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CONDITIONAL DISTRIBUTIONS AND WAITING
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Abstract

In this paper we present novel results for discrete-time and Markovian continuous-time
multitype branching processes. As a population develops, we are interested in the waiting
time until a particular type of interest (such as an escape mutant) appears, and in how the
distribution of individuals depends on whether this type has yet appeared. Specifically,
both forward and backward equations for the distribution of type-specific population sizes
over time, conditioned on the nonappearance of one or more particular types, are derived.
In tandem, equations for the probability that one or more particular types have not yet
appeared are also derived. Brief examples illustrate numerical methods and potential
applications of these results in evolutionary biology and epidemiology.
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1. Introduction

Branching processes are widely used to model a variety of phenomena, including chain
reactions [14], [26], cellular proliferation and differentiation [16], [19], and the spread of
epidemics [8]. Multitype branching processes allow for several types of replicating entities,
thus incorporating variation within a population, and are therefore useful in addressing questions
in evolutionary biology. Branching process models are often concerned with finding the
probability of extinction of the population. In some applications, however, one would also
like to understand the time course of the population’s development. This might include the
time of appearance of different types, as well as the distribution of individuals present over
time, perhaps depending on the types that have or have not yet appeared. For instance, in a
model of within-host infection initiated by a wild-type pathogen sensitive to drug treatment,
one might investigate the distribution of pathogen population size over time, conditional on
whether a drug-resistant mutant has arisen. The main result of this paper is to derive equations
for the probability generating function (PGF) of the conditioned type-specific population size
distribution, along with equations for the probability that a particular type has not yet appeared.

There appears to be little previous work considering the absence of a particular type in
multitype branching processes, with the notable exception of that by M. C. Serra and colleagues
[22], [23], [24]. They first considered a two-type Galton—Watson branching process with
independent mutations from the subcritical type 1 to the supercritical type 2. A PGF for the
number of type-2 individuals with type-1 parents, produced up to any given time, leads to
expressions for the distribution of the ‘time to escape’ (i.e. the first generation in which a
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type 2 whose lineage escapes extinction is produced) [23]. The authors subsequently derived
an approximation for the distribution of the waiting time for a successful mutant in the two-type
process [24]. Finally, they focused on derivations of the asymptotic structure of the process
with an arbitrary number of types, albeit with a particular form of mutation, as the mutation rate
approaches 0 [22]. Using the authors’ approach of tracking the number of mutants, results on
the exact distribution of the waiting time for a particular type can readily be extended to more
general scenarios (arbitrary number of types, mutation scheme, etc.) as well as continuous-time
models; see [2] for details. However, these results do not delve into the full distribution of
population sizes, which depends on whether the mutant has arisen.

The present paper is organized as follows. In Section 2 we define the process under
consideration; present a few simple probabilistic results that will be useful later; and recall
well-known equations for the PGFs describing the unconditioned type-specific population
size distribution in a multitype branching process. In Sections 3—5 we present derivations
of novel results concerning a multitype branching process in which a particular type is absent.
(Extensions to more general conditions, such as nonextinction, the presence of some type, or
the absence of several types, are considered in Appendix A.) Specifically, we obtain coupled
equations governing (i) the probability that a particular type has not yet appeared, and (ii) the
PGF for the distribution of the number of individuals of each type over time, conditional on
the nonappearance of the particular type. As with classical results in branching process theory,
we derive both forward and backward equations. These represent two conceptually distinct
approaches to the problem, from which we can confirm that the results agree. Furthermore, the
two resulting sets of formulae offer two possibilities for numerical implementation. In Section 3
we treat the discrete-time case (Galton—Watson branching processes), while in Section 4 we
deal with Markovian (memoryless) processes in continuous time. The interpretation of these
results to express the exact distribution of the waiting time until the appearance of a type is
outlined in Section 5. Finally, in Section 6 we provide a few examples illustrating how these
results can be used to address questions of interest in evolutionary biology and epidemiology.

2. Preliminaries

2.1. Definitions and notation

We consider m-type Markovian branching processes, in both discrete and continuous time.
The random vector X € Nij (where Ng = {0, 1,2,...}) denotes the number of each type
of individual in the process, while G denotes the PGF for X. More explicitly, G (s; n)
(respectively G (s; t) in continuous time) denotes the PGF for X at time step n (respectively
time ¢), given that the process starts with one type-k individual. All functions and variables, such
ass = (sq, ..., Sn), are understood to be m-dimensional vectors where appropriate. Generally,
a subscript k on a probability (Pr) or expectation (IE) indicates that the process is conditioned
on starting with a single type-k individual.

A discrete-time branching process is defined by F'(s), the PGF for the distribution of the
number of offspring produced in a time step (with the kth component again corresponding to a
type-k parent). In general,

Fi(s) = (1 — ni)si + e fie(s) = s + ne(fr(s) — si),

where 1 is the probability that a type-k individual’s lifetime ends in a given time step.
If this is the case, it produces a new generation of offspring according to the PGF fi(s).
Otherwise, the individual’s lifetime does not end and it simply places itself (PGF si) in the next

https://doi.org/10.1239/aap/1377868535 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1377868535

694 H. K. ALEXANDER

time step. Biologically, the motivation for this formulation is to explicitly model overlapping
generations. From a mathematical standpoint, however, this distinction is immaterial: one can
always consider such a process as a Galton—Watson branching process with nonoverlapping
generations, by viewing a surviving parent as one whose lifetime has ended and who has
produced a single offspring of the same type.

Analogously, in continuous time, suppose that a type-k individual’s lifespan is exponentially
distributed with parameter &. At the end of its lifetime, it gives birth to offspring according
to the PGF fi (s). Thus, the distribution of individuals produced by a type k in a discrete-time
interval of length &7 is

Fie(s) = sk + &k (fi(s) — sp)dt + 0(81). ey

Some additional notational conventions are required when conditioning is introduced. For
clarity of exposition, in the main text we focus only on the condition that type m has not
yet appeared, and leave the more general case to Appendix A. As such, a subscript ‘*’ on a
variable or a function will be used to indicate that the mth component is fixed at 0, e.g. s, 1=
1, .-, 8m-1,0), Iy := (1,...,1,0), and Fy(sx) := (F1(54), ..., Fn_1(s4), 0). A tilde on
the PGF G will indicate that X is conditioned on some event (in the main text this will be the
nonappearance of type m). More explicitly, G (s; n) is the PGF for X (n) if the process starts
with a single type-k progenitor, k # m, conditional on no type m appearing by time step n.
Note that G (s; n) = Gy (s; n), since conditioning on type m not being present implies that
the PGF is independent of s,,. It is assumed throughout that the initial type k is not m, and
that no type i € {1,2,...,m — 1} produces type-m offspring with probability 1. (Note that
these conditions do not limit us to indecomposable processes, although for some decomposable
cases, the results may be trivial, as when type m can never appear.) We use Py (n) to denote the
probability that type m does not appear in the lineage of a type k by time n, which is positive
under the preceding conditions.

