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Width and length scaling of glaciers
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ABSTRACT. An analysis of hundreds of mountain and valley glaciers in the former
Soviet Union and the Alps shows that characteristic glacier widths scale as characteristic
glacier lengths raised to an exponent of 06. This is in contrast to most previous analyses
which implicitly or explicitly assumed scaling exponents of either 0 or 1. The exponent 0.6
implies that average glacier widths are proportional to average glacier thicknesses.
Although this seems to suggest V-shaped glacier valleys, the linear width—thickness
relationship is not inconsistent with parabolic valley cross-sections, because the character-
istic (oraverage) width of a glacier depends on many other aspects of channel and glacier
morphology, including variations in the channel width with distance up- and down-

stream.

1. INTRODUCTION

Valley glaciers have some finite surface arca and, therefore,
must also have some finite length and width. What is less ap-
parent is the relationship between width and length as glaciers
get longer. If a glacier is long and sinuous, such as Columbia
Glacier, Alaska, does the average width increase with the total
length of the glacier or does the width stay relatively constant?
For ice caps and ice sheets, assuming a constant width would
be inappropriate. As roughly circular objects which are not
constrained by bedrock topography, the width and the length
are expected to scale identically. Certainly, the ice dynamics
do not favor one direction over another. so there is no dynami-
cal reason to expect that the length and width of an ice cap or
avalley glacier will scale differently. However, valley glaciers
are constrained by long valley walls which were typically
formed as part of some pre-existing river-drainage basin. Var-
iations in the valley geometry make a measurement of a char-
acteristic width (e.g. the mean glacier width) subjective and
difficult. The question, then, is what appropriate characteris-
tic value should be selected for glacier widths and how should
this value be measured.

Many different analyses, ranging [rom response-time es-

timates to volume-arca scaling rely on some type of

assumption regarding the characteristic width of glaciers
(e.g. Nye, 1965 Paterson, 1972 Johannesson and others,
1989, p.349; Bahr and others, 1997). These assumptions span
from widths controlled by parabolic channel cross-sections
to widths scaling identically to length. Many studies assume
that the valley-glacier width does not change with the
length and is constant to a reasonable approximation (e.g.
Paterson, 1994, p.320), The typical justification is that, for
very steep valley sidewalls, the ice is constrained to grow
thicker and longer but not wider. As an irrelevant scaling
constant, the width is then removed from the analysis. I,
as is often the case, the analysis is intended to apply to more
than one glacier, then removing the characteristic widih
from a scaling analysis is equivalent to saying that all
glaciers have the same characteristic width. This was cer-
tainly not the intended result.
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16 prevent misapplications of the characteristic glacier
width, to elucidate the relationship between glacier shapes
and valley shapes, and to refine future estimates of response
time and volume—area scaling, it is worthwhile to revisit
carefully the assumptions regarding length and width scal-
ing. In this paper, we examine some of the available valley-
glacier data from Europe and Asia and estimate an appro-
priate scaling relationship. The data suggest that width
scales, as length raised to an exponent of 0.6, give a value
which is intermediate between the commonly assumed
constant widths of valley glaciers and the linear length-
width relationship of ice caps and ice sheets.

2, OBSERVATIONS

The World Data Center A for Glaciology and the National
Snow and Ice Data Center (NSIDC) have made available
digital inventories of 24 476 Eurasian glaciers and ice caps
(covering all of the former Soviet Union and the Huang
He region of China), and 5422 glaciers from the European
Alps. The data for cach glacier contain roughly 36 different
geometric attributes, ranging from total surface area, mean
width and volume to ablation area, snow-line elevation and
accuracy estimates of the measurements. The glaciers are
classified according to type (e.g ice cap, valley glacier or
glacieret) and other known characteristics of the terminus
(e.g. calving vs piedmont), longitudinal profile (e.g regular
vs hanging), and source of nourishment (e.g. snow vs aval-
anches). A deseription of the data format and definitions of
the terms have been given in Unesco/TAHS (1970) and maps
of the general glacier locations in the Eurasian inventory
arc available from NSIDC.

