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AN EXTENSION THEOREM 
CONCERNING FRECHET MEASURES 

RON C. BLEI 

ABSTRACT. An F-measure on a Cartesian product of algebras of sets is a scalar-
valued function which is a scalar measure independently in each coordinate. It is demon­
strated that an F-measure on a product of algebras determines an F-measure on the 
product of the corresponding <j-algebras if and only if its Fréchet variation is finite. 
An analogous statement is obtained in a framework of fractional Cartesian products of 
algebras, and a measurement of p-variation of F-measures, based on Littlewood-type 
inequalities, is discussed. 

0. Introduction. A scalar measure on an algebra of sets is extendible to a scalar 
measure on the corresponding o-algebra if and only if its total variation is finite. In one 
direction, this cornerstone of classical measure theory is the assertion that a scalar mea­
sure on a cr-algebra is necessarily bounded {e.g., [7, Corollary III.4.6]), and in the other, it 
is the Carathéodory-Hahn-Jordan theorem (e.g., [7, Theorem III.5.8, Corollary III.5.9]). 
In this note, we establish the multidimensional version of this basic result. 

By an F-measure we shall mean a scalar-valued function on a Cartesian product of al­
gebras of sets that is a scalar measure independently in each coordinate. In Section 1, we 
prove that an F-measure on a Cartesian product of algebras is extendible to an F-measure 
on the Cartesian product of the corresponding a-algebras if and only if its Fréchet vari­
ation is finite. The only if direction, based on the Nikodym boundedness principle ([7, 
Theorem IV.9.8] or [5, Theorem 1.3.1]), has in effect already been noted (e.g., [12, The­
orem 4.4], [1, Theorem 4.3]), but the other direction has hitherto gone unnoticed (cf. [5, 
Theorem 1.5.2], [6]). 

In Section 2, we use the extension theorem established in Section 1 to obtain the cor­
responding result for F-measures on fractional Cartesian products of algebras. We then 
comment on the intervention of Littlewood-type inequalities and resulting measurements 
of p-variations of F-measures. These measurements, noted previously in more restric­
tive settings [1], have been recently shown to play key roles in non-adaptive stochastic 
integration [11]. 

1. F-measures. 

DEFINITION 1.1. Let X\,..., Xn be sets, and let C\,..., Cn be algebras of subsets 
of X\,... ,Xn, respectively. A scalar-valued function /i on the «-fold Cartesian product 
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C\ x • • • x Cn is an Fn-measure if /x is a scalar measure separately in each coordinate. 
Such \i will be genetically called Fréchet measures or F-measures. 

The space of Fn-measures on C\ x • • • x C„ is denoted by Fn(C\ x • • • x Cn). If 
C\,..., Cn are arbitrary or understood from the context, then Fn(C\ x • • • x Cn) is denoted 
by Fn. fi G Fn is said to be bounded if 

(1.1) sup{|//(£i x • • • x En)\ : Ex x • • • x En G Cx x • • • x Cn} < oo. 

The objects which I call /^-measures arose first in Fréchet's work [8] as bounded 
bilinear functions on C([0,1]). In later studies, in a framework of two-fold topologi­
cal products, these bilinear functionals were dubbed bimeasures {e.g., [10]). In general 
multi-dimensional settings, references have occasionally been made to multimeasures or 
polymeasures (e.g., [6]). I prefer the term Fn-measure in a multilinear measure-theoretic 
context (e.g., [ 1 ]) primarily because it registers dimensions of underlying Cartesian prod­
ucts, which could be fractional (see next section). F of course is for Fréchet. 

If C is an algebra of subsets of X, then a C-partition of X will mean a collection of 
mutually disjoint elements of C whose union is X. If C\,..., Cn are algebras of sub­
sets of X\9... ,Xn, respectively, then C\ x • • • x Cn-grid of Xi x • • • x X„ will mean 
«-fold Cartesian product of finite C\,..., Cn -partitions of X\ ,...,Xn, respectively. When 
(X\, C\),...,(Xn, Cn) are arbitrary or understood from the context, we refer simply to 
partitions and grids. 