2.2. Useful PGF results

2.2.1. Compound distributions. For many of the derivations that follow, it will be useful to
know the PGF for the number of individuals of each type at the present tlme given the numbers
in the previous time step, conditional on some event. Denote by Y /) the number of type-1
individuals placed in the next time step by the jth type-i mdlv1dual present at time n — 1,
conditioned on event C holding in the entire population at time n. Since all individuals of
a given type behave the same way, the YD) are identically distributed copies of a random
vector ¥ ). The total number of type- individuals at time # is the sum of the type-/ offspring
produced by each individual existing at time n — 1, and, therefore,

[HSX 10)

X(n 1) Xi(n=1) 5(ij
[Z’"IZ YW)” Z’”12, 1 YrElU)]

X(n—1); c}

m Xi(n—1)

=TT T1 o]

i=1 j=I

Atthis point, we can make no further progress unless all the Y ) are independent. Independence
holds if there is no condition applied (C = €2), or if the condition holds in the main process if
and only if it holds, independently, in every subprocess (e.g. if C is the absence of some type(s)).
With such independence, and assuming that the ¥ /) are also independent of X (n — 1) (i.e. the
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number of offspring produced by each individual is independent of the population size), the
above expression simplifies as

E[H it
i

where F;(s) is the PGF for the number of offspring placed in the next time step by one type i,
conditioned on C holding in the process.

m . m
o 71X (n—1 ~ (n—
X(n—l);C}:l—[E[sll o [V =TT RS0, @)
i=l i=l

2.2.2. One-step conditional offspring distribution. As in (2), we will repeatedly make use of
the next-time-step ‘offspring’ distribution, conditioned on no type m appearing among the
offspring. The PGF of this distribution is denoted by F(s) and it can be expressed in terms of
the corresponding unconditioned PGF F (s) as

. Fi (s

since Fy (1) is the probability that there is no type m among a type-k individual’s offspring.

3)

2.2.3. Probability of a condition holding in multiple processes. We will also need to express
the probability that a condition C holds in multiple processes. If there are X; processes started
by type-i individuals then, provided that C holds independently in each of these processes, we
have

Pr(C holds in all processes over v time steps | X = (X1, X2, ..., X;) progenitors)

= [T “on™,
i=1

where Pi(c)(v) is the probability that C holds over v time steps in a process with a type-i
progenitor. If X has a probability distribution given by the PGF G(s) then this expression
simplifies as

Pr(C holds in all processes over v time steps) = G(PO®w)) “4)

with PO ) = (PO W), POW), ..., PO w)).

2.3. Unconditioned distributions

To facilitate comparison with the later conditioned results, in this section we give the standard
forward and backward equations for the PGF G in the unconditioned case. Derivations and
further details on these results can be found in many sources, e.g. [6, pp. 183-184, 199-201],
[71, [14, pp. 35-36, 113-114], and [20, pp. 8—10].

In discrete time, the forward recursive equation for the PGF G (s; n) is

G(sin) =G(F(s)in—1) &)
while the backward equation is
G(s;n) = F(G(s;n—1)). (6)

Note that the forward equation (5) is ‘decoupled’ in the sense that it can be applied to the
kth component of G individually, while the backward equation (6) requires one to solve for

https://doi.org/10.1239/aap/1377868535 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1377868535

696 H. K. ALEXANDER

the entire vector G simultaneously [7], [14]. Both recursions can be solved from the initial
condition G (s; 0) = s to obtain
G(s;n) = F™(s),

where the superscript ‘(n)’ denotes n-fold iteration of the function.

To derive the continuous-time results, one can substitute the offspring distribution PGF from
(1) into the forward recursive equation (5), expand in powers of 8¢, and rearrange, taking the
limit §z — O to obtain the partial differential equation

3G = dGi(s;
2l Z i) — s T )

Likewise, for the backward equation, we obtain the ordinary differential equation

dGk(s; 1)

o = Sk(fi(G(s: 1) = Gi(s: 1)),

Again, both systems of equations have the initial condition G(s; 0) = s.

3. Conditioned processes: discrete-time equations

Recall that G(s; n) denotes the PGF for X (n), conditioned on no type m appearing up to
time n. Comparably to the unconditioned case, we derive recursive equations for G through
both forward and backward approaches. In parallel, we derive recursive equations for the
probability P (n) that type m has not appeared by time n. Derivations are given for a process
starting from one individual of a given type. However, by the independence of processes, the
results extend in a straightforward manner to the case of multiple progenitors. Specifically, if
the process starts with x; progenitors of typei (i = 1,...,m — 1; x,, = 0) then the overall
probability that type m does not appear by time n is

m—1
[TPm",
i=1

while the PGF for the number of individuals of each type in the process at time n, conditioned
on no type m appearing up to this time, is

m—1
1_[ Gi(s;n)".
i=1

3.1. Forward derivations

Forward derivations represent what happens in the last time step of the process. We
first derive a decoupled recursion expressing G(s; n) in terms of G(s;n — 1), then write the
probability that type m does not appear by a given time in terms of this conditional PGF.

Theorem 1. The conditional PGF Gy (s; n) (k # m) can be expressed recursively as

Gi(Fu(si);n — 1)

Gr(simy = 2
) = = 1)
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with explicit solution
-1
_ RF"V60)
=
Fe(F 0 (1))
where F*f") denotes the n-fold iteration of Fy.

G(s; n)

Proof. By definition,

Gi(s;n) = ZPrk(X(n) =x| Xn() =0, v gn)]_[s;‘f.

We first shift the conditioning at time n to go along with the numbers at time n, and then
condition on the state at time n — 1, summing over all possible such states. The Markov
property implies that, given X (n — 1), we can drop all earlier conditions at time n. Thus,

Gils;n)
_ZPrk(X(n):xﬁXm(n):O|Xm(v):0, vfn—l)l—[ x;

Pri(Xpu(n) =0 | Xy(v) =0, v<n—1) A
Z{x: ty=0) PE(X (M) = x | Xpu(v) =0, v <n—1) Il sfi
T im0 PEX () =x [ Xu() =0, v<n—1)
B Zy Prp(X(n—1)=y| X, (v)=0,v<n—1) Z{x: tm=0) PIX (M)=x| X(n—D)=y) I sfi
- Zy Pry(X(n—D=y| X, v)=0, v<n—1) Z{x: xm=0) PIX (M)=x | X(n—1)=y)
In the numerator, the sum over x is the PGF for the numbers at time n, given those at time

n — 1, evaluated at s,.. Applying (2) (with no condition imposed on the offspring), this PGF is
]_[i F;(s4)”. In the denominator, we have the same PGF but evaluated at 1. That is,

2 PX (=1 =y Xu()=0,v=n—D[J; Fi(s:)”
> Pr(X(n— D =y | Xu@) =0, v<n— D F(1)"

The probabilities in the sums over y are simply the coefficients in G (s; n — 1). Thus,

Gi(s;n) =

Gk(s; n) = ?k(F*(s*)i n—1) ’
Gr(Fe(l);n—1)

as given in Theorem 1. Iteration of this recursion from initial conditions G (s; 0) = s, yields
the explicit solution.

Theorem 2. The probability Py(n) that type m has not yet appeared by time n in the lineage
of a type-k progenitor can be expressed via a recursion as

Pi(n) = Pi(n = DGr(P(1);n — 1)
for k # m, with P,,(n) = 0; or explicitly as
P(n) = F{"(1,).
Proof. Rewrite P (n) by conditioning on what has happened up to the previous generation:

Pr(n) =Prgy(nom byn — 1)Prgy(nombyn | nombyn — 1)
= Py(n — 1)Pri(no individual at n — 1 produces m in next step | no m by n — 1).
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Given that no type m has arisen by time step n — 1, the distribution of individuals in time step
n — 1 is given by G (s; n — 1), and each type-i individual independently fails to produce type
m in the next step with probability P;(1). Thus, applying (4),

Pi(n) = Pe(n — DGr(P(1);n — 1),

valid for k # m, while P, (n) = 0 since starting with type m guarantees that it has been
present. We can use the solution for G (s; n — 1) (Theorem 1) along with P(0) = 1, and
P(1) = F,(1,) to iterate this recursion and obtain P (n) explicitly.

