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Abstract
Recent research has questioned the value of statistical learningmethods for producing accurate predictions

in the criminal justice context. Using results from respondents on Amazon Mechanical Turk (MTurkers)

who were asked to predict recidivism, Dressel and Farid (2018) argue that nonexperts can achieve

predictive accuracy and fairness on par with algorithmic approaches that employ statistical learning

models. Analyzing the same data from the original study, this comment employs additional techniques and

compares the quality of the predicted probabilities output from statistical learning procedures versus the

MTurkers’ evaluations. Themetrics presented indicate that statistical approaches do, in fact, outperform the

nonexperts in importantways. Based on these newanalyses, it is difficult to accept the conclusion presented

in Dressel and Farid (2018) that their results “cast significant doubt on the entire effort of algorithmic

recidivism prediction.”

Keywords: binary outcomes, machine learning, policy optimization, criminal justice, classification

performance metrics

1 Introduction

With machine learning becoming more pervasive and data availability improving over time, the

value of predictive algorithms for public policy optimization has received growing attention in

recent years (Kleinberg et al. 2017; Bansak et al. 2018; Milgrom and Tadelis 2018). One policy area

that has cast a particularly large spotlight on such algorithms is criminal justice, where statistical

learning procedures are often used to predict things like a criminal defendant’s likelihood of

failing to appear at court or reoffending in the future. These predictions are then used as risk

assessments to inform decisions on a defendant’s bail, sentencing, and parole. Policymakers,

academic researchers, and the popular media alike have scrutinized the increasing deployment

of such tools (James 2015). In particular, the use of predictive algorithms in the criminal justice

systemhasbeenextensively critiquedon fairness grounds,with claims that theymayexhibit racial

biases and hence perpetuate preexisting social inequities (Angwin et al. 2016), though the nature

and extent of any such biases in these algorithms has been contested (Corbett-Davies, Goel, and

González-Bailón 2017). In addition, recent research (Dressel and Farid 2018) has also cast doubt

on something more fundamental to such algorithms, the accuracy with which they can actually

make predictions, which will be the focus here.

Using aggregated results from respondents on Amazon Mechanical Turk (MTurkers) who were

asked to predict whether or not individual criminal defendants would recidivate within two

years, Dressel and Farid (2018) argue that groups of nonexperts making collective determinations

can achieve predictive accuracy and fairness on par with algorithmic approaches that employ

statistical learning models. Specifically, according to the performance metrics and algorithmic

Author’s note: For helpful advice, the author thanks Jens Hainmueller, Justin Grimmer, Mike Tomz, Sharad Goel, and two

anonymous reviewers. Replicationmaterials are available in Bansak (2018). The author declares that he has no competing

interests.
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Figure 1. Variation in MTurkers’ individual performance. The figure displays a histogram of the proportion of

correct predictions for each individualMTurker,whennotpresentedwith race (results forMTurkerspresented

with race are similar). The vertical lines denote the mean andmedian proportion correct.

approaches they assess, the algorithmic results they report are not statistically significantly

different from the MTurkers’ performance when pooling the predictions of groups of MTurkers.

They interpret their findings as results that “cast significant doubt on the entire effort of

algorithmic recidivism prediction.” In reporting on this research, a wide variety of media outlets

echoed this conclusion into the popular realm with headlines like “Can software predict crime?

Maybe so, but no better than a human” (Chokshi 2018), “Software ‘no more accurate than

untrained humans’ at judging reoffending risk” (Devlin 2018), and “Courts use algorithms to

help determine sentencing, but random people get the same results” (Chodosh 2018). Additional

analyses presented here, however, suggest that such conclusions may be exaggerated.

Employing additional techniques and analyses of the same data used in the original study,

this comment shows that the MTurkers’ evaluations are not as comparable to statistical learning

methods as suggested by the study, but are rather outperformed by statistical methods in

important ways. In presenting these new analyses, this comment highlights important evaluative

metrics and potential strengths of statistical learning techniques for policy optimization thatwere

overlooked by the original study and its subsequent media coverage. As social scientists become

increasingly involved in the design and evaluation of policy optimization algorithms, it is vital that

they have a comprehensive perspective on how and when to use competing evaluative metrics.

