
Appendix F

Solutions to Selected Exercises

Chapter 1
Exercise 1.1.1 Let 0 < p < 1. We prove that the curve β : [0,1] → Lp[0,1],
β(t) := [1[0, t[] is an injective C1-curve with β′(t) = 0, for all t ∈ [0,1].

Let us show that for every x ∈]0,1[ the derivative of β vanishes. Then the
claim follows by continuity also for the boundary points. Consider for h small
the differential quotient [h−1(β(x + h) − β(x))] = h−1[1[x,x+h[] converges to
0 with respect to the Lp-metric:

d([h−1(β(x + h) − β(x))], [0]) =
∫ 1

0
|h−11[x,x+h[ (s) |pds

= |h|−p
∫ 1

0
1[x,x+h[ (s)ds = |h|1−p .

Taking the limit h → 0, we see that the derivative must be 0 and, in particular,
β is a C1-function. Now let x < y. Then β(y) − β(x) = [1[x,y[] � [0], so β is
injective.

Exercise 1.2.2(c) We will show that D : C∞([0,1],R) → C∞([0,1],R), c �→
c′ is continuous linear.

Clearly the differential operator is linear with respect to pointwise addition
of functions. Now let 0 be the constant 0-function. Then linearity of D together
with Lemma A.5 implies that D will be continuous if the preimage of every
0-neighbourhood U ⊆ C∞([0,1],R) is a 0-neighbourhood. Thus we pick an
open 0-neighbourhood U . Shrinking U , we may assume that U is a ball Bn

r (0)
of radius r > 0 for the seminorm ‖·‖n where we have chosen suitable n ∈
N0 (and have exploited that these seminorms form a fundamental system by
Example A.14). Now as the kth derivative of a function coincides with the
(k − 1)th derivative of its derivative, we observe that D(Br

n+1(0)) ⊆ Br
n (0).
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In other words, Br
n+1(0) ⊆ D−1(U) and the preimage is a 0-neighbourhood.

We deduce that D is continuous.

Exercise 1.3.3. Schwarz’ theorem We will show that for a Ck -map f : E ⊇
U → F and x ∈ U the map dr f (x; ·) : Er → F is symmetric for every 2 ≤
r ≤ k (and r < ∞).

Remark: There are several possibilities to prove this, for example, it suffices
to show that the directional derivatives Dv1 and Dv2 commute for all v1,v2 ∈ E
(then the general case follows from dr f (x; v1, . . . ,vr ) = Dvr · · · Dv1 f (x)).
However, we will reduce the problem to the well-known finite-dimensional
case.

Use the Hahn–Banach theorem: It suffices to prove that dr (λ ◦ f )(x; ·) =
λ(dr f (x; ·)) is symmetric for every continuous linear functional λ. Hence
without loss of generality F = R. Now pick 2 ≤ r ≤ k v1, . . . ,vr ∈ E. Then
there is ε > 0 such that x +

∑r
i=1 tivi is contained in U for all |ti | < ε. Thus

we can define the auxiliary function

h : Rr ⊇] − ε,ε[r→ R, (t1, . . . , tr ) �→ f (x + t1v1 + · · · + tr vr ).

By the chain rule h is Ck . Note that by the finite-dimensional version of
Schwarz’ theorem the partial derivatives of h commute. Now the statement
for f follows from the chain rule and the observation (see Remark 1.15) that

∂r

∂t1 · · · ∂tr

�
�
�
�
�t1, ..., tr=0

h(t1, . . . , tr ) = dr f (x; v1, . . . ,vr ).

Exercise 1.3.5 For a C2 map f and C1 maps g,h we derive a formula for the
derivative of φ � df ◦ (g,h).

This is an exercise in applying the chain rule and the rule on partial differ-
entials (Proposition 1.20):

dφ(x; y) = d(df ◦ (g,h))(x; y)

= (d1df )(g(x),h(x); dg(x; y)) + (d2df )(g(x),h(x); dh(x; y))

= d2 f (g(x); h(x),dg(x; y)) + df (g(x); dh(x; y)).

Here we have used the fact that the derivative of df with respect to the first
component is just d2 f and that df (g(x); ·) is continuous linear.

Exercise 1.5.1 We construct charts turning graph( f ) � {(m, f (m)) | m ∈
M } into a split Cr submanifold of M × N for a Cr -function f .