This analysis is restricted to the length - width behavior
of mountain and valley glaciers without calving, and with-
out hanging or discontinuous longitudinal profiles. Known
surging glaciers were eliminated from the data set. Meas-
urements of thickness and surface area, which were estim-
ated (by the individuals who collected the data) to be less
than 95% accurate, have also been removed. Data from
the Tarim region of the Eurasian inventory were evaluated
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separately because of oddities in the data discussed helow.
This leaves 303 glaciers in the Eurasian inventory and 112
glaciers in the Alps inventory.

For each glacier, five attributes were extracted from the
data and used in the following analyses: mean width, max-
imum length, total arca, ablation area and mean depth.
Mean width and maximum length were used for direct
estimates of the length-width scaling exponent. The total
area, ablation arca and mean depth measurements were
used to give alternative estimates of the width length rel-
ationship. The large number of glaciers (303) with high-
accuracy mean depth measurements in the Eurasian inven-
tory secems unreasonable and, thercfore, were not used ex-
tensively in the following derivations. (Some explanations
and implications of the depth measurements are discussed
below,) For the Alps inventory, ablation areas are not avail-
able, so the length of the ablation area was instead selected
from the data.

3. ANALYSIS

Each glacier’s mean width, maximum length, total area,
ablation area, ablation length and mean depth are assumed
to be characteristic values for that glacier. Characteristic
values are single numbers which are representative of the
overall behavior of cach glacier parameter. Typically, a
characteristic value can be measured as several different
quantities. For example, the characteristic width could be
the mean width (as assumed here), the maximum glacier
width or the width at the equilibrium line. The characteris-
tic length could be the maximum length (as assumed here)
or the average length along a flowline. In geometric scaling
analyses, such as the one presented here, the exact choice of
characteristic values is not critical, because each type of
characteristic measurement is typically related by additive
constants or constants of proportionality. More details on
the choice of characteristic quantities can be [ound in
Bridgeman (1963), Welty and others (1984) and others.

The relationships between characteristic quantities are
typically given by power laws (Schmidt and Housen, 1995).
This is in part because of the Buckingham Pi theorem,
which dictates the construction of non-dimensional quant-
ities which describe a physical problem; these quantitics
always involve powers of the appropriate variables. We can
expect, therefore, that the characteristic length [2] and
characteristic width [w)] of glaciers will be related by a
power law of the form

[w] ox [x]* (1)
for some scaling constant g. Throughout the text, we will use
square brackets to indicate characteristic quantities.

Simple geometric arguments also suggest that the length
and width of a glacier should be related by a power law.
Assume for the moment that each glacier sits in a valley with
a shape given by a parabola, cubic or some other simple
polynomial of order p. Most valley glaciers are thought to

occupy roughly parabolic channels (e.g. Harbor, 1992). Tf

the channel has a uniform cross-section, then ice will fill
the valley to some depth h. Therefore, as a low-order ap-
: 1 5 ;
proximation, w x hr where p = 2 for a parabolic channel.
For a characteristic depth, | 2], this means
i
[w] ox [A]r. (2)

Scaling analyses by Bahr and others (1997) show that the
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characteristic thickness of a glacier scales with the charac-
teristic length as

[h] &7 [J_](HH—IJ/EH-FZ] (321)
for steep surface slopes, and
[h] x [.'1"1“”+“+”/2{” +1) (3],))

for shallow surface slopes. These relationships are not der-
ived using any assumption about glacier width. The expon-
ent n comes from Glen’s flow law relating stress and strain
rates (£ = A7"), and m is a mass-balance parameter given

by the mass-balance rate (b) described as a function of dis-
tance, r, along the surface of the glacier, b(z) oc ™ (Bahr
and others, 1997). Simple observations suggest that m > 0,
because there is a change in the balance rate [rom the accu-
mulation area to the ablation area and an average value of
m 2= 2 has been suggested from observations of quadratic-
shaped balance profiles (Bahr and others, 1997).

From Equations (2) and (3),
[w] x [l_l(m +1)/p(n+2) (4)

for steep slopes, and from Equations (2) and (1),

(m+n+1)/2p(n+t1) (r))

[w)] o [2]
for shallow slopes. In other words, for characteristic length
width scaling, Equations (4) and (3) suggest a power-law
form which is equivalent to Equation (1),

3.1. Area—length data

If characteristic length and width are related by a power
law, then a regression on a log—log plot of mean glacier
width vs maximum glacier length will give the scaling
exponent ¢ (Equation (1)), However, mean width measure-
ments are very subjective and the available data show a
“shotgun” scattering of data points (Fig. 1). Instead of using
mean width, the casily and frequently measured glacier-sur-
face area, S, can be used instead. The surface area is propor-
tional to the glacier length times the width, so

18] o [a]fuw] o¢ [a]"" (6)
by Equation (1). A linear regression of log[S] vs log|[x] will
give ¢+ 1. For the Eurasian inventory, ¢ = 0.61 with a

squared correlation coefficient of R? =0.81 (Fig. 2a). For
the Alps, ¢ = 0.69 and R? = 0.89 (Fig. 2b).

