MATRIX TRANSFORMATIONS BASED ON DIRICHLET CONVOLUTION

CHIKKANNA SELVARAJ AND SUGUNA SELVARAJ

ABSTRACT. This paper is a study of summability methods that are based on Dirichlet convolution. If f(n) is a function on positive integers and x is a sequence such that $\lim_{n\to\infty} \sum_{k\leq n} \frac{1}{k} (f * x)(k) = L$, then x is said to be A_f -summable to L. The necessary and sufficient condition for the matrix A_f to preserve bounded variation of sequences is established. Also, the matrix A_f is investigated as $\ell - \ell$ and G - G mappings. The strength of the A_f -matrix is also discussed.

1. Introduction. If f(n) and g(n) are real-valued functions defined on positive integers, then the Dirichlet convolution of f and g is given by

$$(f * g)(n) = \sum_{d|n} f\left(\frac{n}{d}\right) g(d).$$

In 1960, Rubel [6] introduced the sequence to sequence summability method as follows: A sequence $\{a_n\}$ is A_μ -summable to L if

$$\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{k}(\mu*a)(k)=L,$$

where $\mu(n)$ is the *Möbius function*. It can be easily seen that this summability method is indeed a matrix transformation, by considering

$$\sum_{k=1}^{n} \frac{1}{k} (\mu * a)(k) = \sum_{k=1}^{n} \frac{1}{k} \sum_{d|n} \mu\left(\frac{k}{d}\right) a_d$$
$$= \sum_{d=1}^{n} \frac{1}{d} \sum_{q \le \frac{n}{d}} \frac{\mu(q)}{q} a_d.$$

Thus the lower triangular matrix A_{μ} is given by

$$A_{\mu}(n,k) = \begin{cases} \frac{1}{k} \sum_{q \le \frac{n}{k}} \frac{\mu(q)}{q}, & \text{if } k \le n, \\ 0, & \text{if } k > n. \end{cases}$$

Rubel [6] proved that the matrix A_{μ} satisfies the Silverman-Toeplitz conditions and hence is regular. In 1964, Segal [7] introduced the generalization of the matrix A_{μ} and gave the characterization of classes of functions f(n) satisfying the condition that the matrix A_f given by

$$A_f(n,k) = \begin{cases} \frac{1}{k} \sum_{q \le \frac{n}{k}} \frac{f(q)}{q}, & \text{if } k \le n, \\ 0, & \text{if } k > n \end{cases}$$

Received by the editors May 9, 1996.

AMS subject classification: 11A25, 40A05, 40C05, 40D05.

498

[©] Canadian Mathematical Society 1997.

is regular. In this paper, we investigate the classes of functions f(n) which satisfy the condition that the corresponding matrices A_f preserve bounded variation of sequences. Also, we give necessary and sufficient conditions for the matrix A_f to be a G - G, $G - \ell$ and $\ell - \ell$ matrix. In Section 3 we establish two comparison theorems related to the summability method A_f . We have given below the basic notations and definitions used in this paper.

$$B = \left\{ x : \sum_{k=1}^{\infty} |\Delta x_k| < \infty \right\}.$$
$$\ell = \left\{ x : \sum_{k=1}^{\infty} |x_k| < \infty \right\}.$$
$$G = \left\{ x : x_k = O(r^k) \text{ for some } r\epsilon(0, 1) \right\}$$
$$\equiv \left\{ x : \limsup_k |x_k|^{\frac{1}{k}} < 1 \right\}.$$

DEFINITION 1.1. We call a matrix A an X - Y matrix if Ax is in the set Y whenever x is in X.

