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MATRIX TRANSFORMATIONS
BASED ON DIRICHLET CONVOLUTION

CHIKKANNA SELVARAJ AND SUGUNA SELVARAJ

ABSTRACT. This paper is a study of summability methods that are based on Dirichlet
convolution. If f (n) is a function on positive integers and x is a sequence such that
limn!1

P
k�n

1
k (f Ł x)(k) ≥ L, then x is said to be Af -summable to L. The necessary

and sufficient condition for the matrix Af to preserve bounded variation of sequences
is established. Also, the matrix Af is investigated as ‡ � ‡ and G � G mappings. The
strength of the Af -matrix is also discussed.

1. Introduction. If f (n) and g(n) are real-valued functions defined on positive in-
tegers, then the Dirichlet convolution of f and g is given by

(f Ł g)(n) ≥
X
djn

f
�n

d

�
g(d).

In 1960, Rubel [6] introduced the sequence to sequence summability method as follows:
A sequence fang is Añ-summable to L if

lim
n!1

nX
k≥1

1
k

(ñ Ł a)(k) ≥ L,

where ñ(n) is the Möbius function. It can be easily seen that this summability method is
indeed a matrix transformation, by considering

nX
k≥1

1
k

(ñ Ł a)(k) ≥
nX

k≥1

1
k

X
djn

ñ
� k

d

�
ad

≥
nX

d≥1

1
d

X
q� n

d

ñ(q)
q

ad.

Thus the lower triangular matrix Añ is given by

Añ(n, k) ≥
(

1
k

P
q� n

k

ñ(q)
q , if k � n,

0, if k Ù n.

Rubel [6] proved that the matrix Añ satisfies the Silverman-Toeplitz conditions and
hence is regular. In 1964, Segal [7] introduced the generalization of the matrix Añ and
gave the characterization of classes of functions f (n) satisfying the condition that the
matrix Af given by

Af (n, k) ≥
(

1
k

P
q� n

k

f (q)
q , if k � n,

0, if k Ù n
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is regular. In this paper, we investigate the classes of functions f (n) which satisfy the
condition that the corresponding matrices Af preserve bounded variation of sequences.
Also, we give necessary and sufficient conditions for the matrix Af to be a G�G, G�‡
and ‡ � ‡ matrix. In Section 3 we establish two comparison theorems related to the
summability method Af . We have given below the basic notations and definitions used
in this paper.

B ≥
²

x :
1X

k≥1
j∆xkj Ú 1

¦
.

‡ ≥
²

x :
1X

k≥1
jxkj Ú 1

¦
.

G ≥ fx : xk ≥ O(rk) for some rè(0, 1)g

� fx : lim sup
k

jxkj
1
k Ú 1g.

DEFINITION 1.1. We call a matrix A an X � Y matrix if Ax is in the set Y whenever
x is in X.

DEFINITION 1.2. An X � Y matrix A is said to be sum-preserving if for each x 2 X,
1X

n≥1
(Ax)n ≥

1X
k≥1

xk.

DEFINITION 1.3. A sequence fxng is of bounded variation if and only if
1X

k≥1
j∆xkj ≥

1X
k≥1

jxk � xk+1j Ú 1.

Fricke and Fridy [2] introduced the set G as the set of sequences that are dominated
by a convergent geometric sequence and gave characterizations of G � ‡ and G � G
matrices as follows:

THEOREM 1.1. The matrix A is a G � ‡ matrix if and only if
1X

n≥0
jankj ≥ Mk Ú 1 for k ≥ 0, 1, . . . ,

and
lim sup

k
M

1
k
k � 1.

THEOREM 1.2. The matrix A is a G � G matrix if and only if for each è Ù 0, there
exists a constant M and an r 2 (0, 1) such that

jankj � Mrn(1 + è)k for all n and k.

THEOREM 1.3. The ‡�‡ or G�‡matrix A is sum-preserving if and only if for each
k,

1X
n≥1

ank ≥ 1.
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2. Af Transformations of various sets. In this section we consider the Af -transfor-
mations of the sets B, ‡ and G.

In [5] Mears gave necessary and sufficient conditions for a matrix [ank] to preserve the
bounded variation of sequences. It can be easily verified that a lower triangular matrix
[ank] maps the set B into B if and only if

sup
k

1X
n≥1

jan,k � an�1,kj Ú 1.