3.2. Backward derivations

Backward derivations proceed by considering what happens in the first time step of the
process. In a reversal of the order in the forward derivation, we can now obtain the probability
that type m does not appear by time n without first needing the conditional PGF G. We use this
result to derive an expression for the offspring distribution conditioned on no type m appearing
in the progenitor’s lineage for n time steps to come. Finally, we use these results in the derivation
of a coupled backward recursion for G(s;n).

Theorem 3. The probability Py(n) that type m has not yet appeared by time n in the lineage
of a type-k progenitor satisfies the recursion

Pr(n) = Fir(P(n — 1))
for k # m, with P,,(n) = 0; with explicit solution
P(n) = F{"(1,).
Proof. We express Px(n) by conditioning on the first time step:
Pr(n) = Pri(no m at time 1)Prx(no m by time n | no m at time 1).

The second factor is the probability that every individual existing at time 1 independently fails
to produce type m within n — 1 more time steps. Since the conditional distribution at time 1 is
Gi(s; 1) = Fy(s), (4) implies that the probability that type m does not arise in any lineage by
time n is Fx(P(n — 1)). That is,

Pr(n) = Pi(1)Fi(P(n — 1)).
Using Fr(s) = Fi(ss) / Pr(1) ((3)), the expression then simplifies to
Pr(n) = Fir(P(n — 1)),
valid for k # m, while P, (n) = 0. The recursion can be iterated, from initial conditions

P(0) = 1, to obtain the explicit solution.

Theorem 4. Let ﬁk(s; n) = I:"k(s*; n) denote the PGF of the offspring distribution for a
type-(k # m) progenitor, conditioned on no type m arising in the first n > 1 time steps of

its lineage to come. Then
Fi(s - P(n — 1))

Py (n)

where the dot denotes componentwise multiplication.

Fi(s;n) =

)
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Proof. By definition,

Fk(s;n) = ZPIk(X(l) =y | Xm(])) =0, 1 <yp< n)l_[slyz
Y i

We shift the conditioning to write

) e Pr(X(D=yNX, ) =0, 1<v<n) 7,
Filsm = 3 Pri(Xm() =0, 1 <v <n) 11‘_[%

y

¥, Pri(X (1)=yN X5 (1)=0) Pr(X,, (1)=0, 2<v<n | X ()=yNX,, (1)=0) []; 5;"
= Pr. (X, ()=0, I<v=<n) '

or, since each lineage initiated at time 1 independently fails to produce type m,

Y1y oy P X (D) = ) TT7 (P — 1) x 5;)%

Fi(s;n) = )

_ FiGsy - P(n = 1))
a Py (n)

Note that this formula simplifies to (3) forn = 1.

Theorem 5. The PGF for the number of individuals in a type-(k # m) progenitor’s lineage
after n time steps, conditioned on no type m arising during this time, satisfies the recursive

equation 3
= Fi(Gy(sin—1)- P(n —1))
Gi(s;n) =
Pr(n)
with explicit solution
(n—1)
~ Fy (F.
Gr(sin) = K(Fs 7 (5%))

F(F D1,

Proof. The PGF for the number of individuals at time 1, conditioned on no type m appearing
up to time n, is F(s; n). A type-i individual existing at time 1 gives rise to individuals at time
n according to the PGF G (s; n — 1), also conditioned on no type m appearing within this time.
Using results for compound distributions analogous to those presented in Section 2.2.1, we
have

Gr(s;n) = Fe(G(sin — 1); n).

Applying Theorem 4 to substitute the n-step conditional offspring distribution yields the
recursive formula for G. Note the coupling in this equation requires us to solve for the entire
vector é* simultaneously. Iteration from initial conditions G*(s; 0) = s, yields the explicit
solution, in agreement with that from the forward approach.

4. Conditioned processes: continuous-time equations

We now consider results for a Markovian branching process in continuous time. Analogously
to the discrete case, we would like to find é(s; t), the PGF for the number of individuals of
each type, X (¢), conditioned on no type m appearing up to time . We consider X (¢) (and its
PGF) to be a limit of discrete-time processes, where we take one discrete-time step to be of
length 8¢ in continuous time, and take §¢+ — 0 while number of steps n — oo simultaneously,
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such that the time point n8¢ is fixed at . In a slight abuse of notation, we write G(s; n), with
the time argument in the number of steps, to be equivalent to G(s; 1), with the time argument in
continuous time. We ‘translate’ between these representations when the meaning is clear from
the context. Analogously to the continuous-time results for the unconditioned case, we derive
both a system of decoupled partial differential equations (PDEs) from the forward approach
and a system of coupled ordinary differential equations (ODEs) from the backward approach
for G(s; ). We also derive two systems of ODEs for P(¢), the probability that type m has
not appeared by time ¢: one from the forward approach and one from the backward approach.
Although analytical solutions are not generally available, in Appendix B.1 we provide numerical
solutions showing agreement of the two solution methods.

4.1. Forward derivations
Theorem 6. The PGF G (s; t) for the number of individuals in a type-(k # m) progenitor’s

lineage after time t, conditioned on no type m arising during this time, satisfies the equation

m—1

3Gr(sit) " aGr(s:it) = IGr(s: 1)
= DG - ) T OG0 D& = filly)—=—

i=1 i=1 ! s=1
with initial condition Gi(s; 0) = sg.

Proof. We start with the discrete-time difference equation, i.e.
AGyi(sin) := Gi(s;n) = G(sin = 1),

and rewrite Gk(s; n) using the forward recursion from Theorem 1. Then substituting (1) for
F,, we have
_ Grlss + & - (fiu(sx) — 8:)01 +0(81);n — 1)

Gr(lu + & - (fu(l) — 1,08t + 0@1);n — 1)’

where the dot denotes componentwise multiplication. We then expand both the numerator and
denominator in aTa~ylor series about s, and 1., respectively. (Recall that G (sy; n) = Gi(s; n),
and, in particular, G¢(1,; n) = 1.) This yields

Gi(s; n)

Grls;n — 1) + 8t Y1 & (fi(sw) — s0)Gr(s; n — 1)/3s; + 0(81)

Gi(s;n) = pry a—
L6t 35700 & (fi(L) — DAGk(s; n — 1)/0sils=1 + 0(81)

Further simplifying this fraction as a power series and cancelling G (s; n — 1) in the difference
equation, we have

m—1 =~
- aGk(s;n —1
AGi(sin) = 81 ; i (fi(s2) — s»%
m—1 = e
+Grlsin— Do Y & (1 — ﬁ(l*))% +o(31).

i=1 Se=14

Dividing through by & and taking the limit as 6t — 0 (and n — o0, such that nét = r)
yields the desired equation. This is technically a functional PDE, due to the dependence of the
equation at all points on the derivative of the solution evaluated at a particular point.
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Note that if a particular type i is guaranteed not to produce type-m offspring, then f;(s,) =
fi(s) and 1 — f;(1,) = 0. Therefore, the second term disappears for any such type. If every
type i # m is guaranteed not to produce type-m offspring, the equation reduces to the standard
unconditioned forward equation (7) for an (m — 1)-type process.

