=1,2, \ldots, \infty$, let

$$
\operatorname{Fac}_{n}(A, H)=\{\pi \in \operatorname{Fac}(A, H) \mid \operatorname{dim} H(\pi)=n\} .
$$

Let $\operatorname{Fac}(A, H)$ and $\operatorname{Fac}_{n}(A, H)$ have the topology induced by $\operatorname{Rep}(A, H)$.
From now on let H be a fixed separable infinite dimensional Hilbert space and let $\left\{H_{n} \mid n=1,2, \ldots, \infty\right\}$ be an increasing sequence of subspaces of H with $\operatorname{dim} H_{n}=n$ and $H_{\infty}=H$. Let $\operatorname{Fac}_{n}\left(A, H_{n}\right)$ be the space of all nonzero factor representations of A on H_{n}. The family M of all subsets X of $\tilde{\mathrm{A}}$ such that each set $\left\{\pi \in \operatorname{Fac}_{n}\left(A, H_{n}\right) \mid[\pi] \in X\right\}$ is a Borel set in $\operatorname{Fac}_{n}\left(A, H_{n}\right)$ is a σ-ring and M is called the Mackey Borel structure of \tilde{A} (cf. $[5, \S 7]$).

A state f of A is said to be a factor state of A if the canonical representation π_{f} induced by f is a factor representation (cf. [5, § 2]). Let $F(A)$ be the space of all factor states of A with the relativized w^{*}-topology. We say the factor states f and g are quasi-equivalent (denoted by $f \sim g$) if $\pi_{f} \sim \pi_{g}$.

Now let \sim be the map of $\operatorname{Fac}(A, H)$ (respectively $\left.\operatorname{Fac}_{\infty}\left(A, H_{\infty}\right), F(A)\right)$ into

[^0]A given by $\sim(\pi)=\left[\pi^{\prime}\right]$ (respectively $\sim(\pi)=[\pi], \sim(f)=\left[\pi_{f}\right]$). In this note we show that \sim is surjective and the Mackey Borel structure of \tilde{A} is the quotient Borel structure, i.e., X is a Mackey Borel set in $\tilde{\mathrm{A}}$ if and only if $\sim^{-1}(X)$ is Borel.
2. Borel structures. For every $n=1,2, \ldots, \infty$, let J_{n} be the space of all partial isometries of H with domain support H_{n} taken with the *-strong topology and let U_{n} be the subgroup of J_{n} of all partial isometries of J_{n} whose range support is also H_{n}. Then the pair $\left(U_{n}, J_{n}\right)$ can be made into a transformation group by defining the action of U_{n} on J_{n} as $(u, j) \rightarrow j u^{*}$. If both J_{n} and U_{n} are polonais spaces (i.e. they are separable and metrizable by a complete metric) and if the function ($u, j) \rightarrow j u^{*}$ is continuous $\left(U_{n}, J_{n}\right)$ is said to be a polonais transformation group. A subset T_{n} of J_{n} is said to be a transversal of J_{n} / U_{n} if T_{n} intersects each equivalence class $\left\{j U_{n} \mid j \in J_{n}\right\}$ in precisely one point. (cf. [6]). The first lemma applies to L. T. Gardner's analysis [8, Lemma 1] of polonais transformation groups to a wider class of objects needed in studying quasi-equivalence relations.

Lemma 1. For every $n=1,2, \ldots, \infty$, the pair $\left(U_{n}, J_{n}\right)$ is a polonais transformation group and J_{n} / U_{n} has a Borel transversal T_{n}.

Proof. Since the proof for $n=\infty$ is found in [8, Lemma 1], we assume that n is finite. Let $\left\{\zeta_{i}\right\},\left\{\zeta_{i}{ }^{\prime}\right\}$ and $\left\{\zeta_{i}{ }^{\prime \prime}\right\}$ be sequences of unit vectors that are dense in the sets $\left\{\zeta \in H_{n} \mid\|\zeta\|=1\right\},\left\{\zeta \in H \ominus H_{n} \mid\|\zeta\|=1\right\}$ and $\{\zeta \in H \mid\|\zeta\|=1\}$ respectively. Let

$$
S_{i k}=\left\{x \in L_{1}(H)\left|\operatorname{lub}_{j}\right|\left(x \zeta_{i}, \zeta_{j}^{\prime \prime}\right) \mid>1-k^{-1}\right\}
$$