DEFINITION 1.2. An X - Y matrix A is said to be *sum-preserving* if for each $x \in X$,

$$\sum_{n=1}^{\infty} (Ax)_n = \sum_{k=1}^{\infty} x_k.$$

DEFINITION 1.3. A sequence $\{x_n\}$ is of bounded variation if and only if

$$\sum_{k=1}^{\infty} |\Delta x_k| = \sum_{k=1}^{\infty} |x_k - x_{k+1}| < \infty.$$

Fricke and Fridy [2] introduced the set G as the set of sequences that are dominated by a convergent geometric sequence and gave characterizations of $G - \ell$ and G - Gmatrices as follows:

THEOREM 1.1. The matrix A is a $G - \ell$ matrix if and only if

 ∞

$$\sum_{n=0}^{\infty} |a_{nk}| = M_k < \infty \quad for \ k = 0, 1, \dots,$$

and

$$\limsup_{k} M_{k}^{\frac{1}{k}} \leq 1$$

THEOREM 1.2. The matrix A is a G - G matrix if and only if for each $\epsilon > 0$, there exists a constant M and an $r \in (0, 1)$ such that

$$|a_{nk}| \leq Mr^n(1+\epsilon)^k$$
 for all n and k

THEOREM 1.3. The $\ell - \ell$ or $G - \ell$ matrix A is sum-preserving if and only if for each k,

$$\sum_{n=1}^{\infty} a_{nk} = 1.$$

2. A_f Transformations of various sets. In this section we consider the A_f -transformations of the sets B, ℓ and G.

In [5] Mears gave necessary and sufficient conditions for a matrix $[a_{nk}]$ to preserve the bounded variation of sequences. It can be easily verified that a lower triangular matrix $[a_{nk}]$ maps the set *B* into *B* if and only if

$$\sup_{k}\sum_{n=1}^{\infty}|a_{n,k}-a_{n-1,k}|<\infty.$$

THEOREM 2.1. The matrix A_f preserves the bounded variation of the sequences if and only if $\frac{f(n)}{n}$ is in ℓ .

PROOF. Assuming that $\frac{f(n)}{n}$ is in ℓ , we want to show that

(1)
$$\sup_{k} \sum_{n=1}^{\infty} \left| \frac{1}{k} \sum_{q \le \frac{n}{k}} \frac{f(q)}{q} - \frac{1}{k} \sum_{\frac{q \le n-1}{k}} \frac{f(q)}{q} \right| < \infty$$

For each k, let us evaluate the summation over n by considering the cases where (i) n is not divisible by k and (ii) n is divisible by k.

CASE (i). If *n* is not divisible by *k*, then $k \ge 2$. So, n = kp + m where *p* is an integer ≥ 0 and $1 \le m < k$. Therefore, $[\frac{n}{k}] = p$ and $[\frac{n-1}{k}] = [\frac{kp+m-1}{k}] = p$, since m - 1 < k. Hence, for each such *n*,

$$\sum_{q \le \frac{n}{k}} \frac{f(q)}{q} - \sum_{q \le \frac{n-1}{k}} \frac{f(q)}{q} = 0.$$

Thus for each k in (1), the n's not divisible by k contribute zeros to the summation over n.

CASE (ii). If *n* is divisible by *k*, then for k = 1,

$$\sum_{n=1}^{\infty} \left| \sum_{q \le n} \frac{f(q)}{q} - \sum_{q \le n-1} \frac{f(q)}{q} \right| = \sum_{n=1}^{\infty} \left| \frac{f(n)}{n} \right|.$$

If *n* is divisible by *k* and $k \ge 2$, we have n = kp for some positive integer *p*. Therefore, $\left[\frac{n}{k}\right] = p$ and $\left[\frac{n-1}{k}\right] = \left[p - \frac{1}{k}\right] = p - 1$. Hence, for each such n,

$$\sum_{q \le \frac{n}{k}} \frac{f(q)}{q} - \sum_{q \le \frac{n-1}{2}} \frac{f(q)}{q} = \frac{f(p)}{p}$$

Thus for each k,

$$\frac{1}{k}\sum_{n=1}^{\infty}\left|\sum_{q\leq\frac{n}{k}}\frac{f(q)}{q}-\sum_{q\leq\frac{n-1}{k}}\frac{f(q)}{q}\right|=\frac{1}{k}\sum_{\substack{n=kp\\p=1,2,\dots}}\left|\frac{f(p)}{p}\right|=\frac{M}{k},$$

by the assumption. Hence A_f is a B - B matrix.