Theorem 7. The probability Py (t) that no type m arises in the lineage of a type-(k # m)
progenitor by time t satisfies the equation

de )
Cdr

G
_n0 S 61— £ 20D L)

i=1 s=1

with initial conditions P(0) = 1y, while P, (t) = 0.

Proof. We use the discrete-time forward recursion from Theorem 2, translated to continuous
time as

Pr(t) = Pi(t = 80)Gi(1s + 818 - (fu(12) — 1) + 0(81); 1 — 81).

Expanding Gyina Taylor series about 1, (noting that Gi(lu;1) = 1), rearranging terms, and
taking 6t — 0 yields the above ODE.

Note that Bék (s; 1)/0si|s=1 is the expected number of type-i individuals in the process at
time ¢ (conditioned on no type m having yet appeared), &; is the rate at which a type-i’s lifetime
ends, and 1 — f;(1,) is the probability that a type i produces a type m when its lifetime ends.
Thus, the summation gives the expected total rate of production of type m at time ¢ given that
type m has not appeared previously; Py (¢) is correspondingly reduced at this rate.

4.2. Backward derivations

Theorem 8. The probability Py (t) that no type m arises in the lineage of a type-(k # m)
progenitor by time t satisfies the equation

d P (1)
dr

= & (fi(P (1)) = Pr(1))

with initial conditions P(0) = 1,; while P, (t) = 0.

Proof. To obtain P(t) by a backward approach, we use (1) to expand the discrete-time
backward recursion on P(n) given in Theorem 3. This yields the difference equation

APy(n) := Pr(n) — Pr(n — 1) = 8§ (fi(P(n — 1)) — Pr(n — 1)) + 0(81).

Dividing through by 6z, taking §+ — 0 and n — oo yields the above ODE.

Theorem 9. The PGF G /(s; t) for the number of individuals in a type-(k # m) progenitor’s
lineage after time t, conditioned on no type m arising during this time, satisfies the equation

IGr(s:t) &
ar  P@d)

(fi(Ga(si 1) - P(1)) — Ga(s: 1) i (P (1))

with initial condition Gk (s;0) = s¢.
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Proof. From the discrete-time backward recursion in Theorem 5, we can write the difference
equation
Aék(s; n):= Gk(s; n) — Gk(s; n—1)

1 ~ -
= ——(Fr(Gy(s;n = 1) - P(n — 1)) = Gi(s; n — 1) Pr(n)).
Py (n)

Substituting (1) for Fy yields

- 1 -
AGy(sin) = s (Gilsin = DPin =)
+ & (fi(Gu(ssn—1) - P(n — 1)) — Gi(s;n — D) Pe(n — 1))8t

+0(81) — Gi(sin — D Pe(n),
or, rearranging,

AGi(sin) 1
8t T P(n)

(sufk(é*(s; n—1)-P(n—1)—Gr(s;n— DPe(n — 1))

- 1)
— Gi(s;n — 1)%:11) + %)

Taking §t — 0 and n — oo, we have the ODE

AGr(s:1)
ar Pd)

¢ a = dp,
(5"(’("@*(“ 1) - P(1)) — Gi(s; 1) Pr(t)) — Gi(s; 1) km).

dt

Substituting d P¢(¢)/dt from Theorem 8 yields the desired result. To solve for G, we must
couple this ODE with the ODE for P (¢) from Theorem 8.

5. Waiting time to first appearance

A key point of interest is to find the distribution of the waiting time for the first appearance of
aparticular type. Of course, this question is only relevant if it is possible for the type to appear in
the process, thus excluding some decomposable processes. We now have all the ingredients for
this distribution, and in this section simply make these results explicit. Equations are presented
in discrete time, but analogous results hold in continuous time.

Let the random variable N represent the time until the first appearance of type m in a process.
We can express the cumulative distribution function of N exactly in terms of the probability
that type m has not yet appeared by a given time. We start from one type-k progenitor,

Pri(N <n) =1— Pr(n),

where Py (n) is given by Theorem 2 or 3, and N takes on the value oo if type m never appears.
This occurs with probability vk, which is a fixed point of the equation for P (n),i.e. v = Fy(v),
in agreement with an earlier result [22].

Provided vy < 1, i.e. it is possible for type m to appear (which may fail in a decomposable
process), we can also find the distribution of the waiting time conditioned on type m eventually
appearing, i.e. N being finite:

Pry(N < 1—P
Pro(N <n | N < o0y = —kV=m) k().
Prp (N < o0) 1 — vy
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If we start from multiple individuals, the overall waiting time for type m to appear is
the minimum of the waiting time in each individual subprocess. If the initial distribution
of individuals has PGF G (s), then (4) implies that

Pri(N <n) =1—G(P(n)).

In particular, we might consider a process that began with one type k and has not yet produced
any type m by time n, and compute the probability that type m still has not arisen after a further
v time steps. In this case, the distribution of X (n) is given by G (s; n), and

Pry(N >n+v | N >n)= Gk(P(v); n).
Alternatively, we can write

Pry(N >n+v)  P(n+v)
Pre(N >n)  Pu(n)

Pry(N >n+v | N >n)=

The distribution of the waiting time for a ‘successful’ type m (one whose lineage escapes
extinction), as considered previously in [23], can also be obtained through our approach. We
must expand the type space to 2m types, counting ‘successful’ and ‘unsuccessful’ individuals of
each original type separately, and derive offspring distributions of these new types conditioned
on the fate of their lineages.

6. Biological examples

In this section we briefly present two biological models, one in discrete time and one in
continuous time. These serve to provide specific examples of the sorts of questions one can
investigate with the results presented above. The numerical methods are described in detail in
Appendix B; all results were generated using MATLAB®.

6.1. Between-host evolutionary epidemiology model (discrete time)

A Galton—Watson branching process model has previously been developed to investigate the
emergence of a novel pathogen in a host population with given contact structure [3]. Type m is
typically considered to be the sole well-adapted (high fitness) strain. Individuals of interest are
infected hosts, identified by the infecting pathogen strain. Briefly, the offspring distribution for
a typical (i.e. all but the initial) host infected with pathogen strain i is

g0 =T +T; 37 &ijs)
g'(M
where g(z) is the host contact distribution (common to all types), and each contact is treated

independently, with 7; the probability that strain i transmits to a contact (‘transmissibility”) and
&;j the probability of i-to-j conversion (‘mutation’) in a transmitted infection.

Fi(s) =

k]

6.1.1. Probability distribution evolving over time. Consider a two-type model with a Poisson
distribution of infectious contacts (offspring). In Figure 1 we illustrate how the conditional
probability distribution of X1, the number of type-1 infectives, changes over time, under
various forms of conditioning (see also Appendix A.4). Observe the skewing of the distribution
depending on our knowledge of what events have occurred up to the present time: for instance,
if the higher-fitness type 2 has appeared at some point, there is a much lower probability that
the process is extinct and a higher probability that there is a large number of type-1 individuals.
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FIGURE 1: The distribution of X (n), the number of type-1 infectives at generation n, for various n, and

three cases of conditioning: no conditioning (black bars); conditioning on type 2 not having appeared

by generation n (grey bars); or conditioning on type 2 having appeared at some point by generation n

(white bars). The process is assumed to start from one type-1 individual. Both types have a Poisson

offspring distribution (with mean 0.9 for type 1 and 1.1 for type 2), and mutations occur independently

with probability 0.1 in each direction. The distribution is obtained by numerical inversion of the PGF
G1(s; n) using a fast Fourier transform (see Appendix B.2).