for all $i, k=1,2, \ldots$, and let

$$
S_{i j k}=\left\{x \in L_{1}(H)| |\left(x \zeta_{i}{ }^{\prime}, \zeta_{j}{ }^{\prime \prime}\right) \mid<k^{-1}\right\}
$$

for all $i, j, k=1,2, \ldots$ The sets $S_{i k}, S_{i k}{ }^{*}, S_{i j k}, S_{i j k}{ }^{*}$ are open subsets of $L_{1}(H)$ with the ${ }^{*}$-strong topology. Thus the sets

$$
\begin{aligned}
J_{n} & =\left(\cap S_{i k}\right) \cap\left(\cap S_{i j k}\right) \\
U_{n} & =J_{n} \cap J_{n}^{*}
\end{aligned}
$$

are G_{δ} sets in $L_{1}(H)$. Because $L_{1}(H)$ is a polonais space in the *-strong topology, the spaces J_{n} and U_{n} are polonais in the ${ }^{*}$-strong topology.

The remainder of the proof showing that $\left(U_{n}, J_{n}\right)$ is a transformation group and that J_{n} / U_{n} has a Borel transversal can be proved in the same way as Lemma 1 in [8].

Now let θ_{n} be the map of $\operatorname{Fac}_{n}\left(A, H_{n}\right) \times J_{n}$ into $\operatorname{Rep}(A, H)$ given by $\theta_{n}(\pi, j)=j \pi j^{*}$. We have the following proposition.

Proposition 2. For every $n=1,2, \ldots, \infty$, the subset $\operatorname{Fac}_{n}(A, H)$ is a Borel subset of $\operatorname{Rep}(A, H)$ and the restriction $\theta_{n}{ }^{\prime}$ of θ_{n} to $\operatorname{Fac}_{n}\left(A, H_{n}\right) \times T_{n}$ is a Borel
isomorphism of $\operatorname{Fac}_{n}\left(A, H_{n}\right) \times T_{n}$ onto $\operatorname{Fac}_{n}(A, H)$ such that $\theta_{n}{ }^{\prime}(\pi, j)^{\prime} \sim \pi$ for all $(\pi, j) \in \operatorname{Fac}_{n}\left(A, H_{n}\right) \times T_{n}$.

Proof. The map θ_{n} is continuous since J_{n} is taken with its *-strong topology. We show that $\theta_{n}{ }^{\prime}$ is a one-one function. Let π, π_{1} be in $\operatorname{Fac}_{n}\left(A, H_{n}\right)$ and j, j_{1} be in T_{n}. If $j \pi j^{*}=j_{1} \pi_{1} j_{1}{ }^{*}$, then the ranges of j and j_{1} coincide. This follows from the fact that both $\left\{\pi(x) \zeta \mid x \in A, \zeta \in H_{n}\right\}$ and $\left\{\pi_{1}(x) \zeta \mid x \in A, \zeta \in H_{n}\right\}$ are dense in H_{n}; otherwise, the projection corresponding to the closure would be a nontrivial projection in the center of the von Neumann algebra generated by $\pi(A)$ or $\pi_{1}(A)$. This proves that $j^{*} j_{1}=u \in U_{n}$ and thus that $j=j_{1}$ and $\pi=\pi_{1}$. Hence the map $\theta_{n}{ }^{\prime}$ is one-one. $\operatorname{Because} \operatorname{Fac}_{n}\left(A, H_{n}\right) \times T_{n}$ is a Borel subset of $\mathrm{Fac}_{n}\left(A, H_{n}\right) \times J_{n}$ and in particular is a standard Borel space (i.e. is isomorphic to a Borel subspace of a polonais space) $[\mathbf{5}, 7.1 .2,3.7 .1$, Lemma $\mathbf{1 ; 1}$, p. 5] and because $\operatorname{Rep}(A, H)$ is a standard Borel space [5, 3.7.1] and in particular is a countably generated Borel space, the image of $\mathrm{Fac}_{n}\left(A, H_{n}\right) \times T_{n}$ under $\theta_{n}{ }^{\prime}$ is a Borel subset of $\operatorname{Rep}(A, H)$ [1, Proposition 2.5]. Now it is clear that $\theta_{n}{ }^{\prime}(\pi, j)^{\prime} \sim \pi$ and that $\operatorname{dim} H\left(\theta_{n}{ }^{\prime}(\pi, j)\right)=n$. Therefore, the image of $\theta_{n}{ }^{\prime}$ is contained in $\operatorname{Fac}_{n}(A, H)$. Thus, it remains to be shown that $\theta_{n}{ }^{\prime}$ maps onto $\operatorname{Fac}_{n}(A, H)$. If $\pi \in \operatorname{Fac}_{n}(A, H)$, there is a $j \in J_{n}$ and a $\pi_{1} \in \operatorname{Fac}_{n}\left(A, H_{n}\right)$ with $j \pi_{1} j^{*}=\pi$. But j may be written as $j=j_{1} u$ for $j_{1} \in T_{n}$ and u in U_{n}. Because the restriction π_{2} of $u \pi_{1} u^{*}$ to its invariant subspace H_{n} is a nonzero factor representation, we see that π is in the image of $\theta_{n}{ }^{\prime}$ by expressing π as $\pi=\theta_{n}{ }^{\prime}\left(\pi_{2}, j_{1}\right)$. Hence the image of $\theta_{n}{ }^{\prime}$ is precisely $\operatorname{Fac}_{n}(A, H)$.