3.2. Volume—area data

The plots of [ S] vs ] in Figure 2 clearly show that ¢ > 0.
However, while ¢ & 0.6 gives the best fits, ¢ = 1 (the same
as ice caps) still gives reasonable appearing fits (Fig. 3). To
help pin down an accurate value, an independent estimate
of ¢ is possible by plotting glacier volumes vs surface arca.
Using arguments from Bahr and others (1997)

[V] o< [S][h] o [S]" (7)
where
. m m—+ 1
" lg+ D(n+2)

for steep slopes, and

L) (8)

Vo= m+n-+1
7_2(q+1)(71+1)

for shallow slopes. Volume measurements are not provided

(9)

in the inventories but, using reported values of the mean
depth from the Eurasian data set, a regression of [ S][h] vs


https://doi.org/10.3189/S0022143000035164

width (km)

width (km)

1

0

Fig. 1 Length vs width for (a) Eurasian data and (b) Alps.
( Log-log versions of these plots do not help to elucidate any

R T I (A TR UL U S N N B AL B LR
[ . ]
- . .
s . ]
E .

g 3 - .j.
— L
¥ 1
E . ]
C B
3 E
F a1
e e R S LU S P e
0 5 10 15

length (km)

e ms
[ . ]
L é ]
& . i
Z-..‘ ]
[ o283 ]
j.."...: . ]
w € * b ]
Bt O [ B (1L S I (U Sy
0 5 10 15

length (km)

power-law scaling trend in the data.)

100 ¢

10

area (km?)

0.1

0.01

100

10

area (km?)

0.1

0.01

=]

T

FRrTaT |

|

p il

T

Lol L4l

s u il

4l

length (km)

Fig. 2. Log—log plot of surface area vs length for (a) Eurasia

with linear regression log[S] = 161 log[x]-0.88, R*
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1.59.
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Fig. 3. Log—log plot of surface area vs length for ( a) Eurasta
with regression [S] = ().18[.1']2. > = 0.64, and (b) Alps
with [S] = 0.28[z])*. R? = 0.88. Note that the slope of the
regresston [ine has been fixed by the exponent 2, and the coef-
Jicients of 018 and 0.28 determine the spatial position of the
line. For the Eurasian plot, the large glaciers pull the regres-
sion below the bulk of the data.

[S] gives v = 1.36 with R = 0996 (Iig. 4a). Regressions
made with different data sets show that + = 1.36 (Chen
and Ohmura, 1990; Bahr and others, 1997), so the estimate
from the Eurasian inventory appears reasonable; but, while
volume—area plots are expected to be significantly less noisy
than area length plots (see Appendix), the near-absence of
scatter in the Eurasian data seems unrealistic. The large
number of available mean-depth measurements is also sus-
pect (such measurements are difficult to make).

In the Alps inventory, all of the 112 glaciers (whose sel-
ection eriteria have been described above) purport to give
mean-depth measurements. A plotof [S][A] vs [S] for the
Alps inventory shows an unusual split (Fig. 4b); a regression
onthe smaller glaciers gives v = 1.25 and a regression on the
larger glaciers gives v = 1.40. The value v = 1.25 is consid-
cred unreasonable except for ice caps, while o = 1.40is con-
sistent with other volume—area measurements in the Alps
(Meier and Bahr, 1996). As with the Eurasian data set, the
lack of noise and the large number of available measure-
ments is unrealistic. Furthermore, the split in the data set
appears artificial and suggests that the mean depths were
calculated rather than measured.

