MATRIX TRANSFORMATIONS BASED ON DIRICHLET CONVOLUTION

CHIKKANNA SELVARAJ AND SUGUNA SELVARAJ

Abstract

This paper is a study of summability methods that are based on Dirichlet convolution. If $f(n)$ is a function on positive integers and x is a sequence such that $\lim _{n \rightarrow \infty} \sum_{k \leq n} \frac{1}{k}(f * x)(k)=L$, then x is said to be A_{f}-summable to L. The necessary and sufficient condition for the matrix A_{f} to preserve bounded variation of sequences is established. Also, the matrix A_{f} is investigated as $\ell-\ell$ and $G-G$ mappings. The strength of the A_{f}-matrix is also discussed.

1. Introduction. If $f(n)$ and $g(n)$ are real-valued functions defined on positive integers, then the Dirichlet convolution of f and g is given by

$$
(f * g)(n)=\sum_{d \mid n} f\left(\frac{n}{d}\right) g(d)
$$

In 1960, Rubel [6] introduced the sequence to sequence summability method as follows:
A sequence $\left\{a_{n}\right\}$ is A_{μ}-summable to L if

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{k}(\mu * a)(k)=L
$$

where $\mu(n)$ is the Möbius function. It can be easily seen that this summability method is indeed a matrix transformation, by considering

$$
\begin{aligned}
\sum_{k=1}^{n} \frac{1}{k}(\mu * a)(k) & =\sum_{k=1}^{n} \frac{1}{k} \sum_{d \mid n} \mu\left(\frac{k}{d}\right) a_{d} \\
& =\sum_{d=1}^{n} \frac{1}{d} \sum_{q \leq \frac{n}{d}} \frac{\mu(q)}{q} a_{d}
\end{aligned}
$$

Thus the lower triangular matrix A_{μ} is given by

$$
A_{\mu}(n, k)= \begin{cases}\frac{1}{k} \sum_{q \leq \frac{n}{k}} \frac{\mu(q)}{q}, & \text { if } k \leq n, \\ 0, & \text { if } k>n .\end{cases}
$$

Rubel [6] proved that the matrix A_{μ} satisfies the Silverman-Toeplitz conditions and hence is regular. In 1964, Segal [7] introduced the generalization of the matrix A_{μ} and gave the characterization of classes of functions $f(n)$ satisfying the condition that the matrix A_{f} given by

$$
A_{f}(n, k)= \begin{cases}\frac{1}{k} \sum_{q \leq \frac{n}{k}} \frac{f(q)}{q}, & \text { if } k \leq n, \\ 0, & \text { if } k>n\end{cases}
$$

Received by the editors May 9, 1996.
AMS subject classification: 11A25, 40A05, 40C05, 40D05.
(c) Canadian Mathematical Society 1997.
is regular. In this paper, we investigate the classes of functions $f(n)$ which satisfy the condition that the corresponding matrices A_{f} preserve bounded variation of sequences. Also, we give necessary and sufficient conditions for the matrix A_{f} to be a $G-G, G-\ell$ and $\ell-\ell$ matrix. In Section 3 we establish two comparison theorems related to the summability method A_{f}. We have given below the basic notations and definitions used in this paper.

$$
\begin{gathered}
B=\left\{x: \sum_{k=1}^{\infty}\left|\Delta x_{k}\right|<\infty\right\} . \\
\ell=\left\{x: \sum_{k=1}^{\infty}\left|x_{k}\right|<\infty\right\} . \\
G=\left\{x: x_{k}=O\left(r^{k}\right) \text { for some } r \in(0,1)\right\} \\
\equiv\left\{x: \limsup _{k}\left|x_{k}\right|^{\frac{1}{k}}<1\right\} .
\end{gathered}
$$

Definition 1.1. We call a matrix A an $X-Y$ matrix if $A x$ is in the set Y whenever x is in X.