Corollary 3. The set $\operatorname{Fac}(A, H)$ is a Borel subset of $\operatorname{Rep}(A, H)$.
Proof. The set $\operatorname{Fac}(A, H)$ may be written as $\operatorname{Fac}(A, H)=\cup \operatorname{Fac}_{n}(A, H)$.
We now give the first characterization of the Mackey Borel structure for A.
Theorem 4. The map $\sim: \pi \rightarrow[\pi \mid H(\pi)]=\left[\pi^{\prime}\right]$ of $\operatorname{Fac}(A, H)$ into $\tilde{\mathrm{A}}$ is surjective and the quotient Borel structure of $\operatorname{Fac}(A, H) / \sim=\tilde{\mathrm{A}}$ is the Mackey Borel structure.

Proof. If π is a nonzero factor representation of A and if ζ is a nonzero vector in $H(\pi)$, then π is quasi-equivalent to the representation π restricted to the invariant subspace $K=\operatorname{clos}\{\pi(x) \zeta \mid x \in A\}$ (cf. [5,5.3.5]). Since K is separable the representation π is quasi-equivalent to a representation $\pi_{1}{ }^{\prime}=\pi_{1} \mid H\left(\pi_{1}\right)$ with π_{1} in $\operatorname{Fac}(A, H)$ obtained by identifying K with a subspace of H. Thus the map $\pi \rightarrow\left[\pi^{\prime}\right]$ of $\operatorname{Fac}(A, H)$ into $\tilde{\mathrm{A}}$ is surjective.

For every $n=1,2, \ldots, \infty$, let η_{n} be the natural injection of $\operatorname{Fac}_{n}\left(A, H_{n}\right)$ into $\operatorname{Fac}_{n}(A, H)$. It is clear that the map η_{n} is continuous and that $\pi \sim \pi_{1}$ for π, π_{1} in $\operatorname{Fac}_{n}\left(A, H_{n}\right)$ if and only if $\eta_{n}(\pi)^{\prime} \sim \eta_{n}\left(\pi_{1}\right)^{\prime}$.

Now let X be a subset of \tilde{A} and let $X^{\prime}=\left\{\pi \in \operatorname{Fac}(A, H) \mid\left[\pi^{\prime}\right] \in X\right\}$. We notice that $\eta_{n}{ }^{-1}\left(X^{\prime}\right)=\left\{\pi \in \operatorname{Fac}_{n}\left(A, H_{n}\right) \mid[\pi] \in X\right\}$. On the one hand, assuming that X^{\prime} is a Borel set in $\operatorname{Fac}(A, H)$, we show that X is a Mackey Borel set. In fact, the set $\eta_{n}{ }^{-1}\left(X^{\prime}\right)$ is a Borel set in $\operatorname{Fac}_{n}\left(A, H_{n}\right)$ due to the continuity of
η_{n}. Hence, by the definition of the Mackey Borel structure, the set X is a Mackey Borel set. On the other hand, assuming that X is a Mackey Borel set, we show that X^{\prime} is a Borel set in $\operatorname{Fac}(A, H)$. Because $\eta_{n}{ }^{-1}\left(X^{\prime}\right)$ is a Borel subset of $\operatorname{Fac}_{n}\left(A, H_{n}\right)$, we have that $\eta_{n}^{-1}\left(X^{\prime}\right) \times T_{n}$ is a Borel subset of $\operatorname{Fac}_{n}\left(A, H_{n}\right) \times$ T_{n}. This means that the set