6.1.2. Impact of fitness valleys. A key interest motivating this work is to find the distribution
of the waiting time for the well-adapted strain m to appear. One might expect that in a case
where emergence is less likely, the appearance of type m must occur more quickly if it is ever
to appear. As an example, we compare fitness valleys on the path to strain m that vary in
severity, either in the number of intermediate types or in the fitness of the intermediate types.
We assume for simplicity that all intermediate strains have the same fitness. The qualitative
result turns out to depend on how the fitness valley is made more severe. The deeper the fitness
valley (i.e. the lower the intermediate strain fitness for a fixed number of intermediate strains),
the less likely the appearance of type m, but the faster it tends to appear if it ever appears.
The longer the fitness valley (i.e. the more intermediate strains for a fixed intermediate strain
fitness), again the less likely the appearance of type m, but now the slower it tends to appear
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FIGURE 2: The impact of a fitness valley on the distribution of the waiting time for type m to appear,
conditioned on eventual appearance. The host contact distribution is Poisson with mean 30. Mutations
occur only from strain i to strain i 4 1, with probability &¢ = 0.1 in each transmission. The top panel
illustrates the impact of the depth of the fitness valley. There are three strains, with the transmissibilities
of the first and last fixed (77 = 0.02 and 73 = 0.05). The intermediate strain has transmissibility 7>
of 0.005 (black solid line), 0.015 (black dashed line), 0.02 (grey solid line), or 0.03 (grey dashed line).
(The latter two cases are not fitness valleys in the biological sense, but are included for comparison.) The
bottom panel illustrates the impact of length of the fitness valley, for a fixed intermediate strain fitness.
Now, the number of intermediate strains varies: 3 (black solid line), 2 (black dashed line), 1 (grey solid
line), or O (grey dashed line). (The last case, with no fitness valley, is a base case for comparison.) The
transmissibilities of the strains are fixed: 771 = 0.02, T; = 0.015 fori =2,...,m — 1, and T, = 0.05.

if it does eventually appear. Here, it simply takes longer to step through all the intermediates,
although it is conceivable that this trend could be reversed for different parameter ranges. In
Figure 2 we compare these two types of fitness valleys.

6.2. Within-host multitype burst-death model (continuous time)

The burst-death model, a Markovian continuous-time process, was originally developed to
describe a single-type population of organisms whose life history includes variable generation
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times and a constant (possibly large) number of offspring produced at a ‘burst’ or proliferation
event [15]. (The standard birth—death, or binary fission, process is identified as a special case
with two offspring per burst.) Although previously applied to experimental evolution settings,
one can also use this model to describe pathogen replication within a host. The model is readily
generalized to include multiple types, with type-specific life history parameters, including an
arbitrary distribution of the burst size, and an arbitrary mutation scheme among types; see [2]
for details.

For the purposes of the example to follow, we consider a particular version of this general
model. For each type i, denote the constant rate at which bursts occur by A; and the constant rate
at which deaths occur by w;. Thus, a type-i individual has an exponentially distributed lifetime
with total rate §&; = A; +u;. With probability u; /(A; + u;), the individual dies before generating
a burst, and thus produces zero offspring. With probability A; /(A; + i), a burst occurs first,
and the individual produces a constant number B; (the burst size) of offspring. Furthermore,
suppose that mutation from type i to j occurs with probability ¢;;, and any mutation event
affects all offspring. This model of mutation would apply well, for instance, to HIV: the most
error-prone step in the replication cycle is the reverse transcription of its RNA into DNA when
it first infects a cell. Progeny virions are then produced by high-fidelity transcription from the
DNA and are thus likely to carry the same mutations (J. Heffernan and C. Beauchemin, personal
communications). In this case, the offspring distribution has PGF

m
i A B;
i(s) = + gijs:'.
fi®) Ai + Wi )»i+MijZIUJ
The Malthusian fitness of a type i, i.e. the exponential growth rate of the expected population
size in a type-i process without mutation, can be defined as follows [15]:

vi=ABi — 1) — .

This measure is used below for comparing processes initiated by strains with different life
histories, before any mutants have arisen.

6.2.1. Impact of life history. Previous work with the single-type burst-death model has shown
that consistent differences in eventual extinction probability arise in populations with different
life histories [4], [15]. In particular, for the same positive Malthusian fitness and burst size,
a population with higher burst and death rates is more likely eventually to go extinct than
one with lower burst and death rates. This finding motivates an interest in exploring life
history differences in a multitype model, and attempting to better understand the probability of
extinction based on the probability of evolution of new types.

Here, we begin investigating the effect of life history on the time course of extinction and
evolution in a two-type model. Burst size is identical for both types, and mutations occur from
type 1 to 2 only. Type 2 has high fitness due to a high burst rate and low death rate. We compare
results for a fast-turnover type 1 (increased death rate relative to type 2) and a slow-turnover
type 1 (reduced burst rate) with the same Malthusian fitness. This comparison is made at
two fitness values for type 1, either greater than O (i.e. the type-1 population, in expectation,
grows exponentially in the absence of mutation) or less than O (i.e. the type-1 population, in
expectation, declines exponentially, and is guaranteed to go extinct in the absence of mutation).

One can gain insights into the time course of the process by plotting key probabilities
changing over time (Figure 3). In general, the slower turnover strains are, not surprisingly,
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FIGURE 3: A comparison of key probabilities over time for different life histories in the two-type burst-

death model. Burst size is B = 11 in all cases. Type 2 has fixed life history parameters: A, = 1 and

w2 = 0.8 (thus, y» = 9.2). We consider two values of type-1 fitness, negative (dashed lines; y; = —0.5)

and positive (solid lines; y1 = 0.5); and two versions of type 1 with different life history parameters: fast-

turnover (black lines; A1 = 1, 1 = 10.5 for low fitness or ;1 = 9.5 for high fitness) and slow-turnover

(grey lines; u1 = 0.8, X1 = 0.03 for low fitness or A; = 0.13 for high fitness). Mutations (affecting all
progeny) from type 1 to 2 occur with probability & = 0.1 in all cases.

associated with a longer time course to extinction (top-left panel of Figure 3). However, the
strain that ultimately approaches a higher extinction probability depends on the Malthusian
fitness of type 1. If fitness is positive, the faster turnover strain is more likely eventually to
go extinct, as in the single-type case. However, if fitness is negative, the pattern is reversed.
It appears that when type 1 is not fit enough to survive without mutation, a faster turnover
strain gains an advantage through increased production of type 2 that outweighs its greater
propensity to die out. Indeed, if one ‘controls’ for this advantage by conditioning on type 2
not yet having arisen in the process (top-right panel), the slower turnover strain shows a lower
extinction probability over time, regardless of the fitness value. The bottom panels show the
distribution of time until type 2 appears, either unconditioned (left) or conditioned on eventual
appearance (right). The probability that type 2 has not yet appeared initially drops off more
quickly for faster turnover strains, but also levels out sooner due to the faster time course to
extinction.
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7. Discussion

The key focus of this paper has been to present the mathematical theory behind two closely
related concepts in a multitype branching process: the distribution of population sizes
conditioned on the nonappearance of a particular type, and the distribution of the waiting time for
aparticular type to appear. Although the latter question has been considered previously by Serra
etal. [22], [23], [24], we took a different approach that provided an alternative conceptual frame-
work. (It can be shown that the results of the two approaches, where comparable, agree; see [2].)
The approach of [23] tracked the number of a particular ‘mutant’ type in the process, whereas
we treated the appearance of the type of interest in a binary fashion. Furthermore, we linked the
probability of nonappearance to the conditional distribution of type-specific population sizes.

