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Introduction. Efavirenz is an antihuman immunodeficiency virus (HIV) drug metabolized by cytochrome P450 2B6 (CYP2B6)
enzyme. Cytochrome P450 2B6 is an enzyme that in humans is encoded by the CYP2B6 gene. Polymorphisms of this gene play a
crucial role in the metabolism of drugs such as Efavirenz. 0is study aims to evaluate the frequency of three clinically significant
CYP2B6 polymorphisms (CYP2B6∗6 (516G>T), CYP2B6∗4 (785A>G), and CYP2B6∗5 (1459C>T)) in three major Iranian
ethnicities.Methods. One hundred forty-seven participants from three main Iranian ethnicities were included in this study. After
DNA extraction, CYP2B6∗6 (516G>T), CYP2B6∗4 (785A>G), and CYP2B6∗5 (1459C>T) were genotyped using tetra-primer
amplification refractory mutation system polymerase chain reaction (ARMS-PCR). Results. 0e frequency of the mutated allele in
the Iranian population for CYP2B6∗6 (516G>T) was 41.50 (95% CI: 35.81, 47.36), which was significantly lower than in Kurds
(59.62, 95%CI: 45.10, 72.99). Similarly, Kurds had a higher frequency ofmutated allele of CYP2B6∗5 (1459C>T) (46.15%, 95%CI:
32.23, 60.53) than in Iranians (24.49%, 95% CI: 19.68, 29.82). 0e frequency of A and G alleles of CYP2B6∗4 (785A>G) was
62.59% (95% CI: 56.78, 68.13) and 37.41 (95% CI: 31.87, 43.22), respectively. Conclusion. Kurds are at higher risk of adverse drug
reactions (ADRs) and insufficient anti-HIV response compared to other Iranians.

1. Introduction

Penalized medicine is an approach that evaluates and
manages patients based on their predicted response to
treatment. 0is approach is also beneficial to predict and
prevent therapeutic resistance, which can enhance patients’
outcomes. One of themain components of this approach is to
predict the drugs’ metabolism pace and consequently drug
response and toxicity [1, 2]. Different pathways have been
identified for the metabolism of drugs. One of the crucial
pathways is cytochrome P450, which comprises different
enzymes [3, 4]. One of the major components of cytochrome
P450 is CYP2B6, which is responsible for the metabolism of
drugs such as antiretrovirals such as efavirenz [5, 6].

Efavirenz ((S)-6-chloro-4-(cyclopropylethynyl)-1,4-dihy-
dro-4-(trifluoromethyl)-2H-3,1-benzoxazin-2-one) is one of
the nonnucleoside reverse transcriptase inhibitors, which is
prescribed as first-line therapy in patients diagnosed with
human immunodeficiency virus (HIV) infection. Anti-
retroviral medications have transformed HIV infection into a
chronic disease, which can be managed effectively [7]. Efa-
virenz, which is a noncompetitive inhibitor of HIV-1 reverse
transcriptase, is one of the most effective drugs prescribed for
HIV infection [8].

Efavirenz is highly potent; nevertheless, it is attributed to
several adverseeffects including,QTinterval (the time fromthe
start of the Q wave to the end of the T wave in electrocar-
diogram) prolongation, dyslipidemia, hepatotoxicity, and
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neuropsychiatricsideeffects [8].Althoughthedrug isno longer
recommended as the preferred initial antiretroviral therapy
(ART) regimen for nonpregnant adults due to its neuropsy-
chiatric adverse effects, it is still recommended in selected
patients based on the New York State Department of Health
(NYSDOH) acquired immunodeficiency syndrome (AIDS)
institute guideline (AI) [9]. Furthermore, unlike in the United
States, efavirenz is a vital part of the first-line therapeutic
guideline inmiddle and low-incomecountries suchas Iranand
it is prescribed in almost all patients diagnosed with HIV in-
fection [10]. Side effects of efavirenz are one of the biggest
challenges for health services in managing HIV-positive pa-
tients [11]. Evaluation of the pharmacokinetics of efavirenz is
the key in managing its adverse drug reactions (ADRs) [12].