$$
X_{n}=\theta_{n}^{\prime}\left(\eta_{n}^{-1}\left(X^{\prime}\right) \times T_{n}\right)
$$

is a Borel subset of $\operatorname{Fac}_{n}(A, H)$ and hence a Borel subset of $\operatorname{Fac}(A, H)$ (Proposition 2). We show X^{\prime} is a Borel set in $\operatorname{Fac}(A, H)$ by showing that $X^{\prime}=\cup X_{n}$. If $\pi \in X_{n}$, then π^{\prime} is quasi-equivalent to a representation π_{1} in $\eta_{n}{ }^{-1}\left(X^{\prime}\right)$. We see that $\pi^{\prime} \sim \pi_{1} \sim \eta_{n}\left(\pi_{1}\right)^{\prime}$ and consequently that $\pi \in X^{\prime}$ since $\eta_{n}\left(\pi_{1}\right) \in X^{\prime}$. Hence we get that $\cup X_{n} \subset X^{\prime}$. Conversely, if $\pi \in X^{\prime}$ and if $\operatorname{dim} H(\pi)=n$, there is a $\left(\pi_{1}, j\right) \in \operatorname{Fac}_{n}\left(A, H_{n}\right) \times T_{n}$ such that $\theta_{n}\left(\pi_{1}, j\right)=\pi$ (Proposition 2). Since $\pi_{1} \sim \pi^{\prime}$, we get that $\left[\pi_{1}\right] \in X$ and consequently that $\pi_{1} \in \eta_{n}{ }^{-1}\left(X^{\prime}\right)$. Hence, $\pi \in X_{n}$. This proves that $X^{\prime} \subset \cup X_{n}$. Therefore, we obtain that $X^{\prime}=\bigcup X_{n}$.

Before giving the next characterization of the Mackey Borel structure we need another lemma.

Lemma 5. For each $n=1,2, \ldots$, there is a continuous map $\phi=\phi_{n}$ of $\operatorname{Fac}_{n}\left(A, H_{n}\right)$ into $\operatorname{Fac}_{\infty}\left(A, H_{\infty}\right)$ such that $\pi \sim \phi(\pi)$ for every $\pi \in \operatorname{Fac}_{n}\left(A, H_{n}\right)$.

Proof. Let K be the direct sum of countably infinitely many copies of H_{n}. For each $\pi \in \operatorname{Fac}_{n}\left(A, H_{n}\right)$, let π_{0} be the representation in $\operatorname{Fac}_{\infty}\left(A, K_{\infty}\right)$ given by the direct sum of countably infinitely many copies of π (cf. [5,5.3.1 (v)]). Let u be an isometric isomorphism of the separable infinite dimensional space K on to the separable infinite dimensional space H. Then the map $\phi(\pi)=u \pi_{0} u^{-1}$ maps $\operatorname{Fac}_{n}\left(A, H_{n}\right)$ into $\operatorname{Fac}_{\infty}\left(A, H_{\infty}\right)$. Since $\pi_{0} \sim \pi$ [5, 5.3.5], we get that $\phi(\pi) \sim \pi$. Now all that remains is the demonstration that ϕ is continuous. Let $\pi_{i} \rightarrow \pi$ in $\operatorname{Fac}_{n}\left(A, H_{n}\right)$ and let $\zeta, \xi \in H$. There are sequences $\left\{\zeta_{m}\right\}$ and $\left\{\xi_{m}\right\}$ in H_{n} such that $\sum\left\|\zeta_{m}\right\|^{2}<+\infty$ and $\sum\left\|\xi_{m}\right\|^{2}<+\infty$ so that $u^{-1} \zeta=$ $\left(\zeta_{n}\right) \in K$ and $u^{-1} \xi=\left(\xi_{m}\right) \in K$. Now given $x \in A$ and $\epsilon>0$, there is a natural number m_{0} and an index i_{0} such that

$$
\sum\left\{\left\|\zeta_{m}\right\|^{2} \mid m \geqq m_{0}\right\}<\epsilon / 2, \quad \sum\left\{\left\|\xi_{m}\right\|^{2} \mid m \geqq m_{0}\right\}<\epsilon / 2,
$$

and

$$
\left|\left(\pi_{i}(x) \zeta_{m}, \xi_{m}\right)-\left(\pi(x) \zeta_{m}, \xi_{m}\right)\right| \leqq \epsilon / m_{0}
$$

for $m \leqq m_{0}$ and $i \geqq i_{0}$. Thus we have that

$$
\begin{aligned}
& |(\phi(\pi)(x) \zeta, \xi)-(\phi(\pi)(x) \zeta, \xi)| \\
& \quad \leqq \sum\left|\left(\pi_{i}(x) \zeta_{m}, \xi_{m}\right)-\left(\pi(x) \zeta_{m}, \xi_{m}\right)\right| \\
& \quad \leqq \epsilon+\epsilon \| x| |
\end{aligned}
$$

whenever $i \geqq i_{0}$. This means that ϕ is continuous.