THEOREM 2.1. The matrix Af preserves the bounded variation of the sequences if
and only if f (n)

n is in ‡.

PROOF. Assuming that f (n)
n is in ‡ , we want to show that

(1) sup
k

1X
n≥1

þþþþþ1k
X
q� n

k

f (q)
q

�
1
k

X
q�n�1

k

f (q)
q

þþþþþ Ú 1.

For each k, let us evaluate the summation over n by considering the cases where (i) n is
not divisible by k and (ii) n is divisible by k.

CASE (i). If n is not divisible by k, then k ½ 2. So, n ≥ kp + m where p is an integer
½ 0 and 1 � m Ú k. Therefore, [n

k ] ≥ p and [ n�1
k ] ≥ [ kp+m�1

k ] ≥ p, since m � 1 Ú k.
Hence, for each such n, X

q� n
k

f (q)
q

�
X

q� n�1
k

f (q)
q

≥ 0.

Thus for each k in (1), the n’s not divisible by k contribute zeros to the summation over
n.

CASE (ii). If n is divisible by k, then for k ≥ 1,
1X

n≥1

þþþþþ
X
q�n

f (q)
q

�
X

q�n�1

f (q)
q

þþþþþ ≥
1X

n≥1

þþþþþ f (n)
n

þþþþþ.
If n is divisible by k and k ½ 2, we have n ≥ kp for some positive integer p. Therefore,
[ n

k ] ≥ p and [ n�1
k ] ≥ [p � 1

k ] ≥ p� 1. Hence, for each such n,

X
q� n

k

f (q)
q

�
X

q� n�1
k

f (q)
q

≥
f (p)

p
.

Thus for each k,

1
k

1X
n≥1

þþþþþ
X
q� n

k

f (q)
q

�
X

q� n�1
k

f (q)
q

þþþþþ ≥ 1
k

X
n≥kp

p≥1,2,...

þþþþþ f (p)
p

þþþþþ ≥ M
k

,

by the assumption. Hence Af is a B� B matrix.
Conversely, if the matrix Af maps B into B, then the condition (1) is true. When k ≥ 1

we get that
1X

n≥1

þþþþþ
X
q�n

f (q)
q

�
X

q�n�1

f (q)
q

þþþþþ ≥
1X

n≥1

þþþþþ f (n)
n

þþþþþ � M.

Hence, the theorem is proved.
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COROLLARY 2.1. If Ag is a B�B matrix and f (n) ≥ O
�
g(n)

�
, then Af is also a B�B

matrix.

We give below some examples of arithmetic functions such that the associated matri-
ces Af preserve bounded variation of sequences.

EXAMPLE 2.1. Let f (n) ≥ O
�
g(n)

�
, where g(n) ≥ 1

nm for fixed m Ù 0. Then

1X
n≥1

þþþþþg(n)
n

þþþþþ ≥
1X

n≥1

1
ns , where s Ù 1

≥ ê(s)

where ê is the Riemann-Zeta function.

EXAMPLE 2.2. Let f (n) ≥ O
�
g(n)

�
, where g(n) ≥ ñ(n)

nm for fixed m Ù 0. Since
jñ(n)j � 1 for all n, we get that

1X
n≥1

þþþþþg(n)
n

þþþþþ ≥
1X

n≥1

1
ns
≥ ê(s).

EXAMPLE 2.3. Let f (n) ≥ d(n)
nm for fixed m Ù 0, where d(n) is the divisor function

given by d(n) ≥ number of positive divisors of n. Then

1X
n≥1

þþþþþ f (n)
n

þþþþþ ≥
1X

n≥1

d(n)
ns

, where s Ù 1,

≥ ê2(s)

by the formula in [1, p. 24].

EXAMPLE 2.4. Let f (n) ≥ Λ(n)
nm for fixed m Ù 0, where Λ(n) is von Mangoldt function

given by

Λ(n) ≥
(

log p, if n ≥ pm where p is prime and m Ù 0,
0, otherwise.