It suffices to construct submanifold charts for every point (m, f (m)). To
this end, pick (Uϕ , ϕ) a chart of M and (Uψ ,ψ) a chart of N with m ∈ Uϕ ,
f (m) ∈ Uψ . Assume that ϕ × ψ is a mapping into the locally convex space
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E × F. We will now construct a chart around (m, f (m)) mapping all elements
in graph( f ) ∩ Uϕ × Uψ to the (complemented) subspace E × {0} ⊆ E × F.
Since the vector space operations are continuous (bi)linear, they are smooth in
the Bastiani sense and we obtain a Cr -map for M × N via

κ : Uϕ ×Uψ → E × F, (m,n) �→ (ϕ(m),ψ(n) − ψ( f (m))).

This mapping is a Cr -diffeomorphism as its inverse is given by the formula
κ−1(x, y) � (ϕ−1(x),ψ−1(y + ψ( f (ϕ−1(x))))) (we leave it as an exercise to
show that this mapping is well defined on an open subset of E×F). Thus κ is a
chart for M×N . By construction κ(m, f (m)) = (ϕ(m),ψ( f (m))−ψ( f (m))) =
(ϕ(m),0). Thus κ is a submanifold chart for the graph.

Exercise 1.5.4 We prove that a locally compact manifold M is necessarily
finite dimensional (note that the exercise asks for compact manifolds, but the
argument only requires local compactness).

Let ϕ : Uϕ → Vϕ ⊆ E be a chart for M . Since M is locally compact, there ex-
ists a compact neighbourhood C of x ∈ Uϕ such that C ⊆ Uϕ . Then ϕ(C) ⊆ E
is a compact neighbourhood of ϕ(x). Since translations are homeomorphisms
in E, the translated set ϕ(C)−ϕ(x) = {y = m−ϕ(x) | m ∈ ϕ(C)} is a compact
0-neighbourhood in E. Thus E is finite dimensional by Proposition A.3 and M
is a finite-dimensional manifold.

Exercise 1.7.1 We show that the composition g ◦ f of the submersions
f : M → N and g : N → L is a submersion.

The submersion property is local, whence we can restrict to chart neigh-
bourhoods of submersion charts around m ∈ U ⊆ M, f (m) ∈ V ⊆ N and
g( f (m)) ∈ W ⊆ L such that:

U V V W

F × X F Y × Z Y.

f

ϕ ψ1 ψ2

g

κ

prF � prY

Now via the typical insertion of charts:

κ ◦ g ◦ f ◦ ϕ−1 = κ ◦ g ◦ ψ−1
2 ◦ ψ2 ◦ ψ−1

1 ◦ ψ1 ◦ f ◦ ϕ−1

= prY ◦ ψ2 ◦ ψ−1
1 ◦ prF . (F.1)

Note that the change of charts ψ2 ◦ ψ−1
1 is a diffeomorphism on its domain

(which we will now call O). Shrinking U , we may assume that ϕ(U) = O ×D.
We obtain a modified chart ϕ̃ � ((ψ2 ◦ ψ−1

1 ) × idW ) ◦ ϕ. If we now insert ϕ̃
into (F.1) we see that κ ◦ g ◦ f ◦ ϕ̃−1 = prY : F × X � Y × Z × X → Y . In other
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words, we have constructed submersion charts for the composition which thus
turns out to be a submersion.

Chapter 2
Exercise 2.2.1 We assume that the exponential law holds for all relevant
function spaces in this exercise! If f ∈ C∞(U × M,O) and p ∈ C∞(O,N ),
we will prove that the pushforward satisfies p∗ ◦ ( f ∨) = (p ◦ f )∨.

Pick (u,m) ∈ U × M . Then

p∗ ◦ ( f ∨)(u)(m) = p∗( f ∨(u))(m) = (p ◦ f (u, ·))(m) = p( f (u,m))

= (p ◦ f )∨(u)(m)

and this proves the assertion. (Why did we need to assume that the exponential
law holds if the calculation does not use it?)

Exercise 2.3.1 Let h : L → K be a smooth map. Assume that C∞(K,M) and
C∞(L,M) are canonical manifolds. We prove that

(a) the pullback h∗ : C∞(K,M) → C∞(L,M), f �→ f ◦ h is smooth;
(b) if K,L are compact and M admits a local addition, then TC∞(K,M) �

C∞(K,T M) (see C.12). This identifies T (h∗) with h∗ : C∞(K,T M) →
C∞(L,T M).

