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MATRIX TRANSFORMATIONS
BASED ON DIRICHLET CONVOLUTION

CHIKKANNA SELVARAJAND SUGUNA SELVARAJ

ABSTRACT.  Thispaper isastudy of summability methodsthat arebased on Dirichlet
convolution. If f(n) is a function on positive integers and X is a sequence such that
liMn .00 Tken £(F * X)(K) = L, then x is said to be A;-summable to L. The necessary
and sufficient condition for the matrix A to preserve bounded variation of sequences
is established. Also, the matrix A isinvestigated as ¢ — ¢ and G — G mappings. The
strength of the A¢-matrix is also discussed.

1. Introduction. If f(n) and g(n) are real-valued functions defined on positive in-
tegers, then the Dirichlet convolution of f and gis given by

(F <9 = > f( 5)a(@.

djn

In 1960, Rubel [6] introduced the sequenceto sequence summability method as follows:
A sequence {a,} isA,-summableto L if

lim 3° %(u «a)(K) = L,
n—o0 77

where 1(n) is the Mobius function. It can be easily seen that this summability method is
indeed a matrix transformation, by considering

> 2l a) = 3 7 > u( )
1 =2 ul=
i1k k:lkd\n d
"1 p(g)

= — _ad'
dX::ldqgg q

Thus the lower triangular matrix A, is given by

0, Y iftk>n.

Rubel [6] proved that the matrix A, satisfies the Silverman-Toeplitz conditions and
hence is regular. In 1964, Segal [7] introduced the generalization of the matrix A, and
gave the characterization of classes of functions f(n) satisfying the condition that the
matrix A¢ given by

A.(nK) = { %quﬁ M9 ifk <n,

1 () ;
A k kZQSE e |fk§n,
(k) = {o, 9 dtk>n
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is regular. In this paper, we investigate the classes of functions f(n) which satisfy the
condition that the corresponding matrices A¢ preserve bounded variation of sequences.
Also, we give necessary and sufficient conditions for the matrix A; tobeaG— G, G — ¢
and ¢ — £ matrix. In Section 3 we establish two comparison theorems related to the
summability method A;. We have given below the basic notations and definitions used
in this paper.

B= {x: > 1A% <oo}.
k=1
o0
(= {x: Y <oo}.
k=1
G = {x: x« = O(r¥) for somere(0, 1)}
={x: Iimsup|xk|1% < 1}.
k
DerINITION 1.1.  We call amatrix A an X — Y matrix if Axisin the set' Y whenever
xisinX.
DEFINITION 1.2.  An X — Y matrix Aissaid to be sum-preserving if for eachx € X,
Z (AX)n = Z Xk-
n=1 k=1
DEFINITION 1.3. A sequence {x,} is of bounded variation if and only if
20 1% = 37 X — Xt | < 00.
k=1 k=1

Fricke and Fridy [2] introduced the set G as the set of sequencesthat are dominated
by a convergent geometric sequence and gave characterizationsof G — ( and G — G
matrices as follows:

THEOREM 1.1. Thematrix Aisa G — ¢ matrix if and only if

> lakl =M< oo fork=0,1,...,
n=0

and )
limsupMj < 1.
k

THEOREM 1.2. The matrix Aisa G — G matrix if and only if for each ¢ > 0, there
existsa constant M andanr € (0, 1) such that

lan] < Mr(1+¢)* for all nand k.

THEOREM 1.3. The (! — £ or G— £ matrix Aissum-preservingif and only if for each
ky

> aw=1
=1
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2. A; Transformationsof varioussets. Inthis section we consider the As-transfor-
mations of the sets B, ¢ and G.

In [5] Mearsgave necessary and sufficient conditionsfor amatrix [a,] to preservethe
bounded variation of sequences. It can be easily verified that a lower triangular matrix
[ank] mapsthe set Binto B if and only if

SUP Y [@nk — an-1k| < 00.
k n=1

THEOREM 2.1. The matrix A¢ preservesthe bounded variation of the sequences if
and only if @ isin ¢.