2 Original Study

Dressel and Farid (2018) drawonadata set of 7214 pretrial criminal defendants in BrowardCounty,

Florida from 2013 to 2014, which included the defendants’ demographic information, criminal

history, and whether or not they recidivated within the following two years. They randomly

sampled 1000 defendants from the data set to use as profiles that they recruited two waves of

MTurkers to evaluate. For eachevaluation,MTurkerswerepresentedwith thedefendant’s age, sex,

criminal charge and degree, and past criminal record; in addition, MTurkers in the second wave

were also given the defendant’s race. MTurkers were then asked to predict whether the defendant

in question would or would not recidivate within the next two years, and they were told whether

they were correct after each evaluation. Each MTurker evaluated 50 profiles, and each of the 1000

sampleddefendantprofileswasevaluatedby20separateMTurkers ineachwave, therebyallowing

for analysis of both individual MTurkers’ performance and the pooled performance of groups of

MTurkers evaluating an individual defendant.

As shown in Figure 1, there is large variation in the accuracy of the nonexpert predictions when

looking at the proportion of correct responses across individual MTurkers, ranging from 0.38 for

theworst performingMTurkers to 0.80 for the best, with amean andmedian of 0.62 and 0.64. This

variation highlights the risks of relying on any single individual’s evaluations. Hence, the original

study’s results focus on the MTurkers’ pooled predictions; as each defendant was evaluated

by 20 MTurkers, a final prediction for each defendant was computed based on a majority-vote
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procedure. Like the original study, this comment also focuses on those pooled results. Unlike the

original study, however, the analysis presented here finds evidence that these nonexperts’ pooled

evaluations are outperformed by statistical learning approaches.

3 Probability Calibration and New Analyses

This comment identifies an important gap in the original study’s analysis of the pooled results.

That study’s results focus mainly on the accuracy of binary predictions output by the statistical

learning approaches compared to the MTurkers’ pooled evaluations. In contrast, the study does

not fully analyze the quality of the probabilistic outputs of these various methods. In practice,

statistical learning models are often employed in policy processes not simply to perform discrete

classification but rather to generate more fine-grained probabilistic outputs that can then be

considered and used by (usually human expert) decision-making authorities, and the usefulness

of such outputs to inform cost-efficient decisions often depends upon the reliability of the

underlying predicted probabilities (Brier 1950; Cohen and Goldszmidt 2004; Steyerberg et al.

2010). Accordingly, any evaluation of suchmodels or their comparison with alternative prediction

methods should consider these predicted probabilities.

Indeed, in the criminal justice case in question, statistical learning models have been used

to generate risk scores that are functions of the predicted probabilities naturally output from

those models, and policy and human decision-making processes (e.g. judge decisions) can then

be informed by these scores (Monahan and Skeem 2016). As discussed elsewhere, rigorously

balancing security and justice considerations involves determining the appropriate decision

points along the probability line (Corbett-Davies et al. 2017). In doing so, a well-designed policy

processmust consider the balance of various factors, such as the financial, fairness, and long-term

social costs of incarceration, aswell as the public safety costs of releasing defendantswith varying

levels of risk of reoffending. Taking all of these considerations into account, it is not necessarily

desirable to use a predetermined probability criterion or cut point, such as 0.5, for any decision

rule. In addition, it may also not be desirable to utilize a single fixed cut point if the decision

space is multidimensional. Such multidimensionality could be present if there exist more than

two decision options (e.g. imprisonment, supervised release, or no incapacitation at all) or if the

expected costs associated with a decision option can vary (e.g. in the case of differential risk of

releasing separate defendants whomay have the same likelihood of reoffending but whose likely

type of reoffense differs in severity and danger to public safety).

Crucial to recognize is that the task of determining efficient decision rules requires not only

that predicted probabilities are available but also that those predicted probabilities closely reflect

actual probabilities (Zadrozny and Elkan 2001; Cohen and Goldszmidt 2004). That is, groups of

individuals given a predicted probability of p should, in reality, have a probability of p . In general,

the greater the divergence between the predicted and true probabilities, the more likely it is that

decisions will not result in the intended consequences or distribution of costs. Accordingly, the

reliability of predicted probabilities should be assessed as part of the evaluation of recidivism

prediction methods, though such an assessment is not performed in Dressel and Farid (2018).