(a) The pullback is a partial map of the full composition, hence smooth by
Proposition 2.23. Alternatively, smoothness follows directly from the exponen-
tial law, as h∗ is smooth if and only if the adjoint (h∗)∧ : C∞(K,M) × L → M ,
( f , 
) �→ f (h(
)) = ev( f ,h(
)) is smooth. Since C∞(K,M) is canonical,
Lemma 2.16 shows that the evaluation is smooth. Now smoothness of the ad-
joint follows, since ev and h are smooth.

(b) We only need the assumptions to identify TC∞(K,M) � C∞(K,T M). To
compute the tangent, we pick c : ] − ε,ε[→ C∞(K,M) smooth with c(0) = f
and ċ(0) = Vf . Under the identification we can interpret Vf (x)= ∂

∂t
�
�
�t=0

c∧(t, x)
as a function K → T M . Now

T h∗(Vf )(x) =
∂

∂t

�
�
�
�
�t=0

h∗(c∧(t, x)) =
∂

∂t

�
�
�
�
�t=0

c∧(t,h(x)) = Vf (h(x)) = h∗(Vf ).

Thus we have identified the tangent map as h∗ : C∞(K,T M) → C∞(L,T M).

Exercise 2.3.4 For K a compact manifold and M a manifold with local
addition, we endow C∞(K,M) with its canonical manifold structure and com-
pute the tangent map of the evaluation ev: C∞(K,M) × K → M.

We apply the rule on partial differentials for manifolds (Exercise 1.6.1):

T(ϕ,k ) ev(vϕ ,vk ) = Tϕ ev(·, k)(vϕ ) + Tk ev(ϕ, ·)(vk ).
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To evaluate the first term, pick a curve c : ] − ε,ε[→ C∞(K,M) with c(0) = ϕ
and ċ(0) = vϕ . If we identify TC∞(K,M) � C∞(K,T M) via C.12 we can
interpret vϕ as the smooth mapping ∂

∂t
�
�
�t=0

c∧ : K → T M . Then we compute

Tϕ ev(·, k)(vϕ ) =
d
dt

�
�
�
�
�t=0

ev(c(t), k) =
∂

∂t

�
�
�
�
�t=0

c∧(t, k) = vϕ (k) = evk (vϕ ).

Here evk : C∞(K,T M) → T M is the evaluation in k and we have exploited
the exponential law in the computation. For the second term in the sum, it
is immediately clear that we get Tkϕ(vk ). Thus we get as a formula for the
tangent mapping,

T ev(vϕ ,vk ) = evk (vϕ ) + Tϕ(vk ).

Chapter 3
Exercise 3.1.5 Let H = {(xn )n∈N ∈ 
2 | xn ∈ 1

nZ,n ∈ N}. Then we prove
that

(a) Every 0-neighbourhood in the subspace topology of H contains at least
one non-zero element.

(b) There is no 0-neighbourhood in H which contains a continuous path con-
necting 0 with a non-zero element. Thus H is not a (sub)manifold.

(a) It suffices to consider the intersection of norm balls with H , and in partic-
ular, we only need to find such elements in B1/m (0) ∩ H for m ∈ N. However,
for such a ball, it is clear that the sequence xmn = 0 if m � n and xmm = 1/(2m)
is contained in the intersection.

(b) Assume that there is a 0-neighbourhood in H which is path-connected.
Then it contains an element (xk )k ∈N � 0. Pick 
 ∈ N with x� � 0. If
c : [0,1] → H is a continuous path connecting 0 and (xk )k ∈N, then π� ◦ c
is a continuous path in R connecting 0 and x� � 0. Since the path c takes its
values in H , π� ◦ c can take only values in a discrete subset of R. Contradic-
tion! Thus there is no 0-neighbourhood of H in the subspace topology which
is path-connected and H is therefore not locally homeomorphic to a locally
convex space. We conclude that it cannot be a (sub-)manifold of 
2.

Exercise 3.3.7 (Mini Lie–Palais) Every Lie algebra morphism φ : g →V (M)
from a finite-dimensional Lie algebra g to the Lie algebra of vector fields of a
compact manifold M (with the negative of the usual bracket) gives rise to a Lie
group action G × M → M (with L(G) = g).