ProoF. Assuming that ' isin ¢ , we want to show that
© |1 f 1 f
@ apy s> 2y M,

k n=11Kg<t Q CEE

For each k, let us evaluate the summation over n by considering the caseswhere (i) nis
not divisible by k and (ii) nisdivisible by k.

Case (i). If nisnotdivisibleby k, thenk > 2. So, n = kp+mwhere p isan integer
> 0and 1 < m < k. Therefore, [{] = pand[”;kl] = [5°+k—m‘1] =p,sincem—1 < k.

Hence, for each such n, . .
1@ o 1@

a<p G g<zz G

0.

Thusfor each kin (1), the n’s not divisible by k contribute zeros to the summation over
n.

Cask (ii). If nisdivisibleby k, then for k = 1,

2@ @] 2[f)
nX::quS;q qunz—lq nZ::ln.

If nisdivisibleby kand k > 2, we have n = kp for some positive integer p. Therefore,
[8] = pand [%2] = [p— £] = p— 1. Hence, for each suchn,

@ 1@ _ 0
<t d gt d P
Thusfor each k,
1 2| f(q) f@) 1 fp)| _ M
YRR e
n=1lg<t g<id ng?...

by the assumption. Hence A isaB — B matrix.
Conversely, if thematrix As maps B into B, then the condition (1) istrue. Whenk = 1

we get that
3|~ @) fl@|_ x|
Yy odo y =y am
n=1lg<n 4 ¢<nm1 G n=1/ N

Hence, the theorem is proved.
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COROLLARY 2.1. If AjisaB—Bmatrixandf(n) = O(g(n)), then A isalsoaB—B
matrix.

We give below some examples of arithmetic functions such that the associated matri-
ces A preserve bounded variation of sequences.

ExAMPLE 2.1 Letf(n) = O(g(n)), where g(n) =  for fixed m > 0. Then

i@ -y is wheres > 1
n=1 N n=1n
= (9

where ( is the Riemann-Zeta function.

EXAMPLE 2.2. Let f(n) = O(g(n)), where g(n) = 2 for fixed m > 0. Since
|u(n)| < 1forall n, weget that

g 1
n;lT —ngl@—«s)-

ExAMPLE 2.3. Letf(n) = % for fixed m > 0, where d(n) is the divisor function
given by d(n) = number of positive divisors of n. Then

i o) _ i LQ) wheres > 1,
n=1l N n=1 N
= (%)

by the formulain [1, p. 24].

ExampLE2.4. Letf(n) = %m’—‘l for fixedm > 0, where A(n) isvon Mangoldt function
given by

An) = logp, if n=p™wherepisprimeand m> 0,
10, otherwise.

Then, by theformulain [1, p. 24], we get that

2| = AM)
nng =2 wheres > 1,
_ e
9"

ExAMPLE 2.5. Let f(n) = @ for fixed s > 1, where )(n) is the Chebyshev's
function given by ¥(n) = >k<n A(K). Since ¥(n) = O(n) [1, p. 5], we get that

S fM) &M
nX::lT Sn:lE—MC(S)-
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ExAMPLE 2.6. Letf(n) = 21 for fixed m > 0, where ¢(n) is the Euler’s function

nm

given by ¢(n) = number of m < n suchthat (m,n) = 1. Then

i fn) = i ¢(2), wheres > 1,
n=1l N =1 N
_{s—)
s

Next, we give the necessary and sufficient conditions on the arithmetic function f(n)
such that the associated matrix Ar maps G into G and £ into .

THEOREM 2.2. Thematrix A; isa G — G matrixif and onlyif f(n) € G.

PROOF. Supposethat f(n) isin G. ThenthereexistsanM > O0andanr € (0, 1) such
that
[f(n)] < Mr", foralln.

Therefore,
f(q)

|Af(nv k)| = 7

P

gq<

> 1
q<mL

=I5

<

~|Z

= %(1 —n"
Hence, givene > 0, thereexistsanH > 0and 1 —r = s € (0, 1) such that
|A(n,K)| < HS"(1+ €)X,

for al nand k. By Theorem 1.2, As isaG — G matrix.
Conversely, if A; isaG—G matrix, thenfor all nand k, wehaveaB > 0ands € (0, 1)
such that
Ar(n, k)| < BS'(1+e)k.