To the author’s knowledge, the results of this work for the conditional PGFs for the population
sizes are entirely novel. We have given both forward and backward derivations of these results,
providing two conceptual approaches and a check on the results. One observes complementary
patterns in the coupling versus decoupling of type-specific equations, and in the dependence of
the conditional population size PGF on the probability of nonappearance or vice versa. Besides
its mathematical interest, this dual approach may have practical implications, as each set of
resulting formulae might yield more efficient computations in different circumstances.

Animportant point is that the equations presented here are exact. Although they can generally
be solved only numerically, it is possible to obtain high accuracy under quite general conditions
and for arbitrary parameter values. On the other hand, analytical approximations (such as those
made in [22] and [24]), while providing some important insights into behaviour, may be valid
only with certain model restrictions, and may show significant deviation from exact results for
parameter values not sufficiently close to the limit (see, e.g. [24]).

A key direction for further work could be to apply these theoretical results to questions
of interest in evolutionary biology and other fields. A few such questions were suggested
in Section 6. One might also investigate the emergence of drug resistant or immune escape
mutants, for instance, the waiting time until the appearance of a mutant, and the extent of disease
spread dependent on its appearance or absence. In Section 6 we also illustrated some practical
numerical approaches for applying the results. In particular, the technique of inverting PGF
solutions to recover probability distributions is not widely used in biological modelling (see,
however, [9], [10], [17], and [18]), but can be very useful in applications that consider the time
course of a branching process and not only its long-term behaviour.

The present results are also promising for further theoretical development in connection with
statistical inference methods, elucidating how to link particular branching process models with
data [13]. For instance, estimates of model parameters or the time since a process began may
be skewed by conditioning on particular events known to have occurred. One might also wish
to infer the occurrence or timing of events: are there ‘red flags’ in observations of population
numbers that suggest particular events have occurred? (See [5] and [11] for discussions of such
warning signs.)

The theoretical results derived here thus represent a starting point for potentially widespread
applications.

Appendix A. Generalizing the condition

In the main text, all results were derived for a particular condition, the absence of type m. To
what extent can this condition be generalized? We present results only in discrete time; similar
methods as used in Section 4 could be applied to extend the results to continuous time.
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We initially suppose that the condition could be any restriction on the prevalence of type(s)
and use the following notation: C(v1, v2) denotes the event that condition C holds in the process
in all time steps from v; to v, (inclusive), C,, indicates the condition holding precisely at time
v, and N¢ denotes the subset of the state space Ni on which condition C holds. We require that
Cy occurs with probability 1, i.e. the condition is guaranteed to hold initially, and that C (1, n)
occurs with positive probability, i.e. it is possible that the condition holds at every subsequent
time step in the interval under consideration. Under these requirements, and supposing that the
process starts with one type k, the probability that C (1, n) holds is denoted by Pk(c) (n) and the

PGF for X (n) conditioned on C (1, n) is denoted by G,((C) (s; n).
A.l. Forward derivations
We derive a forward recursion for the conditional PGF G,({C) (s; n) much as in Theorem 1:
C:',((C) (s;n)
= > Pu(X(m) =x| C(1,n) H ;

xeNy

B Z Pre(X(n) =xNC, | C(1,n— 1)) 1_[ N
- Pri(Cy | C(1,n— 1)) i
xENg’
_ Yeene PueX () = x | C(1,n = T, s
Y ene Pre(X () =x | C(1,n — 1))
ZyeNC Pre(X(n—D)=y | C(L,n—1)) 3 oy, Pr(X ())=x | X (n—1)=y) s
2 yeng Pre(X (n—=D=y [C(1.n=1)) 3 eny . Pr(X (n)=x | X (n—1)=y)

The summation over x is the PGF for X (n) given X (n — 1), with no conditioning at time 7,
evaluated at some point(s) according to Nc. The summation over y puts both the numerator and
denominator in terms of the PGF G,(CC) (s; n — 1), achieving a recursive formula. At this point,
the way in which we simplify the above expression depends on the condition C. However, C
can theoretically be any condition on the prevalence of type(s), since we have separated out the
conditioning on the final time step. In the absence of conditioning at time #, all individuals at
time n — 1 place offspring at time n independently; we simply count only those outcomes that
fall within N¢. The preliminary result in (2) (without any conditioning applied to the offspring
distribution) is useful here. Some examples are as follows.

e C is the absence of all types except type 1 (N¢ = No x {0}”~1). Then the summation
over x € N¢ is the PGF for X (n) given X (n — 1), evaluated at (s1, 0, ..., 0). Thus,

Yyene Pre(X(n = 1) =y | C(1,n — D) [T (Fi(51.0, ..., 0)
dyene PreX(n = 1) =y | C(1,n — D) [T (F:(1,0,...,0)%
G\ (Fiu(s1)in — 1)

GO (Fru()in— 1)

G,((C)(s; n) =

where 51, denotes (s, 0, ..., 0) and Fj, denotes (Fi,0, ..., 0).
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e C is nonextinction (N¢ = Nj' — {0}"). Then the summation over x € Nc is best
rewritten as the sum over all x minus the point at x = 0, yielding

G,((C)(s; n)
Yyene Prie(X(n = 1) =y | C(1,n = D)L, (Fi () = [T/, (Fi (0))*)
B Yyene Pre(X(n = 1) =y | €A, n— D)1 = [T/, (F;(0)*)
GO FEin—1) =GO (FO):in—1)
B 1= GOF©O):n—1) '

e C is the condition that no more than a fixed number a of type-m individuals are present
N¢ = Ngfl x {0, 1, ..., a}). This condition does not give such a tidy simplification of
the recursive formula, but the formula could, in principle, still be used.

We can extend the forward derivation from Theorem 2 of P(©)(n) := Pr(C(1, n)), the
probability that condition C holds at all time steps up to 7, to arbitrary C, provided we can
write an expression for Pr(C,, | C(1,n — 1)). (Note that a condition on the overall process at
time n does not necessarily translate into an independent condition on each subprocess from
time n — 1 to n.) In general,

POm) = P{O(n — DPry(C, | C(1,n —1)).
Some examples are as follows.
e For C = {nonextinction}, rewrite Pry(C,, | C(1,n — 1)) as
1 =P (X(m) =0 X(n—1)#0)=1—- G (FO);n—1).
e For C = {nonextinction N no type m}, rewrite Pry (C,, | C(1,n — 1)) as
Pre(Xn(n) =0 | C(1,n — 1)) = Prp(X(n) =0 | C(1,n — 1))
=GO (F()in— 1) = GO (Fu0);n — 1),

i.e. the probability that none of the individuals present at time n — 1 give rise to type m,
minus the probability that they all have zero offspring. We could also have taken a
shortcut using the probability Py (r) of having no type m by time n and the PGF G (s, n)
conditioned only on the absence of type m, to write

PO () = P(n)(1 — G (0; n)),

i.e. the probability that type m has not arisen reduced by those cases in which the process
has gone extinct.

e For C = {no more than a type-m individuals}, the expression for Pry(C,, | C(1,n — 1))
is not simple to write out for arbitrary a, since there is dependence among subprocesses
in deciding whether C is satisfied.