A Rademacher system indexed by a set r is the collection of functions {ra } a e r defined 
on {—1,+1}T, such that ra(u) = uj(a) for a G r and u G {—1,+1}T. If r i , . . . , r n are 
indexing sets, then rai ® — -®ran denotes the function on {—l,+l}Tl x • • • x {—1,+1}T" 
whose value at (UJ\ , . . . , ujn) equals rax(OJ\)-- ran(oj„). 

If \i G Fn(C\ x • • • x Cn\ then the F„-norm (Fréchet variation) of/i is defined by 

(1.2) \\ji\\Fn =sup( | Y, KE\ x ••• x % , ®- - -®rJ | :7agrid) 
UI£iX-x£„E7 l lo° J 

(c/ [1, (4.3)]; r£, , . . . ,r£n are elements of n Rademacher systems indexed respectively 
by the n partitions whose Cartesian product is 7). 

THEOREM 1.2. Let C\,...,C„be algebras of sets inX\,... ,Xn, respectively, and let 
[i G Fn(C\ x • • • x Cn). Then, \i is uniquely extendible to an F„-measure on 
a(C\) x • • • x a(Cn) if and only if\\fJi\\F„ < oo (o(C) = a-algebra generated by C). 
Moreover, 

O-3) l lMlkccx-xc,) = llMlkc^Ox-.x^c,,)). 

The proof of Theorem 1.2 requires two elementary lemmas. The first, Lemma 1.3 
below, appeared in [1] (Lemma 4.4 on p. 41) where the proof was too long; I include 
here a simpler and shorter proof. The second, Lemma 1.4, can be verified quickly in a 
context of harmonic analysis by use of Riesz products; a longer but elementary proof can 
be found in [9, pp. 167-168]. 
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LEMMA 1.3. Let N be an arbitrary positive integer, and let {air>i„}? t =\ be an 
array of scalar s. Then, for each j G [«](:= {1,...,«}), there exist subsets Tj C [N] 
such that 

E 
(iu...,in)<ETlx-xTn 

4 Hh,~,in)e[N]n 

PROOF (BY INDUCTION ON n). The case n = 1 is merely the statement that for every 
set of scalars {aj :j£ [N]} there exists T C [N] such that 

|E«y|>zEN-

If « > 1 and {aiv-in}fUm„iin=\ is an array of scalars, then let UÛ\ G {—1, \}[N],... 9LJ„ G 
{-1,1}W be such that """ 

( i-4) E ^i-/^/i 
0"i »«)G[JV]" ' 

By the assertion for n = 1, there exists T\ c [A'] so that 

(1.5) E ( E aiV-i.^C^)• • • r/„(w»)) 
MG^ V(!2,...,I»)G[^]" 

majorizes (1.4). Now reverse the two summations in (1.5) and apply the induction hy­
pothesis to obtain T2 C [N],..., Tn C [TV] so that (1.5) is majorized by 

E (4 E *I,.J.) 
i2€T2,...,i„€Ta

 v fieri 

LEMMA 1.4. Suppose {ay : (ij) G N2} is an array of scalars such that 

sup{|| JliesjeT^ijH ® A>-1100 • 5 a«J T finite subsets ofN} < 00. 77/-£«, 

00 00 00 00 

,= ly=l y = l / = l 

PROOF OF THEOREM 1.2. If /i G F„ (CI X • • • x Cn) is a restriction of an F„-measure 
on o-(Ci) x • • x cr(C„), then an inductive application of the Nikodym boundedness 
principle implies \i is bounded. Then, a standard argument based on Lemma 1.3 implies 

IHk < °°-
Conversely, we show by induction on n that if \i G Fn(C\ x • • • x Cn) and \\II\\F„ < 00, 

then there exists an extension of/i to an F„-measure on G1 x • • • x G„, where S, = cr(Q) 
(/ G [«]). It is evident that such an extension is necessarily unique. 