Conversely, if the matrix A_f maps B into B, then the condition (1) is true. When k = 1 we get that

$$\sum_{n=1}^{\infty} \left| \sum_{q \le n} \frac{f(q)}{q} - \sum_{q \le n-1} \frac{f(q)}{q} \right| = \sum_{n=1}^{\infty} \left| \frac{f(n)}{n} \right| \le M.$$

Hence, the theorem is proved.

COROLLARY 2.1. If A_g is a B - B matrix and f(n) = O(g(n)), then A_f is also a B - B matrix.

We give below some examples of arithmetic functions such that the associated matrices A_f preserve bounded variation of sequences.

EXAMPLE 2.1. Let f(n) = O(g(n)), where $g(n) = \frac{1}{n^m}$ for fixed m > 0. Then

$$\sum_{n=1}^{\infty} \left| \frac{g(n)}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n^s}, \quad \text{where } s > 1$$
$$= \zeta(s)$$

where ζ is the *Riemann-Zeta function*.

EXAMPLE 2.2. Let f(n) = O(g(n)), where $g(n) = \frac{\mu(n)}{n^m}$ for fixed m > 0. Since $|\mu(n)| \le 1$ for all *n*, we get that

$$\sum_{n=1}^{\infty} \left| \frac{g(n)}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n^s} = \zeta(s).$$

EXAMPLE 2.3. Let $f(n) = \frac{d(n)}{n^m}$ for fixed m > 0, where d(n) is the *divisor function* given by d(n) = number of positive divisors of n. Then

$$\sum_{n=1}^{\infty} \left| \frac{f(n)}{n} \right| = \sum_{n=1}^{\infty} \frac{d(n)}{n^s}, \text{ where } s > 1,$$
$$= \zeta^2(s)$$

by the formula in [1, p. 24].

EXAMPLE 2.4. Let $f(n) = \frac{\Lambda(n)}{n^m}$ for fixed m > 0, where $\Lambda(n)$ is *von Mangoldt function* given by

$$\Lambda(n) = \begin{cases} \log p, & \text{if } n = p^m \text{ where } p \text{ is prime and } m > 0, \\ 0, & \text{otherwise.} \end{cases}$$

Then, by the formula in [1, p. 24], we get that

$$\sum_{n=1}^{\infty} \left| \frac{f(n)}{n} \right| = \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s}, \text{ where } s > 1,$$
$$= -\frac{\zeta'(s)}{\zeta(s)}.$$

EXAMPLE 2.5. Let $f(n) = \frac{\psi(n)}{n^s}$ for fixed s > 1, where $\psi(n)$ is the *Chebyshev's* function given by $\psi(n) = \sum_{k \le n} \Lambda(k)$. Since $\psi(n) = O(n)$ [1, p. 5], we get that

$$\sum_{n=1}^{\infty} \left| \frac{f(n)}{n} \right| \leq \sum_{n=1}^{\infty} \frac{M}{n^s} = M\zeta(s).$$

EXAMPLE 2.6. Let $f(n) = \frac{\phi(n)}{n^m}$ for fixed m > 0, where $\phi(n)$ is the *Euler's function* given by $\phi(n) =$ number of $m \le n$ such that (m, n) = 1. Then

$$\sum_{n=1}^{\infty} \left| \frac{f(n)}{n} \right| = \sum_{n=1}^{\infty} \frac{\phi(n)}{n^s}, \text{ where } s > 1,$$
$$= \frac{\zeta(s-1)}{\zeta(s)}.$$

Next, we give the necessary and sufficient conditions on the arithmetic function f(n) such that the associated matrix A_f maps G into G and ℓ into ℓ .

THEOREM 2.2. The matrix A_f is a G - G matrix if and only if $f(n) \in G$.

PROOF. Suppose that f(n) is in G. Then there exists an M > 0 and an $r \in (0, 1)$ such that

$$|f(n)| \leq Mr^n$$
, for all n .

Therefore,

$$egin{aligned} |A_f(n,k)| &= \left|rac{1}{k}\sum_{q\leq rac{n}{k}}rac{f(q)}{q}
ight| \ &\leq rac{M}{k}\sum_{q\leq n+1}r^q \ &= rac{Mr}{k}(1-r)^n. \end{aligned}$$

Hence, given $\epsilon > 0$, there exists an H > 0 and $1 - r = s \in (0, 1)$ such that

$$|A_f(n,k)| \leq Hs^n(1+\epsilon)^k,$$

for all *n* and *k*. By Theorem 1.2, A_f is a G - G matrix.