DEfinition 1.2. An $X-Y$ matrix A is said to be sum-preserving if for each $x \in X$,

$$
\sum_{n=1}^{\infty}(A x)_{n}=\sum_{k=1}^{\infty} x_{k} .
$$

DEFInItion 1.3. A sequence $\left\{x_{n}\right\}$ is of bounded variation if and only if

$$
\sum_{k=1}^{\infty}\left|\Delta x_{k}\right|=\sum_{k=1}^{\infty}\left|x_{k}-x_{k+1}\right|<\infty .
$$

Fricke and Fridy [2] introduced the set G as the set of sequences that are dominated by a convergent geometric sequence and gave characterizations of $G-\ell$ and $G-G$ matrices as follows:

THEOREM 1.1. The matrix A is $a G-\ell$ matrix if and only if

$$
\sum_{n=0}^{\infty}\left|a_{n k}\right|=M_{k}<\infty \quad \text { for } k=0,1, \ldots
$$

and

$$
\limsup _{k} M_{k}^{\frac{1}{k}} \leq 1
$$

THEOREM 1.2. The matrix A is $a G-G$ matrix if and only if for each $\epsilon>0$, there exists a constant M and an $r \in(0,1)$ such that

$$
\left|a_{n k}\right| \leq M r^{n}(1+\epsilon)^{k} \quad \text { for all } n \text { and } k
$$

THEOREM 1.3. The $\ell-\ell$ or $G-\ell$ matrix A is sum-preserving if and only iffor each k,

$$
\sum_{n=1}^{\infty} a_{n k}=1
$$

2. $\mathbf{A}_{\mathbf{f}}$ Transformations of various sets. In this section we consider the A_{f}-transformations of the sets B, ℓ and G.

In [5] Mears gave necessary and sufficient conditions for a matrix $\left[a_{n k}\right]$ to preserve the bounded variation of sequences. It can be easily verified that a lower triangular matrix [$a_{n k}$] maps the set B into B if and only if

$$
\sup _{k} \sum_{n=1}^{\infty}\left|a_{n, k}-a_{n-1, k}\right|<\infty
$$

THEOREM 2.1. The matrix A_{f} preserves the bounded variation of the sequences if and only if $\frac{f(n)}{n}$ is in ℓ.

Proof. Assuming that $\frac{f(n)}{n}$ is in ℓ, we want to show that

$$
\begin{equation*}
\sup _{k} \sum_{n=1}^{\infty}\left|\frac{1}{k} \sum_{q \leq \frac{n}{k}} \frac{f(q)}{q}-\frac{1}{k} \sum_{\frac{q \leq n-1}{k}} \frac{f(q)}{q}\right|<\infty \tag{1}
\end{equation*}
$$

For each k, let us evaluate the summation over n by considering the cases where (i) n is not divisible by k and (ii) n is divisible by k.

CASE (i). If n is not divisible by k, then $k \geq 2$. So, $n=k p+m$ where p is an integer ≥ 0 and $1 \leq m<k$. Therefore, $\left[\frac{n}{k}\right]=p$ and $\left[\frac{n-1}{k}\right]=\left[\frac{k p+m-1}{k}\right]=p$, since $m-1<k$. Hence, for each such n,

$$
\sum_{q \leq \frac{n}{k}} \frac{f(q)}{q}-\sum_{q \leq \frac{n-1}{k}} \frac{f(q)}{q}=0
$$

Thus for each k in (1), the n 's not divisible by k contribute zeros to the summation over n.