This comment presents a calibration analysis to compare the reliability of the probabilistic

outputs generated by the MTurkers’ pooled evaluations (i.e. the fraction of MTurkers who

predicted recidivism for a given defendant) and those generated by a simple and more complex

statistical learning procedure: a logistic regression and a stochastic gradient boosted treesmodel,

both of which employ the seven predictors available in the data that were used in the original

study’s analysis. The predictors include age, sex, number of juvenile misdemeanors, number of

juvenile felonies, number of prior (nonjuvenile) crimes, crime degree (misdemeanor vs. felony),

and crime charge. The supplementary materials (SM) present additional technical details on the

model fittingproceduresused in this study. The results, shown inFigures 2and3, provideevidence
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Figure 2.Probability calibration acrossmethods (MTurkers not told defendant race), using Sample approach

tomodel uncertainty. The top two panels display probability calibration plots. Each point and interval in the

upper two panels correspond to a bin of predicted probabilities. The black triangles comprise the MTurkers’

calibration points for the evaluations where MTurkers were not provided with the defendants’ race. Each

point’s position along the x -axis signifies the mean predicted probability within the bin, while its position
on the y -axis signifies the actual proportion of positives among the units contained within the bin. The gray
points represent the mean proportion of positives within each bin across 1000 evaluations of each of the

statistical learning methods, while the error bars provide 95% confidence intervals for the proportion of

positives within each bin, with uncertainty modeled using the Sample approach. The three bottom panels

display histograms of the predicted probabilities for eachmethod.

that both statistical learning procedures outperform the MTurkers’ evaluations, with the more

complex procedure appearing to produce the most reliable predicted probabilities.1

For a model or method to be perfectly calibrated, its predicted probabilities should equal

the true probabilities (Hernández-Orallo, Flach, and Ferri 2012). With empirical data, this can

be evaluated by aggregating the data into bins. The top two panels in Figures 2 and 3 display

calibrationplots,whichbin thepredictedprobabilities output fromeachmethod into ten intervals

1 Replication materials are available in Bansak (2018).
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Figure 3. Probability calibration across methods (MTurkers not told defendant race), using Bootstrap

approach to model uncertainty. The top two panels display probability calibration plots. Each point and

interval in the upper two panels correspond to a bin of predicted probabilities. The black triangles comprise

the MTurkers’ calibration points for the evaluations where MTurkers were not provided with the defendants’

race. Each point’s position along the x -axis signifies the mean predicted probability within the bin, while its
position on the y -axis signifies the actual proportion of positives among the units contained within the bin.
Thegraypoints represent themeanproportionof positiveswithin eachbin across 1000evaluationsof eachof

the statistical learning methods, while the error bars provide 95% confidence intervals for the proportion of

positives within each bin, with uncertaintymodeled using the Bootstrap approach. The three bottom panels

display histograms of the predicted probabilities for eachmethod.

of equalwidth along the x -axis. For each bin, the y -axis displays the actual proportion of positives

(i.e. empirical probability in that bin). Hence, for well-calibrated predicted probabilities, themean

predicted probability within each bin should be close to the actual proportion of positives in that

bin, tracing along the identity line. In the top two panels of Figures 2 and 3, the black triangles

correspond to the probability calibration points for the MTurkers’ pooled evaluations of the 1000

defendants,whenMTurkerswere not providedwith the defendants’ race. ThisMTurker calibration

curve is compared to probability calibration results from the two statistical learning methods.
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To model the uncertainty in the calibration results associated with the two statistical learning

methods, 1000 test-set evaluations are performed for each method. In Figures 2 and 3, the gray

points represent themeanproportion of positiveswithin each bin for the test data across the 1000

evaluations, while the error bars provide 95% confidence intervals for the proportion of positives

within each bin. The difference between the results in Figures 2 and 3 lies in the approach to

modeling the uncertainty. Specifically, there are at least two possible approaches to modeling

the uncertainty which adopt different statistical perspectives on the underlying data. The first

approach is to treat the full data set of 7214 defendants as the fixed, full population and the

sampling of 1000 test units as the random process, which mimics the actual procedure used by

the authors of the original study. To apply this approach to the statistical methods assessed here,

for eachof the 1000evaluations, 1000 test units are randomly sampled (without replacement), and

the remaining data are used as the training set. The results of this Sample approach are displayed

in Figure 2.