Note first that since g is finite dimensional and φ is linear, φ is automatically
continuous, hence a morphism of locally convex Lie algebras. By Lie’s third
theorem (Hilgert and Neeb, 2012, Theorem 9.4.11) there exists a connected,
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simply connected Lie group G such that L(G) = g. Now G is finite dimensional
and thus regular and Diff(M) is regular by Example 3.36. Hence we can apply
Lie’s second theorem for regular Lie groups, Proposition E.14, to integrate φ
to a Lie group morphism Φ : G → Diff(M), that is, L(Φ) = φ. Exploiting that
Diff(M) ⊆◦ C∞(M,M) and C∞(M,M) is a canonical manifold, Lemma C.11,
the adjoint map Φ∧ : G × M → M is a Lie group action (naturally induced
by φ).

Chapter 5
Exercise 5.1.1(c) We check the details of Proposition 5.3 and show that the
second derivative of the vertical part of S∗ is given by the pushforward of the
second derivative of the vertical part of S.

We already saw in the proposition that we can instead compute the partial
derivative (with respect to the first variable) of

(S∗)
∧ : C∞(S1,T M) × S1 → T2 M, (h, θ) �→ S(h(θ)).

Pick θ ∈ S1 and h ∈ C∞(S1,T M) together with a chart (U, ϕ) of M such that
h(θ) ∈ TU � U × E (for E a locally convex space). By continuity, there is a
compact set L such that h ∈ �L,TU� and θ ∈ L◦. For a curve c : ] − ε,ε[→
�L,TU�, apply again the exponential law, Theorem 2.12, to see that c(t) |L◦ =
Tϕ−1cE (t) for some smooth cE : ]− ε,ε[→ C∞(L◦,U × E). Plugging this into
(S∗)∧ we take derivatives to obtain

T2ϕ ◦ (S∗)
∧(Tϕ−1)∗ ◦ cE (t), θ)

= T2ϕS(Tϕ−1(cE (t)(θ))

= (πM ◦ h(θ),cE (t)(θ),cE (t)(θ),SU,2(h(θ),cE (t)(θ))).

Here SU,2 is the non-trivial vector part of the spray S. We conclude that after
projecting onto the fourth component and after fixing the parameter θ, the sec-
ond derivative of the vertical part of S∗ can be identified with the pushforward
of the second derivative of SU,2. This proves that BS∗ is the pushforward of B.

Exercise 5.1.2 We establish the formula (5.5): ∇ċα(·)(x) = ∇g

ċ∧ ( ·,x)α
∧(·, x)

for all x ∈ S1.
The trick is to avoid at all costs working in charts of the manifold of map-

pings C∞(S1,M). However, the object ∇ċα is defined via the local formula
(4.13). Taking a look at the local formula for the connector (4.11), we see that
∇ċα = K∗(α̇), where K∗ is the connector associated to the covariant deriva-
tive ∇. As already shown in the notation (and proved in Proposition 5.7), the
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connector of ∇ is the pushforward of the connector K associated to the Rie-
mannian metric g on M (and thus also to the covariant derivative ∇g). Setting
in now these relations, we obtain the desired identity

∇ċα(t)(x) = K∗(α̇(t))(x) = (K ◦ α∧)(t, x) = ∇c∧ (t,x)α
∧(t, x).

Exercise 5.2.3 The elastic metric (5.9) is invariant under reparametrisations
with elements ϕ in Diff(S1) which satisfy Tθϕ(1) > 0 for all θ ∈ S1.

We have seen in Proposition 5.17 that the elastic metric is the pullback of
the L2-metric via the SRVT. In Exercise 5.2.1(c) we have seen that for a dif-
feomorphism ϕ in Diff(S1) which satisfies Tθϕ(1) > 0, for all θ ∈ S1 one has
R (c ◦ ϕ) = ϕ̇ · R (c) ◦ ϕ. Plugging this in the L2-inner product, we see that
invariance follows from the usual transformation rule for integrals.

Chapter 6
Exercise 6.2.3 We show that for a Banach Lie groupoid G ⇒ M the multi-
plication map m : G ×M G → G is a submersion.

Remark: I do not know whether this proof (which was shared with me by
D. M. Roberts (Adelaide)) or even the corresponding statement generalises
beyond the Banach setting.