It is possible that some or all of the mean depths reported
in the Eurasian and Alps inventories have been calculated
using previously published empirical volume—arca results
(e.g. from Chen and Ohmura (1990), Kuz'michenok (1996)
and references within) or from simple estimates assuming
constant basal shear. Regardless of the source of [ h], enough
independent studies (e.g. Macheret and others, 1988; Chen
and Ohmura, 1990; Meier and Bahr, 1996) have concluded
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Fig. 4. Log—log plot of volume vs area for (a) the Eurasia
data with regression log[V] = 1361log[S] + 370 and
R? = 0.996,and (b) the Alps data. The smaller glaciers in
the Alps data have a regression log[V] = 1.25log[S] + 2.21
(R? =099, and the larger glaciers have a regression
log[V] = 14010g[S] + 3.00( R* = 0.99).

that v =2 1.36-1.40, that these values (and those in Figure 4)
are reasonable for estimating ¢. From Equations (8) and (9),
(m—+1)

qzm—] (10)

for steep slopes, and

_ (m+n+1) 1 (11

=y -1+ )

for shallow slopes. The exponents v and n are known, so ¢
can be determined for any selected value of m.

A value for m can be estimated using ablation-arca
measurements from the Alps and Eurasian data inventories.
Bahr and others (1997) have shown that the ratio of an accu-
mulation area to the area of an entire glacier is given by

2 ) (12)

AAR — (
m+ 1

Ablation areas and total surface areas give an AAR estimate
for each glacier in the Eurasian inventory; the length of the
ablation area and the maximum length of each glacier give
an estimate of each glacier’s AAR in the Alps inventory
(assuming constant width). For the Eurasian glaciers, the
average AAR is 0.577 (with a standard deviation of 0.112),
and for the Alps the average AAR is 0.580 (with a standard
deviation of 0.110). Using Equation (12), the exponent m is
then estimated to be 1.99 for the Eurasian glaciers and 2.04
for the Alps. Note that, with a standard deviation of 20.112
the estimates for m can range from roughly 0.7 to 47. How-
ever, AARs are a noisy function of time and space and must
be observed precisely at the end of the balance year. As a
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result, the mean value of hundreds of measurements is the
most reliable approximation of the AAR (e.g. Meier and
Post, 1962; Dugdale, 1972) and the most reasonable value
with which to estimate m.

For n = 3 and for the observed values of v = 136 (kg
4) and m = 2 (from the mean AAR), Equations (10) and
(11) predict g = 06 for steep slopes and g = 1.0 for shallow
slopes. Small changes in the values of v and m also give
values of ¢ near 06 or 1.0. If m ranges over 0.7-4.7 (from
the standard deviation of the AAR), then g for steep slopes
can vary from roughly 0 to 2.1 and g for shallow slopes can
vary from roughly 0.6 to 2.0. Although the range of possible
values for the AAR, m and ¢ can be quite large, volume-
area scaling estimates of ¢ = 0.6 using the more reliable
mean value of the AAR lends at least some support to the
conclusions from the area-length data. Most valley glaciers
in Eurasia and in the Alps are expected to have relatively
steep surface slopes and the steep-slope estimate of ¢ = 06
shows a good agreement with the area-length data estim-
ates of ¢ = 0.56 (Eurasia) and g = 0.69 (Alps).

3.3. Tarim river basin

Data from 1050 valley and mountain glaciers in the Tarim
River basin (Tien Shan and Pamir Mountains) were eval-
uated separately and like other regions predict g = 0.66
from a length—area regression. A regression of [S][h] vs
[S] implies v == 1.37, also in agreement with other regions.
The accumulation-area ratios, however, are slightly larger
relative to the rest of the Eurasian inventory (AAR
7~ 0691 + 0.122) and this implies the substantially larger
m =47 (with a possible range from roughly m =2 to
m = 13). As a result, the volume—arca data suggest the un-
likely values g = 2.1 for steep slopes and g = 1.9 for shallow
slopes (g > 1 would mean widths grow faster than lengths,
which has not been observed). With the variance in the
AAR, it is also possible that m = 2, with v = 1.37, this
would predict g & 06, as observed from the length—arca
data. However, m =2 is only consistent with an AAR
2 0.580 which is a full standard deviation off of the region’s
mean AAR = 0.691. The region’s slightly larger AARs are
reasonable but very few depth measurements have been
made in the Tarim River basin (personal communication
from M. Dyurgerov). If the same technique for estimating
thicknesses was used in this region as in other regions with
smaller AARs, the results would not be consistent. In other
words, the predicted value of 7 (via the thickness estimates)
would not be compatible with the observed AARs and the
observed width-length scaling exponent ¢ = 0.66.