0is drug initially transforms to its primary metabolite,
8-hydroxyefavirenz, in the liver mainly by cytochrome P450
2B6 (CYP2B6) enzyme, followed by the formation of 8,14-
dihydroxyefavirenz chiefly by the same drug-metabolizing
P450 2B6 [13]. Figure 1 concisely shows the metabolic
pathway of efavirenz pharmacokinetics [13]. CYP2B6 is
encoded by the CYP2B6 gene, and its various polymor-
phisms, including CYP2B6∗6 (516G>T), CYP2B6∗4
(785A>G), and CYP2B6∗5 (1459C>T), are clinically rel-
evant for HIV-infected patients treated with efavirenz. For
instance, the TT genotype for CYP2B6∗6 (516G>T) is as-
sociated with increased EFV plasma concentrations, reduced
clearance, and consequently increased efavirnez exposure
compared to the GG or GTgenotype [14, 15]. In other words,
patients’ genotype for some of the CYP2B6 polymorphisms
predicts the pace of drug metabolism in their bodies.

A recent study indicated that CYP2B6 polymorphisms are
ethnically and geographically diverse among different pop-
ulations, which results in differences in drugs, especially

antiretrovirals, pharmacokinetics, and therapy outcomes [16].
Iran is a geographically diverse, andmultiethnic country; Fars,
Turk (Azerbaijanis), and Kurds comprise about 80 percent of
the country’s population [17]. 0e genotype and allele fre-
quency of CYP2B6 polymorphisms have not been studied in
any of its major ethnicities. 0is study aims to evaluate the
frequency of three clinically important CYP2B6 polymor-
phisms (CYP2B6∗6 (516G>T), CYP2B6∗4 (785A>G), and
CYP2B6∗5 (1459C>T)) in three major Iranian ethnicities.

2. Methods

2.1. Ethical Compliance. All patients consented to partici-
pate in genetic and molecular analyses and consented to
publish the results. 0is study was verified by the Alborz
University of Medical Sciences Ethical Committee
(IR.ABZUMS.REC.1398.121).

2.2. Sample Collection and DNA Extraction. One hundred
and forty seven participants were included in this study,
comprising 26 Kurd, 52 Turk, and 69 Fars participants.
Included participants aged between 18 and 77 years
(median� 43, interquartile range (IQR)� 30 to 55). It should
be noted that the number of participants from each ethnic
group was calculated based on the ethnic composition of
Iran [18]. Two milliliters of venous blood were gathered
from each participant and drawn into a tube that contains
ethylenediaminetetraacetic acid as an anticoagulant followed
by DNA extraction using a molecular biological system
transfer (MBST) salting-out kit (CinnaGen, Tehran, Iran)
from the blood. Extracted DNA was stored at −20°C before
genotyping.
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Figure 1: Schematic representation of efavirenz metabolism in the liver. It should be noted that the main route of efavirenz metabolism is 8-
hydroxyefavirenz, which is predominately formed by CYP2B6. UGT, uridine 5′-diphospho-glucuronosyltransferase.
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Table 2: Genotype frequencies for CYP2B6 polymorphism in the Kurd, Turk, and Fars population.

CYP2B6∗6 (516G>T)
Ethnicity GG GT TT

Kurd (n� 26) n 4 13 9
Percent (95% CI) 15.38 (4.36, 34.87) 50.00 (29.93, 70.07) 34.62 (17.21, 55.67)

Turk (n� 52) n 20 24 8
Percent (95% CI) 38.46 (25.30, 52.98) 46.15 (32.23, 60.53) 15.38 (5.58, 25.19)

Fars (n� 69) n 26 31 12
Percent (95% CI) 37.68 (26.29, 50.17) 44.93 (32.92, 57.38) 17.39 (9.32,28.41)

Total (n� 147) n 52 68 27
Percent (95% CI) 35.37 (27.67, 43.68) 46.26 (38.01, 54.66) 18.37 (12.47, 25.59)

CYP2B6∗4 (785A>G)
Ethnicity AA AG GG

Kurd (n� 26) n 10 8 8
Percent (95% CI) 38.46(20.23, 59.43) 30.77 (14.33, 51.79) 30.77 (14.33, 51.79)

Turk (n� 52) n 20 18 14
Percent (95% CI) 38.46 (25.30, 52.98) 34.61 (21.97, 49.09) 26.92 (15.57, 41.02)

Fars (n� 69) n 34 30 5
Percent (95% CI) 49.28 (37.02, 61.59) 43.48 (31.58, 55.96) 7.25 (2.39, 16.11)

Total (n� 147) n 64 56 27
Percent (95% CI) 43.54 (35.39, 51.95) 38.10 (30.22, 46.46) 18.37 (12.47, 25.59)

CYP2B6∗5 (1459C>T)
Ethnicity CC CT TT

Kurd (n� 26) n 8 12 6
Percent (95% CI) 30.77 (14.33, 51.79) 46.15 (26.59, 66.63) 23.07 (8.97, 43.65)