We exploit the following characterisation of submersions between Banach
manifolds: The map m is a submersion if and only if it admits local sections,
that is, for every (g1,g2) ∈ G×M G there exists a smooth map ϕ : U → G×M G
such that g � m(g1,g2) ∈ U , ϕ(g) = (g1,g2) and m ◦ ϕ = idU (see Margalef-
Roig and Domínguez, 1992, Proposition 4.1.13). Thus we fix g1,g2 and g as
above and write ϕ = (ϕ1, ϕ2) ∈ C∞(G,G × G) (exploiting that G ×M G is a
submanifold of the cartesian product, whence it suffices to obtain two smooth
maps with values in G such that their combination takes values in the fibre-
product). Now exploiting the groupoid structure, we observe that g2 = g−1

1 · g.
Ignoring for a moment that multiplication is not globally defined, we see that
for any smooth map ϕ1 with ϕ1(g) = g1, the smoothness of the groupoid
operations yields a smooth map ϕ2 via

ϕ2(x) = ϕ1(x)−1 · x = m(i(ϕ1(x)), x). (F.2)

Setting in x = g, we immediately see that ϕ2(g) = g2. However, to make the
formula (F.2) well defined we need to require that s(ϕ1(x)−1) = t(x). Since
inversion intertwines source and target this yields t ◦ϕ1 = t. We deduce that it
suffices to construct a certain smooth map ϕ1 : U → G on some neighbourhood
U of g with t ◦ϕ1 = t and ϕ1(g) = g1.

Set y � t(g) and observe that t(g) = t(g1g2) = t(g1). Since t is a submer-
sion, there is an open neighbourhood Oy of y together with a smooth section
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σ : Oy → G such that σ(y) = g1 and t ◦σ = idOy. We can now choose an
open neighbourhood g ∈ U such that t(U) ⊆ Oy and define ϕ1 : U → G,
x �→ σ ◦ t(x). Then ϕ1 is smooth and satisfies ϕ1(g) = g1 and t ◦ϕ1 = t. We
conclude that m admits local sections and is thus a submersion.

Exercise 6.2.4 We check that the gauge groupoid associated to a principal
G-bundle (E, p,M,F) is a Lie groupoid if E,M and G are Banach manifolds.

(a) We begin with the construction of charts for (E × E)/G. Let (Ui )i∈I be an
open cover of M such that there exist smooth local sections σi : Ui → E of p.
This yields an atlas (Ui , κi )i∈I of local trivialisations of the bundle p : E → M
which are given by

κi : p−1(Ui ) → Ui × G, x �→ (p(x),d(σi (p(x)), x)),

with d: E ×M E → G, (x, y) �→ x−1 · y. Here we use x−1 · y as the suggestive
notation for the unique element g ∈ G that satisfies x · g = y.
The local trivialisations commute with the right G-action on E since

κi (x · g) = (p(x · g),d(σi (p(x · g)), x · g) = (p(x),d(σi (p(x)), x)) · g.

In particular, the trivialisations descend to manifold charts for the arrow mani-
fold of the gauge groupoid:

Ki j : (p−1(Ui ) × p−1(Uj ))/G → Ui ×Uj × G,

[x1, x2] �→ (p(x1), p(x2),d(σi (p(x1)), x1)d(σ j (p(x2)), x2)−1).

To see that the projection is a submersion, it suffices to prove this locally in
charts. In the trivialisations and the charts, the quotient becomes the map

(Ui × G) × (Uj × G) → Ui ×Uj × G,
(
(ui ,gi ), (u j ,gj )

)
�→ (ui ,u j ,gig

−1
j ).

While we have the identity in the u components, the G component is the com-
position of inversion in the second component with the Lie group multiplica-
tion. Inversion in a Lie group is a diffeomorphism, while the multiplication in
the Banach Lie group G is a submersion by Exercise 6.2.3. Now the composi-
tion of submersions is a submersion by Exercise 1.7.1 and by Exercise 1.7.2,
the quotient map is a submersion.

(b) Smoothness of the mappings follows from Exercise 1.7.6 by composing
them with the submersion q : E × E → (E × E)/G and observing that the
resulting mappings are smooth on E × E. In particular, s ◦q = p is a surjec-
tive submersion, whence by Margalef-Roig and Domínguez (1992, Proposition
4.1.5), s is a surjective submersion.
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Chapter 7
Exercise 7.3.1 Let (M,g) be a Riemannian metric with volume form μ. We
show that the L2-metric is a right invariant Riemannian metric on Diffμ (M).