CASE (ii). If n is divisible by k, then for $k=1$,

$$
\sum_{n=1}^{\infty}\left|\sum_{q \leq n} \frac{f(q)}{q}-\sum_{q \leq n-1} \frac{f(q)}{q}\right|=\sum_{n=1}^{\infty}\left|\frac{f(n)}{n}\right|
$$

If n is divisible by k and $k \geq 2$, we have $n=k p$ for some positive integer p. Therefore, $\left[\frac{n}{k}\right]=p$ and $\left[\frac{n-1}{k}\right]=\left[p-\frac{1}{k}\right]=p-1$. Hence, for each such n ,

$$
\sum_{q \leq \frac{n}{k}} \frac{f(q)}{q}-\sum_{q \leq \frac{n-1}{k}} \frac{f(q)}{q}=\frac{f(p)}{p}
$$

Thus for each k,

$$
\frac{1}{k} \sum_{n=1}^{\infty}\left|\sum_{q \leq \frac{n}{k}} \frac{f(q)}{q}-\sum_{q \leq \frac{n-1}{k}} \frac{f(q)}{q}\right|=\frac{1}{k} \sum_{\substack{n=k p \\ p=1,2, \ldots}}\left|\frac{f(p)}{p}\right|=\frac{M}{k}
$$

by the assumption. Hence A_{f} is a $B-B$ matrix.
Conversely, if the matrix A_{f} maps B into B, then the condition (1) is true. When $k=1$ we get that

$$
\sum_{n=1}^{\infty}\left|\sum_{q \leq n} \frac{f(q)}{q}-\sum_{q \leq n-1} \frac{f(q)}{q}\right|=\sum_{n=1}^{\infty}\left|\frac{f(n)}{n}\right| \leq M
$$

Hence, the theorem is proved.

COROLLARY 2.1. If A_{g} is a $B-B$ matrix and $f(n)=O(g(n))$, then A_{f} is also a $B-B$ matrix.

We give below some examples of arithmetic functions such that the associated matrices A_{f} preserve bounded variation of sequences.

EXAMPLE 2.1. Let $f(n)=O(g(n))$, where $g(n)=\frac{1}{n^{m}}$ for fixed $m>0$. Then

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left|\frac{g(n)}{n}\right| & =\sum_{n=1}^{\infty} \frac{1}{n^{s}}, \quad \text { where } s>1 \\
& =\zeta(s)
\end{aligned}
$$

where ζ is the Riemann-Zeta function.
EXAMPLE 2.2. Let $f(n)=O(g(n))$, where $g(n)=\frac{\mu(n)}{n^{m}}$ for fixed $m>0$. Since $|\mu(n)| \leq 1$ for all n, we get that

$$
\sum_{n=1}^{\infty}\left|\frac{g(n)}{n}\right|=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\zeta(s) .
$$

EXAMPLE 2.3. Let $f(n)=\frac{d(n)}{n^{m}}$ for fixed $m>0$, where $d(n)$ is the divisor function given by $d(n)=$ number of positive divisors of n. Then

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left|\frac{f(n)}{n}\right| & =\sum_{n=1}^{\infty} \frac{d(n)}{n^{s}}, \quad \text { where } s>1 \\
& =\zeta^{2}(s)
\end{aligned}
$$

by the formula in [1, p. 24].
EXAMPLE 2.4. Let $f(n)=\frac{\Lambda(n)}{n^{m}}$ for fixed $m>0$, where $\Lambda(n)$ is von Mangoldt function given by

$$
\Lambda(n)= \begin{cases}\log p, & \text { if } n=p^{m} \text { where } p \text { is prime and } m>0 \\ 0, & \text { otherwise }\end{cases}
$$

Then, by the formula in [1, p. 24], we get that

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left|\frac{f(n)}{n}\right| & =\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{s}}, \quad \text { where } s>1 \\
& =-\frac{\zeta^{\prime}(s)}{\zeta(s)}
\end{aligned}
$$

EXAMPLE 2.5. Let $f(n)=\frac{\psi(n)}{n^{s}}$ for fixed $s>1$, where $\psi(n)$ is the Chebyshev's function given by $\psi(n)=\sum_{k \leq n} \Lambda(k)$. Since $\psi(n)=O(n)$ [1, p. 5], we get that

$$
\sum_{n=1}^{\infty}\left|\frac{f(n)}{n}\right| \leq \sum_{n=1}^{\infty} \frac{M}{n^{s}}=M \zeta(s)
$$