A.2. Backward derivations
A backward derivation does not work out for a completely arbitrary condition C. To derive

the PGF at time n given the numbers at time 1, we proceed similarly to Section 2.2.1 to obtain
the expression

X (n)
IE|:H s
i

X(1); C(1,n)

’

S SEO G s SN0 )
=E[s;" 777 1 s ]
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where Y l(” ) denotes the number of type-/ individuals at time # in the lineage of the jth type-i
individual present attime 1. However, depending on C, the Y@ may or may not be independent.
For instance, given that the overall process is not extinct at time 7, the event that individual A
has no descendants is not independent of the event that individual B has no descendants at
time n. Similarly, the derivation of the probability that C holds up to time n (cf. Theorem 3)
does not hold for arbitrary C. However, if C is such that the YD gre independent then the
backward derivations proceed much as in the main text. This would be the case for the absence
of any subset of types, since these types are absent in the main process if and only if every
subprocess fails, independently, to produce these types. The results in the main text for G (s; n)
and P(n) then carry over with simple redefinitions of s, and F to replace the ith component
with 0 if and only if type i is in the subset of interest. This extension is, of course, also subject
to extending the restrictions on the process correspondingly: the initial type must not be in the
subset of interest and no type outside the subset may produce offspring of types in the subset
with probability 1.

A.3. The case of nonextinction

Conditioning on nonextinction is a special case with a simpler alternative derivation. This is
because the presence of individual(s) at a particular time implies that individual(s) have been
present at all previous times, so C(1,n) =(),_; C, = C,. This allows us to express the
distribution conditioned on nonextinction quite easily in terms of the distribution without this
condition.

If we want to condition on C’, both the absence of type m and nonextinction, then we can
shift the condition on nonextinction to rewrite the conditional probabilities:

G,((C/)(s;n)
=Y Pr(X(m) =x | X(n) #0: X, () =0, v <) [ [ 5"

_ 3 P =0 X0 £0 | Xy =0 v <)
- Pro(X(n) £0 | Xu() =0, v <n) i

X i

P (X)) =x | Xy () =0, v <m)[]; 5] =Pre(X(m) =0 | X,u(v) =0, v <n)
B 1—Pr(X(n) =0 | X,u(v) =0, v <n)

_ Gi(sin) = Gi(0; n)
1 =GyO;n)

Here Gy (s; n) is the PGF conditioned only on the absence of type m, which was derived in the
main text. If we want to condition on nonextinction alone (C), we simply drop the conditioning
on the absence of type m in the above derivation; then

GO (s:n) = Gi(s;n) — Gi(0; n)
o 1= Gr(0;n)

where G (s; n) is the unconditioned PGF for X (n).

A 4. Conditioning on the presence of a type

It is complicated (forward approach) or impossible (backward approach) to directly derive
a PGF conditioned on the presence of a particular type at all times up to the present, due to
the nonindependence of the condition among subprocesses. However, we can obtain the PGFs
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G (s; n) for X (n) without any conditioning, and G(s; n) for X (n) conditioned on the absence
of type m thus far. From these PGFs, we can indirectly obtain the PGF for X (n) conditioned
on the presence of type m at some time by n, say G(s; n). We do so by partitioning the set
of all realizations into those in which type m appears by n and those in which it does not, and
decomposing the expected value in the unconditioned case in terms of the contribution from
each part:

Gi(s;n) :=Ey I:l_[ siX"("):|

= Pri(X,,(v) =0forallv < n)E; [l_[ SiX[(n)
i

Xn(v) =0forallv < n]

~+ Pr (X, (v) > 0 for some v < n)Ey [n siX" ()

1

X;n(v) > 0 for some v < n}

= Pe(m)Gi(s; n) + (1 — Pe(n))Gi(s; n).

Rearranging,
Gi(s;n) — Pe(n)Gr(s; n)
1 — Pe(n)

provided Py(n) # 1. (If Pr(n) = 1, type m is guaranteed not to appear by time n, and the
PGF conditioned on its presence is not defined.) This formula is useful for comparing the
distribution of population sizes if a particular type either has or has not arisen by a given time,
as in Section 6.1.1.

Gi(s;n) =

Appendix B. Numerical methods

All numerical results were generated using MATLAB. In the discrete case, either the
forward or backward recursions or the expressions for their solutions are easily iterated
numerically from a given starting point. In the continuous case, the backward ordinary
differential equations are also readily solved using the built-in MATLAB solver ode45, with
tolerance reduced when necessary to obtain reasonably smooth solutions. A numerical solver
was coded for the forward continuous-time equations; see Section B.1 below for details. We
use this solver to demonstrate agreement between the forward and backward solutions, but all
results in the main text use the backward method.

Derivations throughout this paper have dealt with the PGF G for the number of individuals X .
However, in practice, the probability distribution of X (i.e. the coefficients in the power series
representation of G) may be more readily interpreted or useful for applications. We therefore
also consider the problem of numerical inversion of a PGF. This step is not widely used in
connection with branching process problems, and we thus describe the approach in Section B.2.

B.1. Solutions of the continuous-time equations

On a theoretical basis, we expect corresponding solutions of both the forward and backward
equations to agree. This agreement was confirmed by an explicit solution to both recursions
in the discrete-time case, but in the continuous-time case, the differential equations are not
generally analytically solvable. Thus, we must use numerical solution methods to check for
agreement in specific test cases. For the backward PGF equation (Theorem 9), we implemented
the built-in MATLAB ODE solver ode45. The form of the forward equation (Theorem 6), as
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a functional PDE, limits the use of standard built-in PDE solvers, so we wrote a code using a
‘leapfrog’ scheme [25]. For simplicity, we restrict the comparison to the m = 2 case, meaning
that one need only solve for G 1(s4; 1) = G 1(s1, t) as a function of two scalar variables, s; and ¢
(where s, = (s1,0)). The numerical solver for the forward equation approximates Gi(s1,1)
at (s1, t) grid points respectively spaced As and Ar apart. The derivatives with respect to
both ¢ and s; are replaced by central differences (approximations of second-order accuracy),
except at boundary points: 51 (s1, At) is obtained from the initial conditions G] (s1,0) = 51
with a first-order forward approximation for 3G /0t, and G1(0, 1) is obtained with a first-
order forward approximation for 3G /ds;. Furthermore, the numerical boundary condition
G1(1,1) = 1 (which we know to be true for a PGF) is used, and the derivative at the s; = 1
boundary is approximated using a first-order backward difference. This scheme appears to
yield numerically stable solutions, in which numerical error, although accumulating as time
progresses, is reduced by decreasing the step size (As and At) [25]. We expect that a more
sophisticated numerical PDE solver could further improve performance if one wished to use the
forward equation alone in solving G (s; 1) for applications. However, for the present purpose,
the simple leapfrog scheme is sufficient to show agreement between the forward and backward
solutions in test cases.