The alternative approach is to treat the original study’s 1000 evaluated units as the fixed test

set, and to treat the remainder of thedata as though they are a randomsample fromanunderlying

population distribution. To apply this approach, for each of the 1000 evaluations, the same 1000

units that were evaluated by the MTurkers are used as a fixed test set, and the training data are

comprised of a bootstrapped resample from the remaining data. The results of this Bootstrap

approach are displayed in Figure 3.

As the results in both Figures 2 and 3 show, the statistical methods appear to handily

outperform the MTurkers’ pooled predictions, with slightly better performance displayed by the

boosted trees models. Not only are the statistical methods’ mean calibration points consistently

closer to the identity line across the bins, but theMTurkers’ calibration points actually fall outside

of the statistical methods’ confidence intervals for most bins. For the boosted trees models, this

occurs in 5 and 6 of the bins for the Sample and Bootstrap approaches, respectively. Further,

the boosted trees models’ calibration points increase with near-perfect monotonicity (the one

exception is the first bin for the Samplemethod, where the predicted probabilities are extremely

sparse). In contrast, the nonmonotonicity of the MTurker calibration curve shows noticeably

imperfect rank ordering of the bins, though this is of course subject to finite-sample variation.

The bottom three panels of Figures 2 and 3 show the distribution of predicted probabilities

across the three methods, and they shed light on where things are likely going wrong in the

MTurkers’ pooled predictions. Specifically, there is substantial mass in the tails for the MTurkers,

indicating that MTurkers as a crowd tend toward overconfidence. In contrast, the statistical

learning methods do not display this tail behavior. This sparsity in the tails for the statistical

methods also explains their irregular confidence interval behavior in the tails, though this would

not be a concern if policy processes do not employ decision points at these extremes.

TheSMalso includes the same resultswhenMTurkerswere shown the raceof thedefendants. In

this condition, theMTurkers’ calibration appears to be evenworse, with starker nonmonotonicity.

While finite-sample noise may have contributed to this result, it still calls into question not

only whether pooled nonexpert evaluations directly yield well-calibrated probabilities but also

whether they are likely to even provide well-behaved and properly ranked scores that can then

be effectively transformed into well-calibrated probabilities via standard techniques (Platt 2000;

Zadrozny and Elkan 2001; Niculescu-Mizil and Caruana 2005a,b).

The poor calibration of the MTurkers’ pooled evaluations is also reflected in their aggregate

performance metrics. A wide variety of metrics exist for evaluating and comparing the

performance of predictive models for binary outcomes. As discussed elsewhere, there are

complicated mathematical relationships between these metrics, the metrics do not always

produce consistent conclusions as to which model is best, and the instrumental value of each

individual metric for informing model choice depends upon the context and objectives of a
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model’s ultimate deployment (Hernández-Orallo, Flach, and Ferri 2012; Hofman, Sharma, and

Watts 2017). In other words, these metrics are not arbitrarily interchangeable. Table 1 compares

the performance of the MTurkers to that of the statistical learning methods across a variety of

thesemetrics, including the commonly usedmetrics reported in Dressel and Farid (2018), namely

the percent correctly classified (PCC) using the standard cut point of 0.5 and the area under the

receiver operating characteristic (ROC) curve (AUC-ROC).

TheMTurkers’ pooled evaluationswithout (with) racepresented achieve values of 0.670 (0.665)

and 0.709 (0.709) for the PCC and AUC-ROC, respectively, which fall inside the statistical learning

methods’ 95% confidence intervals for the Sample approach but outside of the intervals for the

Bootstrap approach, providing limited though perhaps inconclusive evidence for the superior

performance of the statistical learning methods. However, metrics like the PCC and AUC-ROC

have several properties that make them problematic for model comparison. For instance, the

PCC employs a single arbitrary cut point, and the value of the computed PCC will vary depending

upon that criterion. The usefulness of the AUC-ROC as a metric for comparing the performance

of classifiers has also been called into question by previous research on various grounds (Hand

2009; Hanczar et al. 2010). A key problem is that these metrics are not based on strictly proper

scoring rules: theirmathematical properties are such that they do not fully incentivize a forecaster

to make predictions based on the true underlying data-generating process, and similar or better

scores can be achieved by forecasting false beliefs (Winkler andMurphy 1968). Metrics that are not

strictly proper are known to lead to practical problems for both prediction and estimation goals

(Gneiting and Raftery 2007).