EXAMPLE 2.6. Let $f(n)=\frac{\phi(n)}{n^{m}}$ for fixed $m>0$, where $\phi(n)$ is the Euler's function given by $\phi(n)=$ number of $m \leq n$ such that $(m, n)=1$. Then

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left|\frac{f(n)}{n}\right| & =\sum_{n=1}^{\infty} \frac{\phi(n)}{n^{s}}, \quad \text { where } s>1 \\
& =\frac{\zeta(s-1)}{\zeta(s)}
\end{aligned}
$$

Next, we give the necessary and sufficient conditions on the arithmetic function $f(n)$ such that the associated matrix A_{f} maps G into G and ℓ into ℓ.

THEOREM 2.2. The matrix A_{f} is $a G-G$ matrix if and only if $f(n) \in G$.
Proof. Suppose that $f(n)$ is in G. Then there exists an $M>0$ and an $r \in(0,1)$ such that

$$
|f(n)| \leq M r^{n}, \quad \text { for all } n
$$

Therefore,

$$
\begin{aligned}
\left|A_{f}(n, k)\right| & =\left|\frac{1}{k} \sum_{q \leq \frac{n}{k}} \frac{f(q)}{q}\right| \\
& \leq \frac{M}{k} \sum_{q \leq n+1} r^{q} \\
& =\frac{M r}{k}(1-r)^{n} .
\end{aligned}
$$

Hence, given $\epsilon>0$, there exists an $H>0$ and $1-r=s \in(0,1)$ such that

$$
\left|A_{f}(n, k)\right| \leq H s^{n}(1+\epsilon)^{k}
$$

for all n and k. By Theorem 1.2, A_{f} is a $G-G$ matrix.
Conversely, if A_{f} is a $G-G$ matrix, then for all n and k, we have a $B>0$ and $s \in(0,1)$ such that

$$
\left|A_{f}(n, k)\right| \leq B s^{n}(1+\epsilon)^{k}
$$

When $k=1$, for all n,

$$
\left|\sum_{q \leq n} \frac{f(q)}{q}\right| \leq B s^{n}
$$

Therefore, for each n,

$$
\begin{aligned}
|f(n)| & \leq\left|\frac{f(n)}{n}\right| \\
& =\left|\sum_{q \leq n} \frac{f(q)}{q}-\sum_{q \leq n-1} \frac{f(q)}{q}\right| \\
& \leq\left|\sum_{q \leq n} \frac{f(q)}{q}\right|+\left|\sum_{q \leq n-1} \frac{f(q)}{q}\right| \\
& \leq B s^{n}+B s^{n-1}=H s^{n} .
\end{aligned}
$$

Hence, the theorem is true.
The next two examples demonstrate the following general relationship.
REMARK 2.1. If A_{f} is a $G-G$ matrix, then $A_{f}^{-1}[G]$ is larger than G.
EXAMPLE 2.7. Let $a_{n}=\frac{1}{n^{s}}$ for fixed $s>0$. Then $a_{n} \notin G$, because

$$
\limsup _{n}\left|a_{n}\right|^{\frac{1}{n}}=1
$$

If A_{f} is $G-G$ matrix, then by Theorem 2.2, $f(n) \in G$ which yields that

$$
|f(n)| \leq M r^{n}, \quad \text { for some } r \in(0,1)
$$

Therefore, for each n,

$$
\begin{aligned}
\left|\left(A_{f} a\right)_{n}\right| & \leq \sum_{k=1}^{n} \frac{a_{k}}{k} \sum_{q \leq \frac{n}{k}} \frac{|f(q)|}{q} \\
& <\sum_{k=1}^{n} \frac{1}{k^{s+1}} \sum_{q \leq n+1} M r^{q} \\
& =H(1-r)^{n} \sum_{k=1}^{n} \frac{1}{k^{s+1}} \\
& <H \zeta(s+1)(1-r)^{n} .
\end{aligned}
$$

Since $1-r \in(0,1)$, we have that $\left(A_{f} a\right)_{n} \in G$.
EXAMPLE 2.8. If we choose $a_{n}=\frac{\mu(n)}{n^{s}}$ for $s>0$, then we get $\lim \sup _{n}\left|a_{n}\right|^{\frac{1}{n}}=1$, because $|\mu(n)|=1$ or 0 , for all n. So, $a_{n} \notin G$ and as in Example 2.7, we can show that $\left(A_{f} a\right)_{n} \in G$.