The case n = 1 is standard. Let n > 1, and assume the assertion holds in the case n — 1. 
Let /x be an F„-measure on C\ x • • • x Cn. Then, for e a c h ^ x • • • x An G C2 x • • • x C„, 
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//(• x A2 x • • • x An) is extendible to a scalar measure on G \. Denote this extension also 
by /x. Note 

(1.6) sup{|//(,4i xA2x-- xA„)\ :A\ xA2 x ••• xAn G Gi x C2 x ••• x C„} < oo. 

CLAIM. For each A G Si, /x(4 x • x • • • x •) G Fw_i(C2 x • • • x Cn). 

PROOF OF CLAIM. Let 

(1.7) Cl = {A:AeQuii(Ax-X'->x-)e Fn-X{C2 x • • • x Cn)}. 

Clearly, Q is an algebra containing C\. We will show that Q is a a-algebra. Suppose 
Ei G Q (/ G N) and that the £,'s are mutually disjoint. Let E = \Jt Et. To verify E G Q, 
we need to establish that [i(E x • x • • • x •) is countably additive separately in each of the 
n — 1 coordinates. Fix B2 G C2,..., i?„_i G Cn-\. Let {/̂ -}/ be a sequence of mutually 
disjoint elements in C„ such that Uy Fj E C„. We claim that 

(1.8) JE x B2 x • • • x £w_i x U^y) = X > ( £ x #2 x • • • x Bn-X x Fj). 

Since /i is a scalar measure in its first coordinate, 

oo 

E 
Since is,- G Q for each / G N, 

(1.9) ii(ExB2x.-.xBn„x x | J * / ) = E / i ( ^ x 5 2 x . . . x5„_, x | j F y ) . 

OO • \ OO / OO \ 

(1.10) J > £, x #2 x • • • x Bn-X x \jFj) = X ; ( E ^ x 5 2 x - . x 5 „ _ , x Fy) . 
1=1 v y y 1=17=1 y 

By (1.6) and Lemma 1.3, 

sup{ E KE\ x * * * x £«>"£i ® ' ' * ® >X : 7 is a ©! x C2 x • • • x G-grid} 
l | l£iX-x£„G7 l ,0° J 

is finite. Therefore, by Lemma 1.4, we can reverse the order of summation on the right 
hand side of (1.10). Therefore, since /x is a measure in the first coordinate, we obtain 

(l.n) 
OO • OO s OO • OO v 

£ ! > ( £ , x B2 x • • • x fi„_, x F;) = E ( E / i ( £ i x B2 x • • • x fi„_, x F,) 
, = 1 S = 1 ' 1=1 V=1 ' i=l V=l ' 7=1 v ' = 

oo 

= E 
7=1 

oo v 

= J2^(ExB2x^-xBn-l xFy)J, 

thus establishing (1.8). • 
The induction hypothesis and the Claim imply that for each A G S i, [i(A x • x • • • x •) 

is extendible to an Fn-\-measure on 62 x • • • x 6„. Denote this extension also by //. 
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To verify that for every A2 x • • • x An G 62 x • • • x S„, //(• x A2 x • • • x An) is a 
scalar measure on Si , first fix B2 x ••• x5„_i e C2 x • • • x C„_i,andlet 

(1.12) Q„ = { i : ^ E G „ , / i ( - x 5 2 x - - x 2?„_i x ^ ) is a scalar measure on S i} . 

The argument establishing that Cln is a cr-algebra is similar to the argument used in the 
proof of the Claim. We continue by recursion to treat remaining coordinates, obtaining 
that for all A2 x • • • x An G S 2 x • • • x S„, /x(- x A2 x • • • x v4w) is a scalar measure on 
61. 