Turk (n� 52) n 40 8 4
Percent (95% CI) 76.92 (63.16, 87.47) 15.38 (6.88, 28.08) 7.69 (2.14, 18.54)

Fars (n� 69) n 44 18 7
Percent (95% CI) 63.77 (51.31, 75.01) 26.08 (16.25, 38.06) 10.14 (4.18, 19.79)

Total (n� 147) n 92 38 17
Percent (95%CI) 62.59 (54.23, 70.42) 25.85 (18.99, 33.71) 11.56 (6.88, 17.87)
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Figure 2: Process of SNP genotyping using Tetra-ARMS-PCR for CYP2B6∗6 (516G>T) in not-mutated (a) and mutated (b) DNAs. PCR
product lengths of CYP2B6∗6 (516G>T) were FU+RU� 600, FU+RN� 353, and FU+RM� 353.
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2.3. Genotyping. CYP2B6∗6 (516G>T), CYP2B6∗4
(785A>G), and CYP2B6∗5 (1459C>T) were genotyped
using tetra-primer amplification refractory mutation system
polymerase chain reaction (ARMS–PCR). 0e amplification
was conducted using 60 ng of extracted genomic DNA, 0.4 U
Taq DNA polymerase (CinnaGen), six pmol of each primer,
10X PCR buffer, 0.5mM dNTP, and 1.5mM MgCl2. 0e
mixturewas initially denatured at 95°C for 3minutes, followed
by 32 cycles of 95°C for 1minute, 56°C for 1min, and 72°C for
2min for CYP2B6 516G>T; 32 cycles of 95°C for 1 minute,
64°C for 50 seconds, and 72°C for 1 minute for CYP2B6
785A>G; 35 cycles of 95°C for 1 minute, 63°C for 1min, and
72°C for 1min for CYP2B6 1459C>T; followed by a final
extension at 72°C for 10min. Afterward, amplified fragments
were run on a 1.5% agarose gel electrophoresis for 1 hour at 80
volt, aheadof staining using silver nitrate (CinnaGen) [19, 20].
Table 1 provides informationon theprimer sequences [6].0e
DNA bands in the agarose gel were visualized under ultra-
violet (UV) rays, and images were captured [19, 20]. Figure 2
schematically summarizes the genotyping process using
Tetra-ARMS-PCR for CYP2B6∗6 (516G>T).

2.4. Statistical Analysis. Genotype and allele frequencies
were carried out according to tetra-primer ARMS–PCR
findings. 0e frequency of alleles and genotypes was ac-
companied by confidence intervals (CI) proportions, cal-
culated based on the formula (95%CI � p ± (1.96×���������

p(1 − p)/n
􏽰

). Chi-square analysis was used for comparing
allele frequencies in different ethnicities [21, 22]. A p value
less than 0.05 was considered statistically significant.

3. Results

3.1. Allelic and Genotype Frequency of CYP2B6∗6 (516G>T).
Table 2 demonstrates the frequencies of CYP2B6∗6
(516G>T) genotypes in the Iranian population. 0e fre-
quency of wild-type homozygotes is estimated to be 35.37%
(95% CI: 27.67, 43.68), while the frequency of heterozygotes
and mutated homozygotes was 46.26% (95% CI: 38.01,

54.66) and 18.37% (95% CI: 12.47, 25.59), respectively. 0e
highest frequency of TTgenotype was measured in the Kurd
population (34.62%), whereas the lowest frequency was
calculated in Turk participants (5.38%) (p value <0.05). It
should be emphasized that Kurds’ mutated allele frequency
was 59.62% (95% CI: 45.10, 72.9), which was significantly
higher than whole Iranian participants (p value <0.05).
Allele frequencies of CYP2B6∗6 are available in Table 3.
Also, an electrophoresis gel demonstrating different poly-
morphisms of CYP2B6∗6 is illustrated in Figure 3.

3.2. Allelic and Genotype Frequency of CYP2B6∗4 (785A>G).
0e allelic and genotype frequency of CYP2B6∗4 in three
major Iranian ethnicities is illustrated in Table 2. A great
proportion of Iranians had wild-type homozygote genotypes
for CYP2B6∗4 (43.54%, 95% CI: 35.39, 51.95). Furthermore,
as shown in Table 3, mutated allele frequency was found to
be 37.41% (95% CI: 31.87, 43.22) in the Iranian population.
0e highest and lowest G allele frequency was measured in
Kurd (46.15, 95% CI: 32.23, 60.53) and Fars (28.98, 95% CI:
21.58, 37.31) participants (p value <0.05).