All tests were run using the burst-death model with constant burst size (B) and all-or-none

mutations (see Section 6.2). In Figures 4 and 5 we illustrate two examples, both for B = 11,
one with burst rate (A) larger than the death rate (u) and the other vice versa. Observe that the

61 1.2 1
5-
1.1
4_
3 4 1.0 1
< 21 < 0.9
w w
S S
HGR HGR i
S S 0.8
-11 0.7
2
0.6
-3 1
4 . . . . . 0.5 . . . . |
0 2 4 6 8 10 0 2 4 6 8 10
t t

FIGURE 4: Comparison of forward and backward solutions over time ¢ for the conditioned PGF Gl (s1,1),
evaluated at s; = 0.5, in the two-type burst-death model. Type 1 has burst rate 11 = 0.5, death rate
n1 = 1, and constant burst size B1 = 11; and all-or-none mutations occur with probability & = 0.1 from
type 1 to 2. The dashed black line indicates the numerical solution to the backward equation obtained
with ode45, while the solid grey lines indicate numerical solutions to the forward equation obtained
with the leapfrog scheme, darker grey corresponding to a smaller step size (As = 0.01 and At = 0.005;
As = 0.005 and Ar = 0.0025; As = 0.001 and Ar = 0.0005). On the left, all step sizes are included
to illustrate improving accuracy as the grid becomes finer; on the right, only the smallest step size is
included, to more clearly illustrate the close agreement to the backward solution.
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FIGURE 5: Comparison of forward and backward solutions over time ¢ for the conditioned PGF Gi(s1, 1),
evaluated at 57 = 0.5, in the two-type burst-death model. Parameters are .1 = 0.5, u; = 0.1, B = 11,
and ¢ = 0.1. Again, the dashed black line indicates the backward solution and the solid grey lines indicate

forward solutions with the same step sizes as in the previous figure. Note that the smallest step size forward
solution is almost indistinguishable from the backward solution.

magnitude of deviations from the backward solution increases as time goes on, but is reduced
by using a finer grid. Solutions were generally more accurate for smaller values of A and p
(not shown). Increasing B to 101 produced somewhat larger errors. Results are plotted at a
fixed intermediate value of s; = 0.5, but broadly similar patterns (i.e. general agreement with
some numerical errors accumulating over time; reduced step size yielding improved accuracy)
appear at other values of s;. For B = 11, errors are smaller with larger s1, but this is not the
case for B = 101.

B.2. Probability distributions via numerical inversion

When we are interested in the time course of a process, we may want to know the probability
of having a given number of individuals at some finite time. Given an explicit probability
generating function, one can hypothetically obtain these probabilities by differentiation;
however, these expressions can quickly become messy. Furthermore, for many applications,
we have only an equation that the PGF satisfies, not an analytical expression. That is, we can
find only a numerical value of G(s; t) at any given point (s; ¢). Extracting the coefficients of
the PGF, i.e. the probability distribution of X (¢), is a problem generally known as numerical
inversion of transforms. It has been considered previously in the literature, as described in [1],
which presents several methods as well as an error analysis. The idea is also described in the
context of branching processes in [10]. However, as this method does not appear to be widely
used, we describe the basic principle below.

For simplicity, we drop the time argument, but keep in mind that the random variable of
interest can be time dependent. We restrict the exposition to a single-type PGF, which is
applicable not only in a single-type process, but also to find the marginal distribution for the
number of individuals of any given type in a multitype process.
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Comparing the definition of a PGF for the distribution of a nonnegative, discrete random
variable X,
G(s) = E[s*]

with the definition of a characteristic function (CF) [12]
¢(6) == E[eX],

we see that ¢ (0) = G (e'?). That is, the CF of the distribution of X is simply its PGF evaluated
at s = e, Furthermore, we can express the CF as

o0

$O) =) cpe,

n=0

which is the form of a Fourier series [21], where the coefficient ¢, is equal to Pr(X = n).
To extract the desired probability distribution, one can take the Fourier transform of ¢ (9).
Extensive work on Fourier transforms has already yielded effective numerical methods for
doing so, even when the function ¢ is only known numerically. We make use of the fast Fourier
transform (FFT), as described in [21], and implemented with the built-in MATLAB command
fft (see the online MATLAB documentation at http://www.mathworks.com/access/helpdesk/
help/techdoc/).
The basic procedure to apply the FFT method of numerical inversion is as follows.

1. Define the number of points to be used for the FFT, N = 2" for some integer r (r = 12
in numerical results presented here). A larger number of points improves accuracy but
also increases the computations required [21].

2. Define 6 as a vector of N points spaced 277/N apart.
3. Define the CF ¢ (0) at each 0 point.

4. Take the Fourier transform of ¢ using the command, ‘Pr = fft(phi)/N’, which returns the
vector ‘Pr’ containing the desired coefficients, co through cy_;. (Note that numerical
error may result in small residual imaginary parts in the coefficients; we ignored these
imaginary parts, on the order of 10™!6 or smaller in the tests, for plotting.)

To start, we tested this method on a few simple probability distributions known exactly.
Thus, one can write the CF explicitly for use in step 3 above. Trials with uniform, binomial, and
Poisson distributions show excellent agreement with the exact values of the desired probabilities
(Figure 6). A slightly more complicated, but still analytically solvable, case is the single-type
binary fission process (see Section 6.2; exact PGF for X (¢) given in [15]). In Figure 7 we show
trials at particular times #, with a comparison to the first two coefficients, co = Pr(X (r) = 0)
and ¢; = Pr(X () = 1), computed from their exact expressions as derivatives of the PGF.
Again, the FFT method matches the exact values very closely.

Finally, we consider numerical inversion when the PGF/CF is not known analytically, and
can only be solved numerically. This makes step 3 of the FFT procedure more involved.
In a discrete-time branching process, the PGF is found by numerically iterating a recursion,
while in a continuous-time branching process, the PGF is found by the numerical solution of a
differential equation. Using the backward equation, we obtain the CF by solving the ODE from
the initial conditions of ¢!, repeated for each value of ¢ defined in step 2. Using the forward
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FIGURE 6: The results of the FFT method (black bars) in recovering a probability distribution from an

explicit characteristic function, along with the exact probability distribution (white bars), for the following

distributions: uniformon {0, 1, ..., 9}; binomial with 10 trials and 0.4 probability of success; and Poisson
with mean 10.

equation (not done here), one would first transform variables to write the PDE in terms of 6
instead of s, then solve over all 8 simultaneously. Though significantly more computationally
intensive than the cases where we know the PGF/CF analytically, the solution process is still
feasible. An example is given in Figure 1.

We repeated these tests using our code that implements a different method of inversion,
given by Equation 5.38 of [1]. The results were visually indistinguishable from those using the
FFT method.

Details of error analysis and computational efficiency for numerical inversions of transforms
are discussed in [1], and should be taken into account for future use of this method. As also
pointed out in [10], the FFT method is most effective when most probability mass is at small
numbers, and breaks down as the chance of having a large population grows, i.e. as time
progresses in a supercritical process. The FFT method can be extended to joint distributions, to
consider the number of each type of individual in a multitype process (see [17] for an example).
The built-in MATLAB command fftn (n-dimensional Fourier transform) should be useful
here.
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FIGURE 7: The results of the FFT method in recovering the probability distribution of X (¢), the number

of individuals in a single-type binary fission process at time 7. Parameters are birth rate A = 1 and death

rate u = 1.05. Left: t = 1; right: t = 5. The white bars show the exact values of the first two coefficients
evaluated from their analytical expressions.
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