To verify (1.3), approximate ii{A\ x • • • x An), where^i x • • • x An G Si x • • • x S„, 
by fi(E\ x • • • x En), where Ex x • • • x En E C\ x • • • x Cn. • 

2. F-measures in fractional dimensions. The question concerning the extension 
of// G Fn(C\ x • • • x Cn) to an Fn -measure on a(C\) x • • • x a(Cn), considered in 
Section 1, is an instance of a general question in a framework of fractional Cartesian 
products of algebras. 

If 7 is a set and S C [ri], then Ys denotes the Cartesian product of Y whose coordinates 
are indexed by S; slightly abusing notation, we shall write Yn for Y^n\ We denote by ns 
the canonical projection from Y" onto Ys, i.e., irs(y\,... ,yn) = iyj : j E S). We shall 
sometimes use also the notation 7rs(y) = y\s- To simplify notation, we shall consider 
Cartesian products of (X, Q , where X is a set and C is an algebra of subsets of X (in 
place of (X\, C\),..., (Xn, Cn), considered in Section 1). 

DEFINITION 2.1. Let V be a cover of [ri], i.e., S c [ri] for S E V and \J{S : S E 
V} = [ri]. Let X be a set and let Cbe an algebra of subsets ofX Then, \i E F^C) is an 
F^-measure on C1 if for every S E F and for all x{At : i E S0} E C?, 

(2.1) fi(Ax x ••• xAn), xiAi'.iESJECf, 

defines a scalar measure on «(C5) («(•)= algebra generated by •). The set of /^-measures 
on C is denoted by FV(CV), or simply by Fy. 

A basic problem is to identify the "largest" domain on which a finitely additive func­
tion on C1 determines an F-measure. For example, if /x E F\ («(C1)) then ji determines 
an F\ -measure on ^(C1) if and only if its total variation 

(2.2) sup{£lM*)| :C"-grid7} ( = s u p f e /z(c)rj : C-gr id l ) ) 
lcG7 J UlcG7 l l o° J 

is finite (this of course is classical). At the other end, if/i G F^C1) then \i determines 
an Fn-measure on o(Cf if and only if ||//||FW is finite (Theorem 1.2). Definition 2.1 deals 
with the intermediate cases between these two extremes. To be precise, let V = {5/}?Li 
be a cover of [ri], and consider the collection of sets 

(2.3) a(Qv := { ^ [ c i ] H • • • H ir£[cm]) : cx E a(&)9 ...,cmE a(C*»)}, 
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whose elements will be called F-cubes. (The simplest non-trivial case, n = 3 and V = 
{(1,2), (2,3), (1,3)}, is an effective illustration for the discussion that follows.) Observe 
that if ci G <*((?*)>... ,cm G a(C?m\ then 

(2.4) TT^fci] H • • • n%J[c w ] = n U i f o ) : 1 G 5,-} x . . . x f l K f a ) : « € $ } . 

where 7ri,..., 7r„ denote the canonical projections from A71 onto X. Let /x G /^(C1). By 
finite additivity, we extend the domain of /i to a ( Q F , and then define 

(2.5) p,(ci x • • • x Cm) = //(%/[ci] n • • • n TT^1 [c,]) 

( = M(nW*«) : 1 G 5,-} x •. - x f l i ^ f e ) ^ « € 5,-})), 

Then, /2 is well defined and /ï G ^(«(C? 1 ) x • • • x (*(£*")) if and only if/x G FF(CF). 

Denote by Fy(a(C)v>) the class consisting of /x G FV(CV) extendible to o(C)v so that 

(2.6) /i(7T51
1[£i]n--.n7r^1[£m]), ElEa(CSi)9...,Emea(^l 

determines an Fm-measure on a{C?x ) x • • • x cr(CSm). 
By Theorem 1.2, if /x G ^(«(C* 1 ) x • • • x a(CSm)), then /x determines an element in 

Fm{cj(^ ) x • • • x a(C?"j) (denoted also by /x) if and only if 

HAlk = sup{| E M ( n ^ i f e ) : 1 G 5/} x • • • 

(2-7) x f]{7rn(Ci) : « G 5,-})rCl ® • • • ® r c J : 