We now show that it is not at all necessary to consider $\operatorname{Fac}_{n}\left(A, H_{n}\right)$ for n finite when working with the Mackey Borel structure.

Theorem 6. The map $\sim: \pi \rightarrow[\pi]$ of $\mathrm{Fac}_{\infty}\left(A, H_{\infty}\right)$ into $\tilde{\mathrm{A}}$ is surjective and the quotient Borel structure of $\operatorname{Fac}_{\infty}\left(A, H_{\infty}\right) / \sim=\tilde{\mathrm{A}}$ is the Mackey Borel structure on Ã.

Proof. Let π be a nonzero factor representation of A on a separable Hilbert space $H(\pi)$. As in Lemma 5 , the direct sum of countably infinitely many copies of π gives a factor representation that is quasi-equivalent to π and is unitarily equivalent to a factor representation in $\operatorname{Fac}_{\infty}\left(A, H_{\infty}\right)$. This proves that the map \sim is surjective.

Now let X be a subset of $\tilde{\mathrm{A}}$ and let $X^{\prime}=\left\{\pi \in \operatorname{Fac}_{\infty}\left(A, H_{\infty}\right) \mid[\pi] \in X\right\}$. First let X^{\prime} be a Borel set of $\operatorname{Fac}_{\infty}\left(A, H_{\infty}\right)$. We show that $X \in M$ by showing that $X_{n}{ }^{\prime}=\left\{\pi \in \operatorname{Fac}_{n}\left(A, H_{n}\right) \mid[\pi] \in X\right\}$ is Borel in $\operatorname{Fac}_{n}\left(A, H_{n}\right)$. Because the map ϕ_{n} of $\operatorname{Fac}_{n}\left(A, H_{n}\right)$ into $\operatorname{Fac}_{\infty}\left(A, H_{\infty}\right)$ constructed in Lemma 5 is continuous, it is sufficient to show that $X_{n}{ }^{\prime}=\phi_{n}{ }^{-1}\left(X^{\prime}\right)$. However, this relation is clear since $\phi_{n}(\pi) \sim \pi$ for all $\pi \in \operatorname{Fac}_{n}\left(A, H_{n}\right)$. Thus we get that $X \in M$. Conversely, let $X \in M$. By definition of the Mackey Borel structure, the set X^{\prime} is a Borel subset of $\operatorname{Fac}_{\infty}\left(A, H_{\infty}\right)$. This proves that the quotient Borel structure of $\operatorname{Fac}_{\infty}\left(A, H_{\infty}\right) / \sim=\tilde{\mathrm{A}}$ is the Mackey Borel structure.

The next theorem characterizes the Mackey Borel structure in terms of the factor states. We first clarify the relation between the factor states of a C^{*} algebra A without identity and the factor states of the C^{*}-algebra A_{e} with identity adjointed (cf. [5, 1.3.7]).

Lemma 7. Let A be a C^{*}-algebra without identity. Let f_{0} be the unique element of $F\left(A_{e}\right)$ that vanishes on A. Then the mape of $F(A)$ into $F\left(A_{e}\right)$ mapping each element into its unique extension to A_{e} is a Borel isomorphism onto the Borel set $F\left(A_{e}\right)-\left\{f_{0}\right\}$ of $F\left(A_{e}\right)$.

Proof. Let $e(f)$ be defined on A_{e} by setting $e(f)(1)=1$. Then e is a oneone continuous open map of $F(A)$ into $F\left(A_{e}\right)$ whose range is $F\left(A_{e}\right)-\left\{f_{0}\right\}$ (cf. [9, §3]). Because $F\left(A_{e}\right)$ and consequently $F(A)$ are standard Borel spaces (cf. $[\mathbf{1 0}, 3.4 .5]$), the map e is a Borel isomorphism of $F(A)$ onto the Borel set (actually the open set) $F\left(A_{e}\right)-\left\{f_{0}\right\}$ [1, Lemma 2.5].