We have already seen (for M = S1 but the general case is similar) that the
L2-inner product 〈X,Y 〉L2 �

∫
M
gm (X (m),Y (m))dμ(m) is a continuous inner

product onV (M). From the formula for the tangent of the right multiplication
in Diff(M) (see 2.22), we see that the right-invariant metric induced by the
L2-inner product is given by

〈X ◦ ϕ,Y ◦ ϕ〉ϕ = 〈X ◦ ϕ ◦ ϕ−1,Y ◦ ϕ ◦ ϕ−1〉L2 = 〈X,Y 〉L2 .

Let us assume now that ϕ is a volume-preserving diffeomorphism. Then by dif-
feomorphism invariance of the integral (see e.g. Lee, 2013, Proposition 16.6),
we derive now that

〈X ◦ ϕ,Y ◦ ϕ〉ϕ = 〈X,Y 〉L2 =

∫

M

ϕ∗g(X,Y )dμ

=

∫

M

gϕ (m) (X ◦ ϕ(m),Y ◦ ϕ(m))dμ(m).

Thus for every volume-preserving diffeomorphism, the L2-metric coincides
with the right-invariant Riemannian metric induced by the L2-inner product
on the vector fields. We conclude that the L2-metric is right invariant on the
subgroup Diffμ (M).

Exercise 7.3.1 For (M,g) a compact Riemannian manifold consider the L2-
metric gL

2
(7.8) on Diff(M). Let S be the metric spray of g and K the associ-

ated connector. (a) Then S∗ and K∗ define a spray and a connector on Diff(M).
Moreover, by (b)–(c) ∇L2

X Y � K∗ ◦TY ◦X defines the metric derivative on gL
2
.

(a) As Diff(M) ⊆◦ C∞(M,M) and C∞(M,M) is a canonical manifold, the
pushforwards are smooth. That they form a spray and a connector follows
directly from the identification of T k Diff(M) ⊆◦ T kC∞(M,M) �C∞(M,T k M).

(b)–(c) Details for this proof are recorded in Ebin and Marsden (1970, Proof
of Theorem 9.1).

Chapter 8
Exercise 8.2.4 Let N ∈ N ∪ {∞},d ∈ N and X : [0,1] → Rd be a smooth
path. Define DX : [0,1] → T N (Rd ), t �→ (0,X ′

t ,0, . . .). We will then:

(a) Show that d
dt SN (X )s, t = SN (X )s, t ⊗ (DX )t , s < t ≤ 1,SN (X )s,s = 1.

(b) Establish Chen’s relation

SN (X )s, t = SN (X )s,u ⊗ SN (X )u, t , 0 ≤ s ≤ u ≤ t ≤ 1.
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(c) Thus SN (X )s, t = SN (X )−1
0,s ⊗ SN (X )0, t holds.

First note that the claims will follow for N ∈ N ∪ {∞} if we can establish
the identity for the projection to every finite degree k ∈ N0.

(a) For s = 0 the claim is just (8.7). For arbitrary s the claim follows from in-
specting the Volterra series. Namely, projecting to homogeneous elements
of degree k ≥ 1, the component of SN (X )s, t is

∫ t

s

∫ rk−1

s

· · ·
∫ r1

s

dXr1 ⊗ · · · ⊗ dXrk

=

∫ t

s

(∫ rk−1

s

· · ·
∫ r1

s

dXr1 ⊗ · · · ⊗ dXrk−1

)
⊗ dXrk

=

∫ t

s

πN
k−1

(
SN (X )s,rk

) ⊗ dXrk .

In other words, the signature satisfies the integral equation SN (X )s, t =
1 +

∫ t

s
SN (X )s,r ⊗ dXr in T N (Rd ), whence it solves the desired ODE.

(b) We proceed by induction on k. Note that the identity is trivially true for k =
0 since it reads 1 = 1 · 1. Assume now that we have established the claim
now for every s < u < t ∈ [0,1] and 
 ≤ k, and so Sk (X )s, t = Sk (X )s,u ⊗
Sk (X )u, t . We work now in the truncated tensor algebra T k+1(Rd ) (and
note that the following identities hold precisely by truncating after degree
k + 1):

Sk+1(X )s,u = 1 +
∫ u

s

Sk+1(X )s,r ⊗ dXr =

∫ u

s

Sk (X )s,r ⊗ dXr ,

Sk+1(X )s,u ⊗
∫ t

u

SN (X )u,r ⊗ dXr = Sk (X )s,u ⊗
∫ t

u

Sk (X )u,r ⊗ dXr .