In contrast, the Brier score is an error metric that can be used to more directly measure

the relative aggregate accuracy of predicted probabilities across different methods. The term

“Brier score” is used in the binary classification context to denote the mean squared error

(MSE), 1/n
∑n

i=1(p̂i − yi )
2, where yi is an indicator that denotes whether the outcome for unit

i is a success, and p̂i denotes the predicted probability of success for unit i . It is based on a

strictly proper scoring rule, and it can be decomposed into multiple components, where one of

the components is calibration (also called reliability), measuring the extent to which predicted

probabilities reflect realized probabilities (Murphy 1973; Blattenberger and Lad 1985). The results

shown in Table 1 comparing the Brier score for the MTurkers’ pooled evaluations against the

statistical learning methods confirm the visual results from Figures 2 and 3. That is, the statistical

learning methods dominate the MTurkers’ evaluations across the board: the Brier score for the

MTurkers is 0.240, which falls outside of and higher (signifying worse performance) than the Brier

score 95% confidence intervals for both statistical learning methods under both approaches to

modeling their uncertainty. The superior performance of the statistical learning methods is also

exhibited under an alternative strictly proper scoring rule, the logarithmic scoring rule, with the

MTurkers’ pooled evaluations achievingmean logarithmic scores that fall outside of and aremore

negative (signifying worse performance) than the statistical methods’ 95% confidence intervals.

Finally, Table 1 also reports false positive rates (FPRs) and false negative rates (FNRs), based

upon a standard cut point of 0.5. As can be seen, using 0.5 as the cut point, the statistical

learning methods have consistently lower FPRs but higher FNRs than the MTurkers’ pooled

evaluations. Two important points should be noted with respect to these results. First, because

these metrics are constructed as a function of an adjustable cut point, that cut point can be

increased (decreased) to reduce the false positive (negative) rate at the expense of the false

negative (positive) rate. For illustrative purposes, the SM displays results for each statistical

learning method when specifying a cut point that balances the FPR and FNR. As the results show,

such balance can be achieved in this case at the cost of only modestly decreasing the PCC. In

contrast, the AUC-ROC, Brier score, and log score are not computed as a function of a particular

cut point, and hence are unaffected by altering the binary classification criterion.
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Table 1. Model performance results. The table displays several performance metrics for the statistical learning methods—gradient boosted trees (GBM) and logistic regression (Logit)—

under both approaches to modeling uncertainty (Sample and Bootstrap), along with the results for the MTurkers’ pooled evaluations both without and with race presented. For the

statistical learning methods, 95% confidence intervals are displayed. A cut point of 0.5 is employed for the PCC, FPR, and FNR.

Statistical
method

Uncertainty
method

PCC AUC-ROC FPR FNR Brier Score Log Scorea

Logit Sample [0.650, 0.703] [0.694, 0.751] [0.181, 0.255] [0.403, 0.499] [0.203, 0.222] [−0.637,−0.593]
GBM Sample [0.657, 0.710] [0.705, 0.764] [0.209, 0.285] [0.356, 0.445] [0.196, 0.217] [−0.624,−0.577]
Logit Bootstrap [0.672, 0.694] [0.735, 0.742] [0.155, 0.237] [0.408, 0.508] [0.209, 0.211] [−0.612,−0.607]
GBM Bootstrap [0.672, 0.697] [0.730, 0.748] [0.218, 0.281] [0.361, 0.418] [0.203, 0.210] [−0.611,−0.595]
MTurk (w/o race) — 0.670 0.709 0.323 0.338 0.240 −0.669
MTurk (w/ race) — 0.665 0.709 0.324 0.347 0.240 −0.658

a See SM for details on the log score calculations.
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The second important point, however, is that perfect parity between FPR and FNR is not

necessarily desirable. Instead, whether it is preferable for a binary classification rule to yield an

FPR that is higher than, lower than, or equal to the FNR depends upon the classifier’s deployment

context and the relative costs between false positives and negatives. As already explained, the

classification criterion can be easily modified to achieve the specific balance between FPR and

FNRdeemedoptimalbypolicymakersor experts in chargeof the classifier’s deployment—that is, if

the classifier is even being used to produce binary classification outputs, as opposed to predicted

probabilities or risk scores.