4. DISCUSSION

A previous study on the network geometry of six large Alas-
kan glaciers (Columbia, Knik, Russell, Harvard, Barnard
and Matanuska Glaciers) has suggested that glacier area is
related to the longest channel length with an exponent of
roughly 2.0 (Bahr and Peckham, 1996). In other words, from
Equation (2), ¢ & L0 for these six glacicrs. Although six
glaciers are a small and not necessarily representative
sample, their slopes are small (less than approximately 3°
on average), and g =1 may be appropriate, as explained
above. In general, however, there are far more small-sized
and steep-sloped valley glaciers than large-sized and shal-
low-sloped valley glaciers in any mountainous region of the


https://doi.org/10.3189/S0022143000035164

world. For mountain and valley glaciers, the length—width
exponent of g &= 06 should be more generally applicable
than the exponent g = L0,

Based on the simple geometrical motivation of Equation
(4), the characteristic width for steep-sloped glaciers should
be related to the characteristic length by an exponent
g=m+ 1/p(n+2). In other words,

m+1
=

Tanry) e

and for ¢ = 0.6, n = 3 and m = 2, this implies that p = 1.0.
In this case, the characteristic glacier width is linearly
related to the characteristic glacier thickness (LEquation (2)).

Note that, because p has been derived using characteris-
tic values, this implies [w] o< [A]. This is not the same as
w o h. In fact, w oc himplies [w] x [R], but the inference is
one-way only. Characteristic values can be derived from
relationships between variables but the far more general
relationship between variables cannot be derived from the
reduced information contained in the characteristic num-
bers (imagine, for example, trying to derive the Navier
Stokes equations from the Reynolds number). So, although
p = 1, this docs not mean that glacier valleys have the V-
shaped cross-section implied by w o h

Nonctheless, because glacier valleys have roughly para-
bolic cross-sections, a value closer to p = 2 is expected. For
q = 06, this would imply m = 5.0, and from Equation (12),
AAR = 0.699. While this AAR is not improbable, it is over
one standard deviation off of the mean AAR = 0.58 + 0.11
observed for both the Alps and Eurasian inventories. There-
fore, the exponent p is almost certainly smaller than p = 2
and probably close to the value p =1 predicted from the
mean AAR.

Itis difficult to imagine circumstances which would give
the well-known parabolic glacier channels (w o h?), yet
lead to a linear relationship between characteristic glacier
length and characteristic width. [fw ~ k7 is true for the val-
ley cross-section, then [w]x[h ]5 is also true for the valley.
The only reasonable explanation, therefore, is that the char-
acteristic glacier width and thickness are different from the
characteristic width and thickness of the glacier valley. The
three-dimensional shape of the actual glacier within the
three-dimensional valley must be responsible for the differ-
ence. Consider, for example, a channel with a parabolic
cross-section  (w = kh?) and a channel bottom which
increases elevation as a parabolic function of longitudinal
distance @ up the valley. If the channel also necks down lin-
early with distance toward the valley outlet (k o z), then a
glacier (with any power-law longitudinal surface profile)
sitting in this valley will have an average width which grows
linearly with the length of the glacier (see next paragraph).
While this is a somewhat artificial valley geometry, it dem-
onstrates that the characteristic width is not always simply
related to the parabolic channel cross-section; and, in fact,
this example shows that a parabolic cross-section can be
consistent with the linear relationship, [u!] x [h.].

Awhole class of such examples with parabolic cross-sec-
tions can bhe constructed and, with these examples, the
length—width exponents g &= 0.6 and p = 1 may give very
general information about typical glacier-valley geomet-
rics. Assume that all glacier valleys can be suitably des-
cribed as having parabolic cross-sections which neck down
(in the longitudinal direction) as some other power-law
function of longitudinal distance, 2. Assume that the elev-
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ation of the valley bottom changes as another power-law ',
and that the glacier sitting in the valley has length L with a
longitudinal surface profile described as a power-law x*
(with ¢ < b so that the ice surface lies above the channel
bed). (Such power-law assumptions are restrictive but give
reasonable low-order approximations to many realistic geo-
metries) The characteristic width is then given by