Conversely, if A_f is a G-G matrix, then for all n and k, we have a B > 0 and $s \in (0, 1)$ such that

$$|A_f(n,k)| \leq Bs^n(1+\epsilon)^k.$$

When k = 1, for all n,

$$\left|\sum_{q\leq n}\frac{f(q)}{q}\right|\leq Bs^n.$$

Therefore, for each *n*,

$$\begin{aligned} |f(n)| &\leq \left| \frac{f(n)}{n} \right| \\ &= \left| \sum_{q \leq n} \frac{f(q)}{q} - \sum_{q \leq n-1} \frac{f(q)}{q} \right| \\ &\leq \left| \sum_{q \leq n} \frac{f(q)}{q} \right| + \left| \sum_{q \leq n-1} \frac{f(q)}{q} \right| \\ &\leq Bs^n + Bs^{n-1} = Hs^n. \end{aligned}$$

Hence, the theorem is true.

The next two examples demonstrate the following general relationship.

REMARK 2.1. If A_f is a G - G matrix, then $A_f^{-1}[G]$ is larger than G.

EXAMPLE 2.7. Let $a_n = \frac{1}{n^s}$ for fixed s > 0. Then $a_n \notin G$, because

$$\limsup_n |a_n|^{\frac{1}{n}} = 1.$$

If A_f is G - G matrix, then by Theorem 2.2, $f(n) \in G$ which yields that

$$|f(n)| \leq Mr^n$$
, for some $r \in (0, 1)$.

Therefore, for each *n*,

$$\begin{split} |(A_f a)_n| &\leq \sum_{k=1}^n \frac{a_k}{k} \sum_{q \leq \frac{n}{k}} \frac{|f(q)|}{q} \\ &< \sum_{k=1}^n \frac{1}{k^{s+1}} \sum_{q \leq n+1} M r^q \\ &= H(1-r)^n \sum_{k=1}^n \frac{1}{k^{s+1}} \\ &< H\zeta(s+1)(1-r)^n. \end{split}$$

Since $1 - r \in (0, 1)$, we have that $(A_f a)_n \in G$.

EXAMPLE 2.8. If we choose $a_n = \frac{\mu(n)}{n^s}$ for s > 0, then we get $\limsup_n |a_n|^{\frac{1}{n}} = 1$, because $|\mu(n)| = 1$ or 0, for all *n*. So, $a_n \notin G$ and as in Example 2.7, we can show that $(A_f a)_n \in G$.

THEOREM 2.3. The following statements are equivalent:

- (i) The matrix A_f is $\ell \ell$;
- (ii) The matrix A_f is $G \ell$;
- (iii) The first column of the matrix A_f is in ℓ .

PROOF. It is obvious that (i) implies (ii), because $G \subset \ell$. To see that (ii) implies (iii), suppose that A_f is $G - \ell$. Therefore, by Theorem 1.1, we get that

$$\sum_{n=1}^{\infty} |A_f(n,k)| = M_k < \infty, \quad \text{for all } k.$$

Hence,

$$\sum_{n=1}^{\infty} |A_f(n,1)| = M_1 < \infty$$

In order to prove the remaining implication, we need the following lemmas.

LEMMA 2.1. In the matrix A_f , all column sums are equal.

PROOF. For any fixed k,

$$\sum_{n=1}^{\infty} A_f(n,k) = \sum_{n=1}^{\infty} \frac{1}{k} \sum_{q \le \frac{n}{k}} \frac{f(q)}{q}$$
$$= \frac{1}{k} \bigg[\sum_{n < k} \bigg(\sum_{q \le \frac{n}{k}} \frac{f(q)}{q} \bigg) + \sum_{k \le n < 2k} \bigg(\sum_{q \le \frac{n}{k}} \frac{f(q)}{q} \bigg) + \sum_{2k \le n < 3k} \bigg(\sum_{q \le \frac{n}{k}} \frac{f(q)}{q} \bigg) + \cdots \bigg].$$