Whenk = 1, for dl n,
1O g

a<n g

Therefore, for each n,
f(n)

ol < -

f f
_[yTe_ - f@

aq<n q gq<n—1 q

f
s 1@

g<n—1 4

<[ 19,

g<n 9
<Bs'+Bs"! =Hg"
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Hence, the theorem istrue.
The next two examples demonstrate the following general relationship.

REMARK 2.1. If As isaG — G matrix, then A Y[G] is larger than G.

EXAMPLE 2.7. Leta, =  for fixeds> 0. Thena, ¢ G, because
Iimnsup|an|% =1
If A; isG — G matrix, then by Theorem 2.2, f(n) € G which yields that
[f(n)] < Mr", forsomer € (0,1).

Therefore, for each n,

n ak f
|(Ara)n| < > ® @
k=1 Kg<2
S X M
< — r
k=1 k3+1 g<n+1

no1
=H@-r)"
( )kglksﬂ

< H(s+1@-n)".

Sincel —r € (0,1), we havethat (Asa), € G.

EXAMPLE 2.8. If we choosea, = “O for s > 0, then we get limsup, |an|7 = 1,
because |u(n)| = 1 or O, for al n. So, a, ¢ G and asin Example 2.7, we can show that
(Afa)n € G.

THEOREM 2.3. The following statements are equivalent:
(i) Thematrix As is ¢ — ¢;

(i) Thematrix A; isG — ¢;

(iii) Thefirst column of the matrix A¢ isin £.

ProOOF. Itisobviousthat (i) implies (ii), becauseG C (. To seethat (ii) implies (iii),
supposethat As isG — (. Therefore, by Theorem 1.1, we get that

i |A (N, K)| = My < 0o, forallk.
n=1

Hence,

S A, D) = My < oo.
n=1

In order to prove the remaining implication, we need the following lemmas.
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LEMMA 2.1. Inthematrix A¢, all column sumsare equal.

PROOF.  For any fixed k,

YZ‘lAf(n, W= 5D f(q)

=1 K q<t
-5z % P b S o o8

Thefirst term of the above infinite sum is zero. In each of the remaining terms, if pk <
n < (p+ 1)k, then[{] = p and n takes exactly k different values. Thus,

iAf(n’k) [ Zf(q)+sz(q)

g<1 a q<2

f(a)
q

I
TM2

PP
19<n

n

Ai(n, 1),

gk

=]
Il
[

which proves the lemma.
Repeating the above proof for 22, |A¢(n, k)|, we get the following lemma.

LEMMA 2.2. Inthe matrix A¢, absolute column sums are equal.

Now, let us provethat (iii) implies (i) of Theorem 2.3. Consider
sup > [AnK)[ = > [Ac(n, )] < oo,
k n=1 n=1

by (iii). Hence by the Knopp-Lorentz [4] Theorem, As isan ¢ — ¢ matrix.

EXAMPLE 2.9. For fixeds > 1, let

1 {(s+1), ifn=1,
fm=1z, ifn>1

Then in the corresponding matrix Ay,

n
A(n,1) = @
g=1 q
no1
= _C(S+ 1) + qZ:;I_ qS+1'
Using the known result that
1 nl S
B e Ch O( )

https://doi.org/10.4153/CMB-1997-059-6 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1997-059-6

MATRICES AND DIRICHLET CONVOLUTION 505
we get that
e o1 1
= _— + —
A = 3|+ o[ )|
which convergessinces > 1. Thus, A; is £ — £ and G — £ matrix.

ExAMPLE 2.10. If f(n) isgiven by

ifn=1,
fm = [ i, ifn> 1,
then the matrix A is ¢ — £.
Since )
n q . n q+1
qgl q Zz a(@— 12e-t
1
= nzn—l’
we have that
1

S IA0D =3 o

=
which is convergent.