THEOREM 2.3. The following statements are equivalent:
(i) The matrix A_{f} is $\ell-\ell$;
(ii) The matrix A_{f} is $G-\ell$;
(iii) The first column of the matrix A_{f} is in ℓ.

PROOF. It is obvious that (i) implies (ii), because $G \subset \ell$. To see that (ii) implies (iii), suppose that A_{f} is $G-\ell$. Therefore, by Theorem 1.1, we get that

$$
\sum_{n=1}^{\infty}\left|A_{f}(n, k)\right|=M_{k}<\infty, \quad \text { for all } k
$$

Hence,

$$
\sum_{n=1}^{\infty}\left|A_{f}(n, 1)\right|=M_{1}<\infty
$$

In order to prove the remaining implication, we need the following lemmas.

LEMMA 2.1. In the matrix A_{f}, all column sums are equal.
Proof. For any fixed k,

$$
\begin{aligned}
\sum_{n=1}^{\infty} A_{f}(n, k) & =\sum_{n=1}^{\infty} \frac{1}{k} \sum_{q \leq \frac{n}{k}} \frac{f(q)}{q} \\
& =\frac{1}{k}\left[\sum_{n<k}\left(\sum_{q \leq \frac{n}{k}} \frac{f(q)}{q}\right)+\sum_{k \leq n<2 k}\left(\sum_{q \leq \frac{n}{k}} \frac{f(q)}{q}\right)+\sum_{2 k \leq n<3 k}\left(\sum_{q \leq \frac{n}{k}} \frac{f(q)}{q}\right)+\cdots\right] .
\end{aligned}
$$

The first term of the above infinite sum is zero. In each of the remaining terms, if $p k \leq$ $n<(p+1) k$, then $\left[\frac{n}{k}\right]=p$ and n takes exactly k different values. Thus,

$$
\begin{aligned}
\sum_{n=1}^{\infty} A_{f}(n, k) & =\frac{1}{k}\left[k \sum_{q \leq 1} \frac{f(q)}{q}+k \sum_{q \leq 2} \frac{f(q)}{q}+\cdots\right] \\
& =\sum_{n=1}^{\infty} \sum_{q \leq n} \frac{f(q)}{q} \\
& =\sum_{n=1}^{\infty} A_{f}(n, 1)
\end{aligned}
$$

which proves the lemma.
Repeating the above proof for $\sum_{n=1}^{\infty}\left|A_{f}(n, k)\right|$, we get the following lemma.
LEMMA 2.2. In the matrix A_{f}, absolute column sums are equal.
Now, let us prove that (iii) implies (i) of Theorem 2.3. Consider

$$
\sup _{k} \sum_{n=1}^{\infty}\left|A_{f}(n, k)\right|=\sum_{n=1}^{\infty}\left|A_{f}(n, 1)\right|<\infty,
$$

by (iii). Hence by the Knopp-Lorentz [4] Theorem, A_{f} is an $\ell-\ell$ matrix.
EXAMPLE 2.9. For fixed $s>1$, let

$$
f(n)= \begin{cases}1-\zeta(s+1), & \text { if } n=1 \\ \frac{1}{n^{s}}, & \text { if } n>1\end{cases}
$$

Then in the corresponding matrix A_{f},

$$
\begin{aligned}
A_{f}(n, 1) & =\sum_{q=1}^{n} \frac{f(q)}{q} \\
& =-\zeta(s+1)+\sum_{q=1}^{n} \frac{1}{q^{s+1}}
\end{aligned}
$$