Then, by the formula in [1, p. 24], we get that

1X
n≥1

þþþþþ f (n)
n

þþþþþ ≥
1X

n≥1

Λ(n)
ns

, where s Ù 1,

≥ �
ê0(s)
ê(s)

.

EXAMPLE 2.5. Let f (n) ≥ †(n)
ns for fixed s Ù 1, where †(n) is the Chebyshev’s

function given by †(n) ≥
P

k�n Λ(k). Since †(n) ≥ O(n) [1, p. 5], we get that

1X
n≥1

þþþþþ f (n)
n

þþþþþ �
1X

n≥1

M
ns
≥ Mê(s).
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EXAMPLE 2.6. Let f (n) ≥ û(n)
nm for fixed m Ù 0, where û(n) is the Euler’s function

given by û(n) ≥ number of m � n such that (m, n) ≥ 1. Then

1X
n≥1

þþþþþ f (n)
n

þþþþþ ≥
1X

n≥1

û(n)
ns

, where s Ù 1,

≥
ê(s � 1)
ê(s)

.

Next, we give the necessary and sufficient conditions on the arithmetic function f (n)
such that the associated matrix Af maps G into G and ‡ into ‡.

THEOREM 2.2. The matrix Af is a G �G matrix if and only if f (n) 2 G.

PROOF. Suppose that f (n) is in G. Then there exists an M Ù 0 and an r 2 (0, 1) such
that

jf (n)j � Mrn, for all n.

Therefore,

jAf (n, k)j ≥
þþþþþ1k

X
q� n

k

f (q)
q

þþþþþ
�

M
k

X
q�n+1

rq

≥
Mr
k

(1 � r)n.

Hence, given è Ù 0, there exists an H Ù 0 and 1� r ≥ s 2 (0, 1) such that

jAf (n, k)j � Hsn(1 + è)k,

for all n and k. By Theorem 1.2, Af is a G�G matrix.
Conversely, if Af is a G�G matrix, then for all n and k, we have a B Ù 0 and s 2 (0, 1)

such that
jAf (n, k)j � Bsn(1 + è)k.

When k ≥ 1, for all n, þþþþþ
X
q�n

f (q)
q

þþþþþ � Bsn.

Therefore, for each n,

jf (n)j �
þþþþþ f (n)

n

þþþþþ
≥
þþþþþ
X
q�n

f (q)
q

�
X

q�n�1

f (q)
q

þþþþþ
�
þþþþþ
X
q�n

f (q)
q

þþþþþ +
þþþþþ
X

q�n�1

f (q)
q

þþþþþ
� Bsn + Bsn�1 ≥ Hsn.
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Hence, the theorem is true.

The next two examples demonstrate the following general relationship.

REMARK 2.1. If Af is a G�G matrix, then A�1
f [G] is larger than G.

EXAMPLE 2.7. Let an ≥ 1
ns for fixed s Ù 0. Then an Â2 G, because

lim sup
n

janj
1
n ≥ 1.

If Af is G� G matrix, then by Theorem 2.2, f (n) 2 G which yields that

jf (n)j � Mrn, for some r 2 (0, 1).

Therefore, for each n,

j(Af a)nj �
nX

k≥1

ak

k

X
q� n

k

jf (q)j
q

Ú
nX

k≥1

1
ks+1

X
q�n+1

Mrq

≥ H(1 � r)n
nX

k≥1

1
ks+1

Ú Hê(s + 1)(1 � r)n.

Since 1� r 2 (0, 1), we have that (Af a)n 2 G.

EXAMPLE 2.8. If we choose an ≥
ñ(n)
ns for s Ù 0, then we get lim supn janj

1
n ≥ 1,

because jñ(n)j ≥ 1 or 0, for all n. So, an Â2 G and as in Example 2.7, we can show that
(Af a)n 2 G.

THEOREM 2.3. The following statements are equivalent:

(i) The matrix Af is ‡ � ‡;

(ii) The matrix Af is G� ‡;

(iii) The first column of the matrix Af is in ‡.

PROOF. It is obvious that (i) implies (ii), because G ² ‡. To see that (ii) implies (iii),
suppose that Af is G � ‡. Therefore, by Theorem 1.1, we get that

1X
n≥1

jAf (n, k)j ≥ Mk Ú 1, for all k.