The first term of the above infinite sum is zero. In each of the remaining terms, if $pk \le n < (p+1)k$, then $\left[\frac{n}{k}\right] = p$ and *n* takes exactly *k* different values. Thus,

$$\sum_{n=1}^{\infty} A_f(n,k) = \frac{1}{k} \left[k \sum_{q \le 1} \frac{f(q)}{q} + k \sum_{q \le 2} \frac{f(q)}{q} + \cdots \right]$$
$$= \sum_{n=1}^{\infty} \sum_{q \le n} \frac{f(q)}{q}$$
$$= \sum_{n=1}^{\infty} A_f(n,1),$$

which proves the lemma.

Repeating the above proof for $\sum_{n=1}^{\infty} |A_f(n, k)|$, we get the following lemma.

LEMMA 2.2. In the matrix A_f , absolute column sums are equal.

Now, let us prove that (iii) implies (i) of Theorem 2.3. Consider

$$\sup_{k}\sum_{n=1}^{\infty}|A_{f}(n,k)|=\sum_{n=1}^{\infty}|A_{f}(n,1)|<\infty,$$

by (iii). Hence by the Knopp-Lorentz [4] Theorem, A_f is an $\ell - \ell$ matrix.

EXAMPLE 2.9. For fixed s > 1, let

$$f(n) = \begin{cases} 1 - \zeta(s+1), & \text{if } n = 1, \\ \frac{1}{n^s}, & \text{if } n > 1. \end{cases}$$

Then in the corresponding matrix A_f ,

$$\begin{aligned} A_f(n,1) &= \sum_{q=1}^n \frac{f(q)}{q} \\ &= -\zeta(s+1) + \sum_{q=1}^n \frac{1}{q^{s+1}} \end{aligned}$$

Using the known result that

$$\sum_{k \le n} \frac{1}{k^s} = \frac{n^{1-s}}{1-s} + \zeta(s) + O\left(\frac{1}{n^s}\right),$$

we get that

$$\sum_{n=1}^{\infty} |A_f(n,1)| = \sum_{n=1}^{\infty} \left| \frac{1}{sn^s} + O\left(\frac{1}{n^{s+1}}\right) \right|,$$

which converges since s > 1. Thus, A_f is $\ell - \ell$ and $G - \ell$ matrix.

EXAMPLE 2.10. If f(n) is given by

$$f(n) = \begin{cases} 1, & \text{if } n = 1, \\ \frac{n+1}{(1-n)2^{n+1}}, & \text{if } n > 1, \end{cases}$$

then the matrix A_f is $\ell - \ell$.

Since

$$\sum_{q=1}^{n} \frac{f(q)}{q} = 1 - \sum_{q=2}^{n} \frac{(q+1)}{q(q-1)2^{q-1}}$$
$$= \frac{1}{n2^{n-1}},$$

we have that

$$\sum_{n=1}^{\infty} |A_f(n,1)| = \sum_{n=1}^{\infty} \frac{1}{n2^{n-1}},$$

which is convergent.

EXAMPLE 2.11. By defining f(n) as

$$f(n) = \begin{cases} \frac{1}{2}, & \text{if } n = 1, \\ \frac{(n+1)-n^2}{(n+1)!}, & \text{if } n > 1, \end{cases}$$

we get that

$$\sum_{q=1}^{n} \frac{f(q)}{q} = \frac{1}{2} - \sum_{q=2}^{n} \frac{q^2 - q - 1}{(q+1)!}$$
$$= \frac{1}{2} - \sum_{q=2}^{n} \frac{(q+1)(q-1) - q}{(q+1)!}$$
$$= \frac{n}{(n+1)!},$$

which yields that

$$\sum_{n=1}^{\infty} |A_f(n,1)| = \sum_{n=1}^{\infty} \frac{n}{(n+1)!}$$

This sum converges to 1, because the partial sum

$$S_N = 1 - \frac{1}{(N+1)!}$$

approaches 1 as $N \to \infty$. Thus, the matrix A_f is $\ell - \ell$ and G - l. Also, A_f is sum-preserving over ℓ and G by Theorem 1.3 and Lemma 2.1.