Theorem 8. The map $\sim: f \rightarrow\left[\pi_{f}\right]$ of $F(A)$ into $\tilde{\mathrm{A}}$ is surjective and the quotient Borel structure of $F(A) / \sim=\tilde{\mathrm{A}}$ is the Mackey Borel structure.

Proof. First assume A has an identity element. Let ζ be a unit vector in H and let ω be the functional on $L(H)$ given by $\omega(x)=(x \zeta, \zeta)$. For $\pi \in \operatorname{Fac}_{\infty}\left(A, H_{\infty}\right)$, the canonical representation induced by the state $\omega \circ \pi$ is equivalent to a subrepresentation of π [3, Proposition 3] and thus is quasiequivalent to $\pi[5,5.3 .5]$. Thus the map ψ of $\operatorname{Fac}_{\infty}\left(A, H_{\infty}\right)$ defined by $\psi(\pi)=$ $\omega \circ \pi$ maps $\mathrm{Fac}_{\infty}\left(A, H_{\infty}\right)$ into $F(A)$. Now it is clear that ψ is continuous. We
show that ψ is surjective. If $f \in F(A)$, let π be the direct sum of countably infinitely many copies of π_{f}. The representation π is a factor representation of A on the separable infinite dimensional space K equal to countably infinitely many copies of the representation space $H(f)$ of f. There is an isometric isomorphism u of K onto H that takes ($\zeta_{f}, 0,0, \ldots$) into ζ. Here ζ_{f} is a cyclic vector for $H(f)$ under $\pi_{f}(A)$ such that $\left(\pi_{f}(x) \zeta_{f}, \zeta_{f}\right)=f(x)$ for all $x \in A$. This means that the image under ψ of the factor representation $u \pi u^{-1}$ on H is precisely f. Hence ψ is surjective. In particular, the map \sim of $F(A)$ into $\tilde{\mathrm{A}}$ is surjective since the map $\pi \rightarrow[\pi]$ of $\operatorname{Fac}_{\infty}\left(A, H_{\infty}\right)$ into $\tilde{\mathrm{A}}$ is surjective (Theorem 6) and since $\pi \sim \pi_{\psi(\pi)}$ for every $\pi \in \operatorname{Fac}_{\infty}\left(A, H_{\infty}\right)$.

Now we show that the quotient Borel structure of $F(A) / \sim=\tilde{A}$ is the Mackey Borel structure. Let X be a subset of \tilde{A} and let

$$
X^{\prime}=\left\{\pi \in \operatorname{Fac}_{\infty}\left(A, H_{\infty}\right) \mid[\pi] \in X\right\} \quad \text { and } \quad X^{\prime \prime}=\left\{f \in F(A) \mid\left[\pi_{f}\right] \in X\right\} .
$$

Since $\pi \sim \pi_{\psi(\pi)}$ for every $\pi \in \operatorname{Fac}_{\infty}\left(A, H_{\infty}\right)$, we have that $\psi^{-1}\left(X^{\prime \prime}\right)=X^{\prime}$. Because ψ is surjective, we also have that $\psi\left(X^{\prime}\right)=X^{\prime \prime}$. If $X^{\prime \prime}$ is a Borel set in $F(A)$, the set X^{\prime} is Borel in $\mathrm{Fac}_{\infty}\left(A, H_{\infty}\right)$ because ψ is continuous. From Theorem 6 we obtain that $X \in M$ and consequently the quotient Borel structure is contained in the Mackey Borel structure. Conversely, if $X \in M$, then X^{\prime} and its complement $\mathrm{Fac}_{\infty}\left(A, H_{\infty}\right)-X^{\prime}$ are Borel subsets of $\operatorname{Fac}_{\infty}\left(A, H_{\infty}\right)$. Because X^{\prime} is saturated (i.e., $\pi \sim \pi_{1} \in X^{\prime}$ for $\pi \in \operatorname{Fac}_{\infty}\left(A, H_{\infty}\right)$ implies $\pi \in X^{\prime}$), its complement is also saturated. Due to the continuity of ψ, the analytic sets $\psi\left(X^{\prime}\right)$ and $\psi\left(\mathrm{Fac}_{\infty}\left(A, H_{\infty}\right)-X^{\prime}\right)$ form a partition of $F(A)$. This proves that $\psi\left(X^{\prime}\right)=X^{\prime \prime}$ is a Borel set in $F(A)[\mathbf{2}, \S 6$, Theorem 2, Corollary]. Thus the Mackey Borel structure is contained in the quotient Borel structure. Therefore, the quotient and the Mackey Borel structures coincide in $F(A) / \sim$.