Hence,
1X

n≥1
jAf (n, 1)j ≥ M1 Ú 1.

In order to prove the remaining implication, we need the following lemmas.
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LEMMA 2.1. In the matrix Af , all column sums are equal.

PROOF. For any fixed k,

1X
n≥1

Af (n, k) ≥
1X

n≥1

1
k

X
q� n

k

f (q)
q

≥
1
k

"X
nÚk

 X
q� n

k

f (q)
q

!
+

X
k�nÚ2k

 X
q� n

k

f (q)
q

!
+

X
2k�nÚ3k

 X
q� n

k

f (q)
q

!
+ Ð Ð Ð

#
.

The first term of the above infinite sum is zero. In each of the remaining terms, if pk �
n Ú (p + 1)k, then [ n

k ] ≥ p and n takes exactly k different values. Thus,

1X
n≥1

Af (n, k) ≥
1
k

"
k
X
q�1

f (q)
q

+ k
X
q�2

f (q)
q

+ Ð Ð Ð
#

≥
1X

n≥1

X
q�n

f (q)
q

≥
1X

n≥1
Af (n, 1),

which proves the lemma.
Repeating the above proof for

P
1
n≥1 jAf (n, k)j, we get the following lemma.

LEMMA 2.2. In the matrix Af , absolute column sums are equal.

Now, let us prove that (iii) implies (i) of Theorem 2.3. Consider

sup
k

1X
n≥1

jAf (n, k)j ≥
1X

n≥1
jAf (n, 1)j Ú 1,

by (iii). Hence by the Knopp-Lorentz [4] Theorem, Af is an ‡ � ‡ matrix.

EXAMPLE 2.9. For fixed s Ù 1, let

f (n) ≥
(

1� ê(s + 1), if n ≥ 1,
1
ns , if n Ù 1.

Then in the corresponding matrix Af ,

Af (n, 1) ≥
nX

q≥1

f (q)
q

≥ �ê(s + 1) +
nX

q≥1

1
qs+1

.

Using the known result that

X
k�n

1
ks
≥

n1�s

1� s
+ ê(s) + O

� 1
ns

�
,
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we get that
1X

n≥1
jAf (n, 1)j ≥

1X
n≥1

þþþþ 1
sns

+ O
� 1

ns+1

�þþþþ,
which converges since s Ù 1. Thus, Af is ‡ � ‡ and G� ‡ matrix.

EXAMPLE 2.10. If f (n) is given by

f (n) ≥
(

1, if n ≥ 1,
n+1

(1�n)2n+1 , if n Ù 1,

then the matrix Af is ‡ � ‡.
Since

nX
q≥1

f (q)
q

≥ 1�
nX

q≥2

(q + 1)
q(q� 1)2q�1

≥
1

n2n�1
,

we have that
1X

n≥1
jAf (n, 1)j ≥

1X
n≥1

1
n2n�1

,

which is convergent.

EXAMPLE 2.11. By defining f (n) as

f (n) ≥

8<
:

1
2 , if n ≥ 1,
(n+1)�n2

(n+1)! , if n Ù 1,

we get that
nX

q≥1

f (q)
q

≥
1
2
�

nX
q≥2

q2 � q� 1
(q + 1)!

≥
1
2
�

nX
q≥2

(q + 1)(q� 1) � q
(q + 1)!

≥
n

(n + 1)!
,

which yields that
1X

n≥1
jAf (n, 1)j ≥

1X
n≥1

n
(n + 1)!

.

This sum converges to 1, because the partial sum

SN ≥ 1�
1

(N + 1)!

approaches 1 as N !1. Thus, the matrix Af is ‡�‡ and G�l. Also, Af is sum-preserving
over ‡ and G by Theorem 1.3 and Lemma 2.1.
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3. Additional theorems. In this section, we attempt to assess the strength of Af -
matrix. When f (n) ≥ ñ(n), the matrix Añ is regular [6]. We notice that Añ is stronger
than the identity matrix, because for the non-convergent sequence an when an ≥ õ(n)

n ,
the n-th term of the transformed sequence is given by

(Aña)n ≥
X
k�n

1
k

X
djk

ñ
� k

d

�õ(d)
d

.