505

3. Additional theorems. In this section, we attempt to assess the strength of A_f -matrix. When $f(n) = \mu(n)$, the matrix A_{μ} is regular [6]. We notice that A_{μ} is stronger than the identity matrix, because for the non-convergent sequence a_n when $a_n = \frac{\sigma(n)}{n}$, the *n*-th term of the transformed sequence is given by

$$(A_{\mu}a)_n = \sum_{k \leq n} \frac{1}{k} \sum_{d|k} \mu\left(\frac{k}{d}\right) \frac{\sigma(d)}{d}.$$

Since $\frac{\sigma(k)}{k} = \frac{1}{k} \sum_{d|k} d = \sum_{d|k} \frac{d}{k} = \sum_{d|k} \frac{1}{d}$, by Möbius Inversion formula [1, p. 2] we get that

$$\frac{1}{k} = \sum_{d|k} \mu\left(\frac{k}{d}\right) \frac{\sigma(d)}{d}.$$

Thus,

$$(A_{\mu}a)_n = \sum_{k \le n} \frac{1}{k^2},$$

which converges, as $n \to \infty$.

Segal [8] gave a necessary condition on the function f(n) for the regularity of A_f . We note that if f(n) is a non-negative arithmetic function such that $f(1) \neq 0$ and $f \in c_0$, then A_f is not regular.

Since $f \in c_0$, there exists an N such that $f(n) < \frac{1}{2}f(1)$ for all n > N. Hence, for a sequence $a_n \equiv 1$, we have that

$$(A_f a)_n = \sum_{k \le n} \frac{1}{k} \sum_{d \mid k} f\left(\frac{k}{d}\right).$$

As $n \to \infty$, $(A_f a)_n$ approaches

$$\begin{split} \sum_{k=1}^{\infty} \frac{1}{k} \sum_{d|k} f(d) &> \sum_{\substack{p=1\\p, \text{prime}}}^{\infty} \frac{1}{p} [f(1) + f(p)] \\ &= \sum_{p \leq N} \frac{1}{p} [f(1) + f(p)] + \sum_{p > N} \frac{1}{p} [f(1) + f(p)] \\ &> M + \sum_{p > N} \frac{1}{p} [f(1) - \frac{1}{2} f(1)] \\ &= M + \frac{f(1)}{2} \sum_{p > N} \frac{1}{p}, \end{split}$$

which diverges.

Next, we compare the A_f -matrix with the Divisor matrix [3] which is given by

$$D(n,k) = \begin{cases} \frac{k}{\sigma(n),} & \text{if } k | n, \\ 0, & \text{otherwise,} \end{cases}$$

where $\sigma(n) = \text{sum of divisors of } n$. Fridy [4] showed that D is a regular matrix and for any triangular matrix M, if M^{-1} exists and $\lim_{n\to\infty} M(n,n) = 0$, then D does not include M.

THEOREM 3.1. Divisor matrix D does not include A_f -matrix for any f with $f(1) \neq 0$.

PROOF. A_f is a lower triangular matrix and

$$A_f(n,n) = \frac{1}{n} \sum_{q \le 1} \frac{f(q)}{q}$$
$$= \frac{f(1)}{n} \neq 0$$

So, A_f^{-1} exists and $\lim_{n\to\infty} A_f(n, n) = 0$.

THEOREM 3.2. If a sequence $\{a_n\}$ is Divisor summable to L such that $(Da)_n = L + o(1/n \log \log n)$ as $n \to \infty$, then $\{a_n\}$ is A_f -summable to L for any regular A_f .