Using the known result that

$$
\sum_{k \leq n} \frac{1}{k^{s}}=\frac{n^{1-s}}{1-s}+\zeta(s)+O\left(\frac{1}{n^{s}}\right)
$$

we get that

$$
\sum_{n=1}^{\infty}\left|A_{f}(n, 1)\right|=\sum_{n=1}^{\infty}\left|\frac{1}{s n^{s}}+O\left(\frac{1}{n^{s+1}}\right)\right|
$$

which converges since $s>1$. Thus, A_{f} is $\ell-\ell$ and $G-\ell$ matrix.
EXAMPLE 2.10. If $f(n)$ is given by

$$
f(n)= \begin{cases}1, & \text { if } n=1 \\ \frac{n+1}{(1-n) 2^{n+1}}, & \text { if } n>1\end{cases}
$$

then the matrix A_{f} is $\ell-\ell$.
Since

$$
\begin{aligned}
\sum_{q=1}^{n} \frac{f(q)}{q} & =1-\sum_{q=2}^{n} \frac{(q+1)}{q(q-1) 2^{q-1}} \\
& =\frac{1}{n 2^{n-1}}
\end{aligned}
$$

we have that

$$
\sum_{n=1}^{\infty}\left|A_{f}(n, 1)\right|=\sum_{n=1}^{\infty} \frac{1}{n 2^{n-1}}
$$

which is convergent.
EXAMPLE 2.11. By defining $f(n)$ as

$$
f(n)= \begin{cases}\frac{1}{2}, & \text { if } n=1 \\ \frac{(n+1)-n^{2}}{(n+1)!}, & \text { if } n>1\end{cases}
$$

we get that

$$
\begin{aligned}
\sum_{q=1}^{n} \frac{f(q)}{q} & =\frac{1}{2}-\sum_{q=2}^{n} \frac{q^{2}-q-1}{(q+1)!} \\
& =\frac{1}{2}-\sum_{q=2}^{n} \frac{(q+1)(q-1)-q}{(q+1)!} \\
& =\frac{n}{(n+1)!}
\end{aligned}
$$

which yields that

$$
\sum_{n=1}^{\infty}\left|A_{f}(n, 1)\right|=\sum_{n=1}^{\infty} \frac{n}{(n+1)!}
$$

This sum converges to 1 , because the partial sum

$$
S_{N}=1-\frac{1}{(N+1)!}
$$

approaches 1 as $N \rightarrow \infty$. Thus, the matrix A_{f} is $\ell-\ell$ and $G-l$. Also, A_{f} is sum-preserving over ℓ and G by Theorem 1.3 and Lemma 2.1.
3. Additional theorems. In this section, we attempt to assess the strength of $A_{f^{-}}$ matrix. When $f(n)=\mu(n)$, the matrix A_{μ} is regular [6]. We notice that A_{μ} is stronger than the identity matrix, because for the non-convergent sequence a_{n} when $a_{n}=\frac{\sigma(n)}{n}$, the n-th term of the transformed sequence is given by

$$
\left(A_{\mu} a\right)_{n}=\sum_{k \leq n} \frac{1}{k} \sum_{d \mid k} \mu\left(\frac{k}{d}\right) \frac{\sigma(d)}{d}
$$

Since $\frac{\sigma(k)}{k}=\frac{1}{k} \sum_{d \mid k} d=\sum_{d \mid k} \frac{d}{k}=\sum_{d \mid k} \frac{1}{d}$, by Möbius Inversion formula [1, p. 2] we get that

$$
\frac{1}{k}=\sum_{d \mid k} \mu\left(\frac{k}{d}\right) \frac{\sigma(d)}{d}
$$

Thus,

$$
\left(A_{\mu} a\right)_{n}=\sum_{k \leq n} \frac{1}{k^{2}}
$$

which converges, as $n \rightarrow \infty$.
Segal [8] gave a necessary condition on the function $f(n)$ for the regularity of A_{f}. We note that if $f(n)$ is a non-negative arithmetic function such that $f(1) \neq 0$ and $f \in c_{0}$, then A_{f} is not regular.