Applying the induction hypothesis to split the Sk (X ) for s < u < r < t,
we obtain

Sk+1(X )s, t = 1 +
∫ u

s

Sk (X )s,rdXr +

∫ t

u

Sk (X )s,u ⊗ Sk (X )u,r ⊗ dXr

= Sk+1(X )s,u + Sk+1(X )s,u ⊗
(∫ t

u

Sk (X )t,r ⊗ dXr

)

= Sk+1(X )s,u ⊗
(
1 + (Sk+1(X )u, t − 1)

)

= Sk+1(X )s,u ⊗ Sk+1(X )u, t .

(c) Multiplying Chen’s relation for SN (X )0, t from the left with the inverse of
SN (X )0,s immediately yields the desired identity.
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Appendix A
Exercise A.6.2(a) We show that the box topology turns E � {(xn )n∈N ∈
R
N | almost all xn = 0} into a locally convex space and makes the right shift

continuous.
Note that we have λ(

∏
n Un )+ (

∏
n Vn ) =

∏
n∈N(λUn +Vn ) for Un ,Vn ⊆◦ R

and λ ∈ R. If (xn ) + (yn ) ∈ ∏
n Un we exploit that R is a topological vector

space to find for every n ∈ N xn ∈ An ⊆◦ R and yn ∈ Bn ⊆◦ R with An + Bn ⊆
Un . We conclude that

(∏
n An

)
+

(∏
n Bn

) ⊆ (∏
n Un

)
and vector addition

is continuous. For scalar multiplication we note that if λ · (xn ) ∈ ∏
n Un we

can exploit that xn � 0 for only finitely many n, to construct an open λ-
neighbourhood λ ∈ O ⊆◦ R together with (xn ) ∈ ∏

n Vn such that O ·∏n Vn ⊆∏
n Un . Hence scalar multiplication is continuous and E is a TVS.
Now let

∏
n Un be a 0-neighbourhood. This implies that every Un is a

0-neighbourhood in R. Since R is locally convex, for every n there is a convex
0-neighbourhood Cn ⊆ Un . Then

∏
n Cn ⊆

∏
n Un is a convex 0-neighbour-

hood and thus E is locally convex. The right shift is continuous as
R−1(

∏
n Un ) =

∏
n Un+1 if 0 ∈ U1 and ∅ otherwise.

Appendix B
Exercise B.2.4 We show that the set Ω′ � { f ∈ C(K,Y ) | graph( f ) ⊆ Ω} is
open in the compact-open topology if K is compact and Ω ⊆◦ K × Y.

Let us show that Ω′ is a neighbourhood for each f ∈ Ω′. Since Ω is open
in K × Y with the product topology, we find for each x ∈ K open subsets
Ux ⊆◦ K,Vx ⊆◦ Y with (x, f (x)) ∈ Ux ×Vx ⊆◦ Ω. Shrinking the Ux , we may also
assume that U x × Vx ⊆ Ω and f (U x ) ⊆ Vx .

By compactness U x is compact and we can cover K with finitely many of
the Ux , say, K =

⋃
1≤k≤n Uxk . Then by construction Nf �

⋂
1≤k≤n �U xk ,Vxk �

is open in the compact-open topology and f ∈ Nf . Moreover, if h ∈ Nf , then
we have for x ∈ Uxk that (x,h(x)) ∈ Ux × Vx ⊆ Ω. Since the Ux cover K , we
deduce that h ∈ Ω′ and thus Nf ⊆ Ω′.

Appendix C
Exercise C.2.2 We show that the pullback bundle f ∗(E) is a split submani-
fold of K × E. The idea is similar to the proof that the graph of a smooth
function is a split submanifold. The proof is essentially Lemma 1.60: By def-
inition of a fibre bundle p : E → M is a submersion. In the notation of that
lemma we have f ∗(E) = K × M E is a split submanifold of K × E for each
f ∈ C∞(K,M).
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Appendix E
Exercise E.3.5 For a Riemannian manifold (M,g) with metric derivative ∇,
we establish the formula

g(Z,grad g(X,Y )) = g(∇Z X,Y ) + g(X,∇ZY ) for X,Y, Z ∈ V (M).

From the definition of the gradient and the compatibility of the metric deriva-
tive with g we deduce that

g(Z,grad g(X,Y )) = dg(X,Y )(·; Z ) = Z . g(X,Y ) = g(∇Z X,Y ) + g(X,∇ZY ).
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