PROOF. Since $(Da)_k = \sum_{m|k} \frac{m}{\sigma(k)} a_m$, we get that

$$(Da)_k\sigma(k)=\sum_{m|k}ma_m.$$

Möbius inversion formula yields that

$$ka_k = \sum_{m|k} \mu\left(\frac{k}{m}\right) (Da)_m \sigma(m).$$

Therefore,

$$(A_{f}a)_{n} = \sum_{k \leq n} \frac{1}{k} \sum_{q \leq \frac{n}{k}} \frac{f(q)}{q} a_{k} = \sum_{k \leq n} \frac{a_{k}}{k} B_{k} \quad \text{(say)}$$

$$= \sum_{k \leq n} \frac{1}{k^{2}} \sum_{m|k} \mu\left(\frac{k}{m}\right) (Da)_{m} \sigma(m) B_{k}$$

$$= \sum_{k \leq n} \frac{L}{k^{2}} \sum_{m|k} \mu\left(\frac{k}{m}\right) \sigma(m) B_{k}$$

$$+ \sum_{k \leq n} \frac{1}{k^{2}} \sum_{m|k} \mu\left(\frac{k}{m}\right) o\left(\frac{1}{m \log \log m}\right) \sigma(m) B_{k}, \quad \text{as } m \to \infty$$

$$= S_{1} + S_{2} \quad \text{(say)}$$

Since $\sigma(k) = \sum_{m|k} m$ implies that

$$k = \sum_{m|k} \mu\left(\frac{k}{m}\right) \sigma(m),$$

we get that

$$S_1 = \sum_{k \le n} \frac{L}{k} \sum_{q \le \frac{n}{k}} \frac{f(q)}{q}$$
$$= (A_f L)_n,$$

where *L* is a constant sequence. The regularity of A_f yields that $S_1 \rightarrow L$ as $n \rightarrow \infty$.

We know that $\sigma(n) = O(n \log \log n)$. Hence,

$$S_{2} = \sum_{k \leq n} \frac{1}{k^{2}} \sum_{m|k} \mu\left(\frac{k}{m}\right) o(1)B_{k}, \quad \text{as } m \to \infty$$

$$= \sum_{k \leq n} \frac{1}{k^{2}} O\left(\sum_{m|k} \left|\mu\left(\frac{k}{m}\right)\right|\right) B_{k}, \quad \text{as } k \to \infty$$

$$= \sum_{k \leq n} \frac{1}{k^{2}} O\left(\sum_{m|k} 1\right) B_{k}$$

$$= \sum_{k \leq n} \frac{1}{k^{2}} O\left(d(k)\right) B_{k}$$

$$= \sum_{k \leq n} \frac{1}{k^{2}} O(k^{\frac{1}{2}}) B_{k} \quad [1, p. 19]$$

$$= \sum_{k \leq n} O\left(\frac{1}{k^{\frac{1}{2}}}\right) \left[\frac{1}{k} \sum_{q \leq \frac{n}{k}} \frac{f(q)}{q}\right], \quad \text{as } k \to \infty$$

$$= \sum_{k \leq n} u_{k} A_{f}(n, k),$$

where $\{u_k\}$ is a sequence such that $|u_k| \leq M/k^{\frac{1}{2}}$ and hence $u_k \to 0$ as $k \to \infty$. Thus, the regularity of A_f yields that $S_2 = (A_f u)_n \to 0$ as $n \to \infty$. Hence, the theorem is proved.

REFERENCES

1. K. Chandrasekharan, Arithmetical functions. Chapter I, Springer-Verlag, New York, 1970.

 G. H. Fricke and J. A. Fridy, *Matrix summability of geometrically dominated series*. Canad. J. Math. (3) 39(1987), 568–582.

3. J. A. Fridy, Divisor summability methods. J. Math. Anal. Appl. (2) 12(1965), 235–243.

4. K. Knopp and G. G. Lorentz, Beiträge zur absoluten limitierung. Arch. Math. 2(1949), 10-16.

5. F. M. Mears, Absolute regularity and the Norlund mean. Ann. of Math. (3) 38(1937), 594-601.

6. L. A. Rubel, An abelian theorem for number-theoretic sums. Acta Arith. 6(1960), 175–177; Correction, Acta Arith. 6(1961), 523.

7. S. L. Segal, Dirichlet convolutions and the Silverman-Toeplitz conditions, Acta Arith. X(1964), 287–291.

8. _____, A note on Dirichlet convolutions, Canad. Math. Bull. (4) 9(1966), 457–462.

Penn State University—Shenango Campus 147, Shenango Avenue Sharon, Pennsylvania 16146 U.S.A. e-mail: ulf@psuvm.psu.edu e-mail: sxs32@psuvm.psu.edu