ExAMPLE 2.11. By defining f(n) as

(n+l), , ifn>1,
we get that
", f(a) 1_ g—q-1
qz::l q 2 qu @+ 1!
_1 A @+Dhle-1 -
2 qu (g+ 1)
L
(n+ 1)
which yields that

This sum convergesto 1, becausethe partial sum

1

R T

approacheslasN — oo. Thus, thematrix A is {— ¢ and G—I. Also, As issum-preserving
over ¢ and G by Theorem 1.3 and Lemma 2.1.
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3. Additional theorems. In this section, we attempt to assess the strength of A¢-
matrix. When f(n) = p(n), the matrix A, is regular [6]. We notice that A, is stronger
than the identity matrix, because for the non-convergent sequence a, when a, = ﬂnr—‘l
the n-th term of the transformed sequenceis given by

1 k\ o(d)
Aap=> - — ) —==.
B gk%”(d) d
Since 2 = 15y d = Tyx § = Sy 3, by Mobius Inversion formula [1, p. 2] we get

that L i o(d)
O

- oe(a) T

Thus,

1
(Aua)n = Z ﬁv
k<n

which converges, ash — oo.

Segal [8] gave anecessary condition on the function f(n) for the regularity of A;. We
note that if f (n) isanon-negative arithmetic function such that f(1) # Oand f € ¢y, then
A isnot regular.

Sincef € co, there exists an N such that f(n) < %f(l) for al n > N. Hence, for a
sequence a, = 1, we havethat

(Afa)n = Z %Zf(la()

k<n

Asn— oo, (Asa), approaches

Z Zf(d)> Z —[f(1)+f(|0)]

T
P, pnme
-5 E[f(1)+f(p)] £ L + 1)
p.
SM+ Y —[f(l) =LY
p>N
L) 1
WZN 3

which diverges.
Next, we compare the As-matrix with the Divisor matrix [3] which is given by
K- if k|n
D(n,k) = { g, "KM
(k) 0,n otherwise,
where o(n) = sum of divisors of n. Fridy [4] showed that D is a regular matrix and for

any triangular matrix M, if M~ exists and lim,,_., M(n, n) = 0, then D does not include
M.
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THEOREM 3.1. Divisor matrix D doesnot include A¢-matrix for any f withf (1) # O.
PROOF. A¢ isalower triangular matrix and
1s-f@

<1 Q

1@,

n

As(n,n) =

So, A/t exists and limn_, As(n, n) = 0.

THEOREM 3.2. If a sequence {a,} is Divisor summable to L such that (Da), =
L+o0(1/nloglogn) asn— oo, then {a,} is Ai-summableto L for any regular A.

PrROOF.  Since (Da)k = Sk W”,‘()am, we get that

(Da)o(K) = 3" man.

mik

Mobius inversion formula yields that

@i = 3 (= ) Damom).

mk
Therefore,
1 f
I P OL CY
k<n ™ g<g q k<n
1 k
=2 13 21 = ) (Da)ma(M)B
k=n K2 i <m) m K
L k
= L2 M\ = O'(m)Bk
k<n k2 mik <m)
toe %&“(E)O(Wﬂ)o(m)sk, asm— 50

=S+S (sy)
Since o(k) = >y mimplies that

k=Zu(%)0(m),

mlk
we get that
L « f(9)
S=y oy =+
k,;nkqﬁ’—; q
= (ArL)n,

where L is a constant sequence. The regularity of A yieldsthat S, — L ash — oo.
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We know that o(n) = O(nloglogn). Hence,

S=> = Zu( )O(l)Bk, asm-— 0o

k<n mlk
> O(%i”< )Dsk, ask — 0o
- k;n o(mz‘k 1) By

= kz po(ol(k))Bk

Z O(kZ)Bk [1, p. 19]

k<n
@
_kgno<kz)[ 2 qu} ask oo
:gukAf(n: K),

where {uy} isasequencesuch that |uy| < M/k% and henceu, — 0ask — oo. Thus, the
regularity of A¢ yieldsthat S, = (Asu), — 0 asn — oo. Hence, the theorem is proved.
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