L
[qql/(ﬂyfﬂ¥ﬂmf (14)
L JU

where L'"“x* — 2 gives the ice thickness at any position
(the constant L'~ ensures that the glacier bed and the ice
surface meet at the head of the glacier = L). By consider-
ing the length scales in Equation (14), we can see immed-
iately that

C

[w] o< (1/L)LALY2L o [z]M/* (15)

where the characteristic length, [2]. is defined as the glacier
length. Similarly,

(1] —/ (L *z° — zP)dz (16)
LJy
and by considering length scales (or by direct integration),
[h] o [2]°. (17)
Combining Equations (15) and (17) gives
[w] o [R)FH7" (18)

In other words, 1/p :,l_,Jra/b (Equations (2) and (18)).
From the data p =1, so for glacier valleys, the ratio
a/b =L Under the stated power-law geometry assump-
tions, this gives a fairly general restriction on the rate at
which glacier valleys neck down and on the rate at which
the bottoms of glacier valleys change elevation. As the long-
itudinal profile of the glacier channel becomes increasingly
concave (large b), the valley must get increasingly “fatter™or
“wider” with a distance up the valley (large a). If b = 3/5,
as suggested by Equations (3) and (17) (when m = 2 and
n =3), then a = 5/6 which suggests that glacier valleys
might neck down almost linearly with distance. Of course,
the applicability of power-law geometries is debatable but
more importantly than any specifies, this example does
demonstrate that there is a large class of valley geometries
(having parabolic cross-sections) consistent with [w]oc|h].

5. CONCLUSIONS

The Eurasian and Alps inventories show that characteristic
valley-glacier widths are related to characteristic valley-
glacier lengths by [w] x [2]7 with g = 06. This exponent is
significantly different from both the linear relationship
observed for large ice caps and the constant widths some-
times hypothesized for valley glaciers. The scaling exponent
0.6 1s derived from observations of arca length scaling and
is supported by observations of volume-area scaling. The
volume area observations imply that g = 06 is consistent
with accumulation-area ratios of slightly less than two-
thirds (as frequently assumed) and comparatively steep
(rather than shallow) surface slopes.

The exponent g == 0.6 implies that characteristic glacier
width is linearly related to characteristic glacier thickness.
While this might suggest that glaciated and glacierized val-
leys should be V-shaped, the shape of the glacier can behave
differently (though not independently) from the shape of the
valley. By allowing changes in channel width with longi-
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tudinal distance and variations in the glacier surface profile,
glaciers and valleys with a fairly general class of shape can
have parabolic cross-sections but a linear relationship

[w] o [h].

ACKNOWLEDGEMENTS

I thank M. Dyurgerov for assistance in interpreting the Eur-
asian data set and M. Meier for helping with the sometimes
vexatious semantics which can arise in glacier-classification
schemes. Helpful comments from G. H. Gudmundsson and
an anonymous reviewer clarified many points. This work
was supported by U.S. National Science Foundation grant
OPP-9634289 to M. Dyurgerov.

REFERENCES

Bahr, D. B. and 8. D). Peckham. 1996. Observations and analysis of self-similar
whing topology in glacier networks. 7 Geaphys. Res., 101(BL1), 22.511—

Bahr, D.B., M. F. Meier and S.D. Peckham. 1997. The physical basis of
glacier volume—area scaling. 7 Geophys. Res., 102, 20.555-20.362.

Bridgeman, P.W. 1963. Dimensional analysis. New Haven, CT, Yale University
Press.

Chen, J. and A. Ohmura. 1990. Estimation of Alpine glacier water resources
and their change since the 1870%. International Association of Hydvological
Sciences Publication 193 (Symposium at Lausanne 1990 — Hydrology in
Mountainous Regions. I Hydrological Measurements; the Water Cyele),
127-135.

Dugdale, R. E. 1972, A statistical analysis of some measures of the state of a
glacier’s “health”. J. Glaciol., 11(61), 73-79.

Harbor, J. M. 1992. Numerical modeling of the development of U-shaped
valleys by glacial erosion. Geal. Soc. Am. Bull., 104(10), 1364 1375.

Johannesson, T., C. F. Raymond and E. D. Waddington. 1989. A simple
method [or determining the response time of glaciers, In Ocrlemans, J.,

ed. Glacier fluctuations and climatic change. Dordrecht, cte., Kluwer Acad-
emic Publishers, 343-352.