Since $f \in c_{0}$, there exists an N such that $f(n)<\frac{1}{2} f(1)$ for all $n>N$. Hence, for a sequence $a_{n} \equiv 1$, we have that

$$
\left(A_{f} a\right)_{n}=\sum_{k \leq n} \frac{1}{k} \sum_{d \mid k} f\left(\frac{k}{d}\right)
$$

As $n \rightarrow \infty,\left(A_{f} a\right)_{n}$ approaches

$$
\begin{aligned}
\sum_{k=1}^{\infty} \frac{1}{k} \sum_{d \mid k} f(d) & >\sum_{\substack{p=1 \\
p, \text { prime }}}^{\infty} \frac{1}{p}[f(1)+f(p)] \\
& =\sum_{p \leq N} \frac{1}{p}[f(1)+f(p)]+\sum_{p>N} \frac{1}{p}[f(1)+f(p)] \\
& >M+\sum_{p>N} \frac{1}{p}\left[f(1)-\frac{1}{2} f(1)\right] \\
& =M+\frac{f(1)}{2} \sum_{p>N} \frac{1}{p}
\end{aligned}
$$

which diverges.
Next, we compare the A_{f}-matrix with the Divisor matrix [3] which is given by

$$
D(n, k)= \begin{cases}\frac{k}{\sigma(n),} & \text { if } k \mid n \\ 0, & \text { otherwise }\end{cases}
$$

where $\sigma(n)=$ sum of divisors of n. Fridy [4] showed that D is a regular matrix and for any triangular matrix M, if M^{-1} exists and $\lim _{n \rightarrow \infty} M(n, n)=0$, then D does not include M.

THEOREM 3.1. Divisor matrix D does not include A_{f}-matrix for any f with $f(1) \neq 0$.
Proof. A_{f} is a lower triangular matrix and

$$
\begin{aligned}
A_{f}(n, n) & =\frac{1}{n} \sum_{q \leq 1} \frac{f(q)}{q} \\
& =\frac{f(1)}{n} \neq 0
\end{aligned}
$$

So, A_{f}^{-1} exists and $\lim _{n \rightarrow \infty} A_{f}(n, n)=0$.
ThEOREM 3.2. If a sequence $\left\{a_{n}\right\}$ is Divisor summable to L such that $(D a)_{n}=$ $L+o(1 / n \log \log n)$ as $n \rightarrow \infty$, then $\left\{a_{n}\right\}$ is A_{f}-summable to L for any regular A_{f}.

Proof. Since $(D a)_{k}=\sum_{m \mid k} \frac{m}{\sigma(k)} a_{m}$, we get that

$$
(D a)_{k} \sigma(k)=\sum_{m \mid k} m a_{m}
$$

Möbius inversion formula yields that

$$
k a_{k}=\sum_{m \mid k} \mu\left(\frac{k}{m}\right)(D a)_{m} \sigma(m)
$$

Therefore,

$$
\begin{aligned}
\left(A_{f} a\right)_{n} & =\sum_{k \leq n} \frac{1}{k} \sum_{q \leq \frac{n}{k}} \frac{f(q)}{q} a_{k}=\sum_{k \leq n} \frac{a_{k}}{k} B_{k} \\
& =\sum_{k \leq n} \frac{1}{k^{2}} \sum_{m \mid k} \mu\left(\frac{k}{m}\right)(D a)_{m} \sigma(m) B_{k} \\
& =\sum_{k \leq n} \frac{L}{k^{2}} \sum_{m \mid k} \mu\left(\frac{k}{m}\right) \sigma(m) B_{k} \\
& +\sum_{k \leq n} \frac{1}{k^{2}} \sum_{m \mid k} \mu\left(\frac{k}{m}\right) o\left(\frac{1}{m \log \log m}\right) \sigma(m) B_{k}, \quad \text { as } m \rightarrow \infty \\
& =S_{1}+S_{2} \quad \text { (say) }
\end{aligned}
$$