Now assume A does not have an identity. Let A_{e} be the C^{*}-algebra A with identity adjoined. As before let X be a subset of \tilde{A} and let $X^{\prime \prime}=$ $\left\{f \in F(A) \mid\left[\pi_{f}\right] \in X\right\}$. The set X is Mackey Borel if and only if $\left\{[\pi] \in \tilde{\mathrm{A}}_{e} \mid[\pi \mid A] \in X\right\}=Y$ is Mackey Borel in $\tilde{\mathrm{A}}_{e}$ since A is a closed twosided ideal in A_{e} [4, Proposition 2]. The set Y is Mackey Borel if and only if

$$
Y^{\prime \prime}=\left\{f \in F\left(A_{e}\right) \mid\left[\pi_{f}\right] \in Y\right\}=\left\{f \in F\left(A_{e}\right) \mid\left[\pi_{f} \mid A\right] \in X\right\}
$$

is a Borel set in $F\left(A_{e}\right)$ due to the first part of this theorem. However, we have that $e\left(X^{\prime \prime}\right)=Y^{\prime \prime}$. In fact, if $f \in X^{\prime \prime}$, then $\pi=\pi_{e(f)} \mid A \sim \pi_{f}$ since the canonical representation induced by $\omega_{5 f} \circ \pi=f$ is quasi-equivalent to a subrepresentation of π [3, Proposition 3] and thus is equivalent to $\pi[5,5.3 .5]$. So $f \in X^{\prime \prime}$ implies $e(f) \in Y^{\prime \prime}$. Conversely, if $f \in Y^{\prime \prime}$, then $g=f \mid A \in F(A)$ and $\pi_{g} \sim \pi_{f} \mid A$ Thus $f \in Y^{\prime \prime}$ implies $f \mid A \in X^{\prime \prime}$ and $e(f \mid A)=f$; so $e\left(X^{\prime \prime}\right)=Y^{\prime \prime}$. Now, by Lemma 7, we have that $X^{\prime \prime}$ is a Borel set in $F(A)$ if and only if $Y^{\prime \prime}$ is a Borel set in $F\left(A_{e}\right)$. Thus Theorem 8 for C^{*}-algebras without identity follows from the theorem for algebras with identity.

Corollary 9. The saturation of every point in $F(A)$ is a Borel set in $F(A)$.
Proof. Every point of $\tilde{\mathrm{A}}$ is a Mackey Borel set (cf. [5, 7.2.4]).
Remark. In [9] we showed that the saturation of every open subset of $F(A)$ is open. This means that the hull-kernel Borel structure of \tilde{A} is weaker than the Mackey Borel structure of \tilde{A}.
3. Application to central decomposition. Using the definition of the Mackey Borel structure given in Theorem 8, we can identify the central decomposition of states (cf. [$\mathbf{1 0}, 3.5 \mathrm{ff}$.$]) with the central decomposition of$ separable representations (cf. [5, 8.4]). Then, directly from the result of E. Effros [7] characterizing the measures that arise in the central decomposition of separable representations, we obtain a characterization of the measures that arise in the central decomposition of states. This gives an answer to a question raised by S. Sakai [10, p. 151].

In the sequel let \tilde{A} have the Mackey Borel structure and let $F(A)$ have the Borel structure induced by the w^{*}-topology. The following result is patterned after [5, 7.3.2].

Proposition 10. If X is a Borel set in $F(A)$ such that X intersects each quasiequivalence class of $F(A)$ in at most one point, then the map $f \rightarrow\left[\pi_{f}\right]$ is a Borel isomorphism of X onto a Borel subset of \tilde{A}.