7 = 7i x • • • x 7m, where 7y is a a(C^)-grid,7 £ [w]| 

is finite. In (2.7), by passing to refinements of partitions, we can assume that the 7/s are 
generated by the same C-partition of X, say r, i.e., 7 = T^1 X • • • x r V In this case, if 
c\ x • • • x cm G 7 then 

(2.8) n W « ) : 1 6 S,} x - x f ^ f o ) : » € * } = { J d j £ £ = d ^ e ™ 

(notation: for d = d\ x • • • x dn G T", d\Sj = x{dt : i G 5)}). Define 

(2.9) N k = s u p ( | x ; M ( ^ ® . . - ® r ^ | :7aC"-gridofA"), 

and deduce that ||/X||FK = IIA||F„, fc/|5. is an element ofaRademacher system indexed by 

A y £ M)- F o r example, if « = 3 and K = {(1,2), (2,3), (1,3)} then 

(2.10) 

\\H\\FV = sup! J ] ^(AxBx C)rAxB ® r 5 x c ® ^ x d : r a C-partition of X\, 
UUx5xCGr3 l lo° J 
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where the sup-norm is evaluated on {—1,+1}^ x {—1,+1} x {—1,+1} . 
It follows from (2.4) that if \x is extendible to an Fm-measure on G(C^X ) x • • • x <r(C!Sm ) 

then it is determined by its values on F-cubes, i.e., if 

T r ^ i n • • • ri7r^[£w] = *sïiFi] n • • • n*£[Fm] 

thenp,(E\ x • • • x £m) = {L(FX X • • • XFm). Therefore,if /2 G Fm(o(&) x • • • x a(C?m)) 
then we can unambiguously write 

(2.11) / J f r s / ^ i i n • • • H%J[£m]) = ^ i x - x £w). 

We summarize: 

THEOREM 2.2. lf\x G FV(CV), then \i G Fv{o(C)v) if and only if\\^\\Fv < oo. 

REMARK. Suppose C is infinite. The fundamental observation, that the inclusion 
F\ (aid2)} C F2(cr(Q2) is proper, was noted independently in various contexts during 
the 1930's (e.g. [4], [9]). A key to this observation was that if \i G FiiviCf} were 
extendible to an element in F\ (cr(C2)) then its total variation, defined in (2.2), would 
be finite. Indeed, after noting that there exists \i with finite ^-variation and infinite total 
variation, Littlewood [9] proceeded to derive his 4/3-inequality(ies), conveying that the 
/7-variation ofevery \i G F2(cr(Q2) is finite if and only if/? > 4 /3 . In particular, let 
/i G Fn{o(Cf^, and define the /7-variation of/x by 

(2.12) IHIw = s u p { £ |M(c)r : 7 C-gridof A"}. 

Define the Littlewood exponent of/x (e.g., [2]) by 

(2.13) I, = inf{p : M^ < oo}. 

Then, Littlewood's inequalities are equivalent to the statement 

(2.14) sup{«„ : /x G F2(a(C)2)} = 4 /3 . 

In the general case, let V = {Sj}jLx be a cover of [n], and consider the linear pro­
gramming problem. 

Maximize *i + • • • +JCW = e subject to the constraints that each jt; > 0 and YiteSj xt < 1 
for eachy G [m]. 

Let the optimal value solving this problem be e = e(V). Combining the "fractional" 
version of Littlewood's inequalities (e.g., [1]) with the result in [3], asserting that e(V) is 
the combinatorial dimension of C*^ = { ( ^ ( c ) , . . . , ^ (c)) : c G C " } , w e deduce 

THEOREM 2.3. sup{^ : [i G Fv(a(Qv)} = | f ^ . 

If U and V are two covers of [n], then U < V means that for every T G U there 
exists S e V such that T C S. It is easy to see that if U < V, then e(U) > e(V) and 
FJJ(G(C)U) D FV(<J(C)V). Theorem 2.3 implies that if e(U) > e(V) then the preceding 
inclusion is proper. 
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