Since $\sigma(k)=\sum_{m \mid k} m$ implies that

$$
k=\sum_{m \mid k} \mu\left(\frac{k}{m}\right) \sigma(m),
$$

we get that

$$
\begin{aligned}
S_{1} & =\sum_{k \leq n} \frac{L}{k} \sum_{q \leq \frac{n}{k}} \frac{f(q)}{q} \\
& =\left(A_{f} L\right)_{n},
\end{aligned}
$$

where L is a constant sequence. The regularity of A_{f} yields that $S_{1} \rightarrow L$ as $n \rightarrow \infty$.

We know that $\sigma(n)=O(n \log \log n)$. Hence,

$$
\begin{aligned}
S_{2} & =\sum_{k \leq n} \frac{1}{k^{2}} \sum_{m \mid k} \mu\left(\frac{k}{m}\right) o(1) B_{k}, \quad \text { as } m \rightarrow \infty \\
& =\sum_{k \leq n} \frac{1}{k^{2}} O\left(\sum_{m \mid k}\left|\mu\left(\frac{k}{m}\right)\right|\right) B_{k}, \quad \text { as } k \rightarrow \infty \\
& =\sum_{k \leq n} \frac{1}{k^{2}} O\left(\sum_{m \mid k} 1\right) B_{k} \\
& =\sum_{k \leq n} \frac{1}{k^{2}} O(d(k)) B_{k} \\
& =\sum_{k \leq n} \frac{1}{k^{2}} O\left(k^{\frac{1}{2}}\right) B_{k} \quad[1, \text { p. 19] } \\
& =\sum_{k \leq n} O\left(\frac{1}{k^{\frac{1}{2}}}\right)\left[\frac{1}{k} \sum_{q \leq \frac{n}{k}} \frac{f(q)}{q}\right], \quad \text { as } k \rightarrow \infty \\
& =\sum_{k \leq n} u_{k} A_{f}(n, k),
\end{aligned}
$$

where $\left\{u_{k}\right\}$ is a sequence such that $\left|u_{k}\right| \leq M / k^{\frac{1}{2}}$ and hence $u_{k} \rightarrow 0$ as $k \rightarrow \infty$. Thus, the regularity of A_{f} yields that $S_{2}=\left(A_{f} u\right)_{n} \rightarrow 0$ as $n \rightarrow \infty$. Hence, the theorem is proved.

References

1. K. Chandrasekharan, Arithmetical functions. Chapter I, Springer-Verlag, New York, 1970.
2. G. H. Fricke and J. A. Fridy, Matrix summability of geometrically dominated series. Canad. J. Math. (3) 39(1987), 568-582.
3. J. A. Fridy, Divisor summability methods. J. Math. Anal. Appl. (2) 12(1965), 235-243.
4. K. Knopp and G. G. Lorentz, Beiträge zur absoluten limitierung. Arch. Math. 2(1949), 10-16.
5. F. M. Mears, Absolute regularity and the Nor̈lund mean. Ann. of Math. (3) 38(1937), 594-601.
6. L. A. Rubel, An abelian theorem for number-theoretic sums. Acta Arith. 6(1960), 175-177; Correction, Acta Arith. 6(1961), 523.
7. S. L. Segal, Dirichlet convolutions and the Silverman-Toeplitz conditions, Acta Arith. X(1964), 287-291.
8. \qquad _, A note on Dirichlet convolutions, Canad. Math. Bull. (4) 9(1966), 457-462.

Penn State University—Shenango Campus
147, Shenango Avenue
Sharon, Pennsylvania 16146
U.S.A.
e-mail: ulf@psuvm.psu.edu
e-mail: sxs32@psuvm.psu.edu