3.3.Allelic andGenotypeFrequency ofCYP2B6∗5 (1459C>T).
As Table 2 depicts data regarding CYP2B6∗5 (1459C>T)
polymorphism, CC, CT, and TT frequency were 62.59%,
25.85%, and 11.56%, respectively. Among ethnicities, Turks
showed the highest frequency for CC (76.92%, 95% CI:
63.16, 87.47), followed by 63.77% (95% CI: 51.31, 75.01) for
Fars participants. On the other hand, Kurd participants
showed a significantly higher frequency for the T allele
(46.15%, 95% CI: 32.23, 60.53) compared to Iranians
(62.59%, 95% CI: 54.23, 70.42) (p value <0.05). Frequencies
of alleles in each ethnicity are summarized in Table 2.

4. Discussion

0is study demonstrates the allele frequency of CYP2B6
mutations, which are clinically significant in the metabolism

Table 3: Allele frequencies in Iranian populations.

CYP2B6∗6 (516G>T)
Ethnicity G T χ2 statistic p value
Total (n� 147) 58.50 (52.64, 64.19) 41.50 (35.81, 47.36)
Kurd (n� 26) 40.38 (27.01, 54.90) 59.62 (45.10, 72.99) 5.8808 0.015∗
Turk (n� 52) 61.54 (51.49, 70.91) 38.46 (29.09, 48.51) 0.2932 0.588
Fars (n� 69) 60.14 (51.47, 68.38) 39.86 (31.62, 48.53) 0.1046 0.746
CYP2B6∗4 (785A>G)
Ethnicity A G χ2 statistic p value
Total (n� 147) 62.59 (56.78, 68.13) 37.41 (31.87, 43.22)
Kurd (n� 26) 53.85 (39.47, 67.77) 46.15 (32.23, 60.53) 1.422 0.233
Turk (n� 52) 55.77 (45.70, 65.50) 44.23 (34.50, 54.30) 1.4975 0.221
Fars (n� 69) 71.01 (62.69, 78.42) 28.98 (21.58, 37.31) 2.9442 0.086
CYP2B6∗5 (1459C>T)
Ethnicity C T χ2 statistic p value
Total (n� 147) 75.51 (70.18, 80.32) 24.49 (19.68, 29.82)
Kurd (n� 26) 53.85 (39.47, 67.77) 46.15 (32.23, 60.53) 10.3442 0.0012∗
Turk (n� 52) 84.62 (76.22, 90.94) 15.38 (9.06, 23.78) 3.6983 0.054
Fars (n� 69) 76.81 (68.87,83.57) 23.19 (16.43, 31.13) 0.087 0.768
∗p value for χ2 test is statistically significant (p value <0.05).
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of efavirenz in three major Iranian ethnicities. 0e con-
clusion derived from the data obtained in the present study
showed that Kurds, which comprise about 10 percent of the
country’s population, are found to be attributed at higher
risk of both decreased and increased efavirenz metabolism
compared to other Iranian ethnicities due to their higher
frequency of CYP2B6∗6 and CYP2B6∗5, respectively.

As demonstrated in Figure 1, efavirenz pharmacokinetic
is closely linked to CYP2B6 and its polymorphisms play a
crucial role in the metabolization pace of the drug [13]. 0at
is to say, the large intersubject variability of efavirenz ex-
posure could be explained by the CYP2B6 genetic variations
[23]. Clinical Pharmacogenetics Implementation Consor-
tium (CPIC) guideline suggests CYP2B6 genotyping prior to
prescription of efavirenz-containing antiretroviral therapy,

as CYP2B6 is highly polymorphic and some of its variants
lead to substantial differences in plasma efavirenz exposure
[24]. For instance, CYP2B6∗6 (516G>T) results in aberrant
splicing, which in turn leads to reduced CYP2B6 expression.
Table 4 summarizes the effects of CYP2B6∗6 (516G>T),
CYP2B6∗4 (785A>G), and CYP2B6∗5 (1459C>T) poly-
morphisms in efavirenz metabolization and provides the
frequencies of CYP2B6 polymorphisms.

Not only in-vitro studies demonstrated that CYP2B6∗6
(516G>T) is associated with the decreased catalytic activity
of CYP2B6 and decreased efavirenz metabolism [35–37] but
also clinical studies proved that CYP2B6∗6 (516G>T) is
associated with increased efavirenz level in plasma [32, 38,
39]. In other words, previous studies revealed that pop-
ulations with a higher frequency of CYP2B6∗6 are at higher
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risk of efavirenz toxicity. In this study, Kurds were identified
as a population with CYP2B6∗6 mutated homozygote ge-
notype (TT) frequencies as high as 34 percent.