Proof. Let $Y=\left\{\left(f_{1}, f_{2}\right) \in F(A) \times F(A) \mid f_{1} \sim f_{2}\right\}$. The map $\psi \times \psi$ of $\mathrm{Fac}_{\infty}\left(A, H_{\infty}\right) \times \mathrm{Fac}_{\infty}\left(A, H_{\infty}\right)$ onto $F(A) \times F(A)$ obtained from the map ψ defined in Theorem 8 is continuous. Since $\psi\left(\pi_{1}\right) \sim \psi\left(\pi_{2}\right)$ if and only if $\pi_{1} \sim \pi_{2}$, the set Y is the image under $\psi \times \psi$ of the set $Y^{\prime}=\left\{\left(\pi_{1}, \pi_{2}\right) \in \operatorname{Fac}_{\infty}\left(A, H_{\infty}\right) \times\right.$ $\left.\operatorname{Fac}_{\infty}\left(A, H_{\infty}\right) \mid \pi_{1} \sim \pi_{2}\right\}$ and the complement of Y is the image of the complement of Y^{\prime}. Because Y^{\prime} is a Borel set of $\mathrm{Fac}_{\infty}\left(A, H_{\infty}\right) \times \mathrm{Fac}_{\infty}\left(A, H_{\infty}\right)$ [5, 7.3.2], the set Y is a Borel set of $F(A) \times F(A)[\mathbf{2}, \S 6$, Theorem 2, Corollary]. Therefore, the set $(X \times F(A)) \cap Y$ is a Borel set in $F(A) \times F(A)$. The map that projects a pair of $F(A) \times F(A)$ onto the second coordinate is continuous and is one-one when confined to the set $(X \times F(A)) \cap Y$. This means that the image of $(X \times F(A)) \cap Y$ under the projection is a Borel subset of $F(A)$ [1, Proposition 2.5]. But this image is simply the saturation of X. Thus, the set $\left\{\left[\pi_{f}\right] \mid f \in X\right\}$ is a Mackey Borel set in $\tilde{\mathrm{A}}$ (Theorem 8). If X^{\prime} is any Borel subset of X, then the same proof shows that $\left\{\left[\pi_{f}\right] \mid f \in X^{\prime}\right\}$ is a Borel subset of $\tilde{\mathrm{A}}$. Because $f \rightarrow\left[\pi_{f}\right]$ is a Borel map of $F(A)$, it is now clear that the map $f \rightarrow\left[\pi_{f}\right]$ is a Borel isomorphism of X onto a Borel subset of \bar{A}.

The following theorem can be obtained almost directly from [7] by the use of Proposition 10. For this assume A has an identity.

Theorem 11. A probability Radon measure μ on $F(A)$ arises from the central decomposition of a state of A if and only if there is a Borel set X in $F(A)$ with $\mu(X)=1$ such that the weakest Borel structure on X induced by the family of
maps $f \rightarrow f(c)$, where c runs through the center of the sequential weak-operator closure of A in its enveloping von Neumann algebra, coincides with the Borel structure on X induced by $F(A)$. Here each f in $F(A)$ is identified with its unique extension to a σ-weakly continuous functional on its enveloping von Neumann algebra.

Proof. If the two Borel structures on X coincide, then X intersects each quasi-equivalence class in at most one point because the family of maps fails to distinguish quasi-equivalent functionals. Then X may be identified with a Borel set in \tilde{A} (Proposition 10) and the result of Effros [7] gives the theorem.

The converse is to be found in the proof of $[\mathbf{1 0}, 3.5 .7]$.
Added April 9, 1974. If A is a $G C R$ algebra, I have proved that $F(A)$ has a Borel transversal for the relation of quasi-equivalence.

References

1. L. Auslander and C. C. Moore, Unitary representation of solvable Lie groups, Memoirs Amer. Math. Soc. 62 (1966).
2. N. Bourbaki, Topologie générale Ch. 9., Actualités Scientifiques et industrielles No. 1045 (Hermann, Paris, 1958).
3. F. Combes, Représentations d'une C^{*}-algèbres et formes linéaires positives, C. R. Acad. Sci. Paris Ser. A-B 260 (1965), 5993-5996.
4. J. Dixmier, Quasi-dual d'une ideal dans une C*-algèbre, Bull. Sci. Math. 87 (1963), 7-11.
5. —_Les C^{*}-algèbres et leurs représentations (Gauthier-Villars, Paris, 1964).
6. E. Effros, Transformation groups and C*-algebras, Ann. of Math. 81 (1965), 38-55.
7. -- The canonical measures for a separable C ${ }^{*}$-algebra, Amer. J. Math. 92 (1970), 56-60.
8. L. T. Gardner, On the Mackey Borel structure, Can. J. Math. 23 (1971), 674-678.
9. H. Halpern, Open projections and Borel structures for C^{*}-algebras (to appear in Pacific J. Math.).
10. S. Sakai, C^{*}-algebras and W^{*}-algebras (Springer-Verlag, New York, 1971).

University of Cincinnati,
Cincinnati, Ohio

[^0]: Received December 6, 1972 and in revised form, June 29, 1973.