Kuzmichenok, V. A. 1996. O statisticheskoy otsenke obiemov lednikov [Stat-
istical estimation of glaciers’ volume |. Mater. Glyatsiol. Issled. 80, 200-206.

Macheret, Yu.Ya.. P A. Cherkasov and L. I. Bobrova, 1988, “Tolshchina i
ob’yem lednikov Dzhungarskogo Alatau po dannym aeroradiozondiro-
vaniya | The thickness and volume of Dzhungarskiy Alatan glaciers from
airborne radio echo-sounding data |. Mater. Glyatsiol. Issled. 62, 59-70.

Meier. M. F. and D. B. Bahr. 1996, Counting glaciers: use of scaling methods
to estimate the number and size distribution of glaciers of the world.
CRREL Spec. Rep. 96-27, 89-94.

Meier, M. F and A. S. Post. 1962. Recent variations in mass net budgets of
glaciers in western North America. International Association of Seientific
Hydrology Publication 58 (Symposium at Obergurgl 1962 - Variations of
the Regime of Existing Glaciers), 63-77.

Nye, J. F 1965, The flow of a glacier in a channel of rectangular, elliptic or
parabolic cross-section. J. Glaciol.. 5(41), 661 - 690.

Paterson. W. S. B. 1972. Laurentide ice sheet: estimated volumes during Late
Wisconsin, Rev. Geophys. Space Phys.. 10(4), 885-917.

Paterson, W. 8. B. 1994, The physies of glaciers. Thivd edition. Oxlord, ete., Elsevier.

Schmidt, R. and K. Housen. 1995. Problem solving with dimensional anal-
ysis. The Industrial Physicist, 1(1), 21-24.

Unesco/lASH. 1970. Perennial ice and snow masses: a guide for compilation and
assemblage of data for a world inventory. Paris, Unesco/IASH. ('lechnical
Papers in Hydrology 1, A2486.)

Welty. J. R., C. E. Wicks and R. E. Wilson. 1984. Fundamentals of momentum,
heat and mass transfer. Third edition. New York, ete., John Wiley and Sons.

APPENDIX

RELATIVE NOISE IN SCALING TRENDS

Power-law scaling trends are identified by regressions on
log—log plots. Suppose there is a scaling relationship
between two quantities, # and f,, given by 6, = P %
where a, and b, are scaling constants and C' is a random
variable on some range (1.e.“errors”, “noise” or “variability”
in the scaling relationship are due to C'). Then log; =
aslog 0y + by log C'. Variability or noise in the data about
the regression line used to determine the exponent a, will
be small (or in other words, the magnitude of the noise will
be small relative to the scaling trend) if and only if
belog C'| < |a,log 62| on average. Define O(f) as the num-
ber of orders of magnitude spanned by the quantity & Then,
the magnitude of noise will be small if and only if

]IJH\()(Cj < |ag|O(62), or equivalently

b,|O(C)
las|O(6,)

< 1. (A1)
The magnitude of noise for two different scaling trends can
be compared using Equation (Al). The smaller the lefthand
side of Equation (Al), the smaller the noise.

For example, consider 0) = [S] and 6y = [z]. If [w] =
i [:;r.ln'6 where ¢, is a random variable accounting for noise
in the relationship, then [S]= colx]'C Glacier lengths
span roughly one order of magnitude in the Eurasian inven-
tory, so O([z]) = 1. The random variable ¢, spans roughly
one order of magnitude (Fig. 2a), so O(e,,) = 1. Therefore,
the lefthand side of Equation (Al is 1/1.6 = 0.625.

Also consider #; = [V] and 8 = [5]. Using derivations
similar to those leading to Equation (7),

(V] Cu [8]?
where
b — —(m+1)
Y (g+1)(n+2)
and
(m+1)
(q+1)(n+2)

y=

for steep slopes. Glacier-surface arcas span roughly two
orders of magnitude in the Eurasian inventory, so, for the
observed values of g & 0.6, m ~ 2 and n = 3, the lefthand
side of Equation (Al) is (0.375)(1)/(1.375)(2) = 0.136.

Note that (.136 is significantly smaller than 0.625. There-
fore, the noise in the volume area scaling relationship is
expected to be much smaller than the noise in the area—
length scaling relationship. While this might explain some
of the apparent lack of noise in the volume—area plots (Fig.
4), the near-perfect data suggest that the glacier thicknesses
were calculated.
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