0e greatness of this percentage becomes more tangible
when compared to previous studies. For instance, Haas
et al.’s study reported a TT frequency of 20 percent in its
African-Americans participants. 0ey concluded that Af-
rican-Americans have greater efavirenz plasma exposure
during HIV therapy and should be considered a high-risk
group in terms of efavirenz ADR [40]. 0e findings of the
Gounden et al. study in South African HIV-infected patients
were also similar to Haas et al.’s study [41]. On the other
hand, studies conducted in Mozambican, Zimbabwean, and
Senegalese populations reported a CYP2B6∗6 allele fre-
quency higher than Kurd participants in this study [42–44].
To consider the study’s small sample, we reported all fre-
quencies with their 95% confidence intervals. It is note-
worthy that even the lowest 95% confidence interval of TT
frequency in the Kurd population is higher than the TT
frequency reported in some previous studies [40, 45].

Zakeri et al.’s study, which is the single study conducted
in Iran to evaluate the frequency of CYP2B6 variants,
showed that CYP2B6∗6 allele frequency is 10.2% in the
Baloch population in southeast Iran [44].0eir findings were
consistent with our results in Turk and Fars populations.
Conversely, the T allele was more frequent in the Kurd
population than in the Baloch population. We should keep
in mind that the Baloch ethnicity, which comprises only
about 2 percent of the country’s population [18], is not a
representative sample of whole Iranians. Moreover, there is a
significant geographical distance between Balochs pre-
dominantly living in the southeast and Kurds residence in
the country’s northwest.

Moreover, Zakeri et al. showed that the prevalence of
mutated homozygote of CYP2B6∗4 (785A>G) (GG), which
is attributed to decreased CYP2B6 activity, in Baloch eth-
nicity is 10.4 (7.8–13.8) percent [25], which is relatively
lower than the results of this study. 0ese findings can also
be justified by the small share of Balochs in Iran’s population
and geographic considerations. On the other hand, the
frequency of the G allele reported in this study is similar to
other ethnic populations such as Timorians (29.2 percent)
[46], Malays (37.2 percent) [47], and Indians (36.3 percent)
[48].

Similar to CYP2B6∗6, the mutated allele frequency of
CYP2B6∗5 (1459C>T) is higher in Kurds than in other
Iranian ethnicities. TT phenotype leads to the increased
catalytic activity of CYP2B6 and increased efavirenz meta-
bolism [35]. Having a high frequency of both CYP2B6∗6 and
∗5 puts Kurds at higher risk of inadequate drug exposure and
ADRs, prioritizing this ethnicity for testing CYP2B6 variants
over other Iranian ethnicities. Arenaz et al. investigated the
potential differences in allele frequencies of the CYP2B6 gene
between Spaniards and Central Americans.0ey showed that
the frequency of the T allele ranges from 1.0 percent in
Japanese ethnicity to 14.0 in Caucasian (German) ethnicity.
Although the frequency of CYP2B6∗5 in their study is not as
high as ours, their findings verified that CYP2B6∗5 frequency
is vastly different among ethnicities [49].

0ere are several limitations to our study. First, the sample
size of the current study was small, and other cross-sectional
studies with larger sample sizes should be conducted to
evaluate the allele frequency in Iranian ethnicities and identify
high-riskethnicitygroups.Moreover, in this study, threemajor
mutations of CYP2B6 were evaluated (CYP2B6∗6 (516G>T),
CYP2B6∗4 (785A>G), and CYP2B6∗5 (1459C>T)), while
other minor mutations such as CYP2B6∗15 (1172T>A),
CYP2B6∗11 (136A>G),CYP2B6∗2 (64C>T), andCYP2B6∗3
(777C>A) in CYP2B6 may also play a role in the drug
metabolism. More importantly, sequence analysis was not
conducted in this study.0e lack of sequence analysiswarns us
to interpret the data of the investigated CYP2B6 polymor-
phisms more carefully.

In conclusion, this study revealed that a high frequency
of CYP2B6∗6 and ∗5 leads to an increase in the risk of ADRs
and insufficient anti-HIV response in Kurds, respectively.
0is study proposes genotyping for clinically significant
mutations, especially in Kurds, before anti-HIV therapy with
efavirenz.
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