Since õ(k)
k ≥ 1

k

P
djk d ≥

P
djk

d
k ≥

P
djk

1
d , by Möbius Inversion formula [1, p. 2] we get

that
1
k
≥
X
djk

ñ
� k

d

�õ(d)
d

.

Thus,

(Aña)n ≥
X
k�n

1
k2

,

which converges, as n !1.
Segal [8] gave a necessary condition on the function f (n) for the regularity of Af . We

note that if f (n) is a non-negative arithmetic function such that f (1) Â≥ 0 and f 2 c0, then
Af is not regular.

Since f 2 c0, there exists an N such that f (n) Ú 1
2 f (1) for all n Ù N. Hence, for a

sequence an � 1, we have that

(Af a)n ≥
X
k�n

1
k

X
djk

f
� k

d

�
.

As n !1, (Af a)n approaches

1X
k≥1

1
k

X
djk

f (d) Ù
1X

p≥1
p, prime

1
p

[f (1) + f (p)]

≥
X
p�N

1
p

[f (1) + f (p)] +
X
pÙN

1
p

[f (1) + f (p)]

Ù M +
X
pÙN

1
p

[f (1) �
1
2

f (1)]

≥ M +
f (1)

2

X
pÙN

1
p

,

which diverges.
Next, we compare the Af -matrix with the Divisor matrix [3] which is given by

D(n, k) ≥
(

k
õ(n), if kjn,
0, otherwise,

where õ(n) = sum of divisors of n. Fridy [4] showed that D is a regular matrix and for
any triangular matrix M, if M�1 exists and limn!1 M(n, n) ≥ 0, then D does not include
M.
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THEOREM 3.1. Divisor matrix D does not include Af -matrix for any f with f (1) Â≥ 0.

PROOF. Af is a lower triangular matrix and

Af (n, n) ≥
1
n

X
q�1

f (q)
q

≥
f (1)

n
Â≥ 0

So, A�1
f exists and limn!1 Af (n, n) ≥ 0.

THEOREM 3.2. If a sequence fang is Divisor summable to L such that (Da)n ≥
L + o(1Ûn log log n) as n !1, then fang is Af -summable to L for any regular Af .

PROOF. Since (Da)k ≥
P

mjk
m
õ(k) am, we get that

(Da)kõ(k) ≥
X
mjk

mam.

Möbius inversion formula yields that

kak ≥
X
mjk

ñ
� k

m

�
(Da)mõ(m).

Therefore,

(Af a)n ≥
X
k�n

1
k

X
q� n

k

f (q)
q

ak ≥
X
k�n

ak

k
Bk (say)

≥
X
k�n

1
k2

X
mjk

ñ
� k

m

�
(Da)mõ(m)Bk

≥
X
k�n

L
k2

X
mjk

ñ
� k

m

�
õ(m)Bk

+
X
k�n

1
k2

X
mjk

ñ
� k

m

�
o
� 1

m log log m

�
õ(m)Bk, as m !1

≥ S1 + S2 (say)

Since õ(k) ≥
P

mjk m implies that

k ≥
X
mjk

ñ
� k

m

�
õ(m),

we get that

S1 ≥
X
k�n

L
k

X
q� n

k

f (q)
q

≥ (Af L)n,

where L is a constant sequence. The regularity of Af yields that S1 ! L as n !1.
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We know that õ(n) ≥ O(n log log n). Hence,

S2 ≥
X
k�n

1
k2

X
mjk

ñ
� k

m

�
o(1)Bk, as m !1

≥
X
k�n

1
k2

O
 X

mjk

þþþþñ
� k

m

�þþþþ
!

Bk, as k !1

≥
X
k�n

1
k2

O
�X

mjk

1
�

Bk

≥
X
k�n

1
k2

O
�
d(k)

�
Bk

≥
X
k�n

1
k2

O(k
1
2 )Bk [1, p. 19]

≥
X
k�n

O
� 1

k
1
2

�"1
k

X
q� n

k

f (q)
q

#
, as k !1

≥
X
k�n

ukAf (n, k),

where fukg is a sequence such that jukj � MÛk
1
2 and hence uk ! 0 as k !1. Thus, the

regularity of Af yields that S2 ≥ (Af u)n ! 0 as n !1. Hence, the theorem is proved.
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