Dressel and Farid (2018) also report performance metrics for their competing methods across

racial groups, namely Black and White defendants. The SM reports the results of the analyses

presented in this study, subsetted to Black and White defendants. Despite the reduced sample

sizes, with few exceptions, the statistical learning methods’ Brier score and log score confidence

intervals indicate superior performance over the MTurkers’ pooled evaluations for both Black

and White defendants. In addition, the statistical learning methods’ bootstrap-based confidence

intervals for the AUC-ROC also beat the MTurkers’ pooled evaluations for both Black and White

defendants.

However, there is adiscrepancy in thebalancebetween theFPRandFNRacrossBlackandWhite

defendants when employing the cut point of 0.5, for both the statistical learning methods and

MTurkers’ evaluations. Specifically, the FPRs appear roughly similar to or greater than the FNRs

for Black defendants, but for White defendants the FPRs are consistently lower than the FNRs.

Relatedly, the false positive (negative) rates are consistently higher for Black (White) defendants,

relative to White (Black) defendants. This potential for imbalance in predicting recidivism across

racial groups is an important issue that has been investigated in the existing literature, with some

highlighting this imbalance as evidence of bias (Angwin et al. 2016; Dressel and Farid 2018), and

others showing how it is an inherent mathematical byproduct of applying common classification

rules to subpopulations with distinct underlying risk distributions (Corbett-Davies et al. 2017;

Kleinberg,Mullainathan, andRaghavan 2017).2 As already described above, it is possible to induce

parity in FPR and FNR by changing the binary classification criterion. This could be performed

separately across subgroups, and results presented in the SM provide an illustration. Whether it

would be preferable, ethical, or even legal to apply distinct classification rules across different

racial groups to achieve such parity in a real-world deployment is a separate issue, however, and

one thatwouldneed tobe carefully consideredby the relevant policymakers and legal authorities.

4 Conclusions

In many applications, probabilities are the underlying inputs into a policy process, making the

ability to generate well-calibrated predicted probabilities extremely valuable. In their defense,

Dressel and Farid (2018) donot explicitly claim theMTurkers’ pooled vote proportions to represent

probabilities, they do not make any claims about the calibration of the MTurkers’ probabilistic

outputs, nor is it necessarily reasonable to expect that outputs (whether proper probabilities or

scores more generally) generated via such a crowd-based method should be well-calibrated. In

contrast, however, the results presentedhere show that this is precisely an area inwhich statistical

learningmethods can excel. These results, of course, do not guarantee that automated classifiers

will always outperform other approaches, yet the results do indicate that the potential value of

statistical learning methods in the criminal justice realm should not merely be dismissed. That is,

it is difficult to accept the conclusion presented in Dressel and Farid (2018) that their results “cast

significant doubt on the entire effort of algorithmic recidivism prediction.”

2 Corbett-Davies et al. (2017) explain that FPR and FNR for a specific group are a function of both that group’s underlying risk

distribution and the classification criterion being used. Given heterogeneous risk distributions, equalizing the FPR or FNR

across groups generally requires setting different criteria for each group.
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Dressel and Farid (2018) do raise a number of additional important issues not addressed here

on theuseofpredictivealgorithms in criminal justice. First, theydirectly assess theperformanceof

one specific criminal risk assessment tool in deployment, the Correctional Offender Management

Profiling for AlternativeSanctions (COMPAS). As the focushere is on thepossible valueof statistical

learning methods in general, rather than a specific deployment instance, the evidence presented

here does not aim to either refute or buttress the authors’ critiques of COMPAS itself. However,

the evidence and discussion presented here can be used in concert with that of the original study

to inform how specific deployments may be improved in the future. Second, the authors of the

original study also highlight howmost of the power in predicting recidivismappears to come from

two specific predictors, age and number of prior charges. Indeed, in the analyses presented here,

age and number of prior charges exhibit the greatest predictive importance, followed by crime

charge. This observation highlights a key question, ubiquitous across prediction problems, on

whether the outcome is fundamentally difficult to predict or whether data on other important

variables are not yet being collected and observed. Finally, the authors also highlight the various

other fairness-related critiques existing in the literature on the use of statistical algorithms in

criminal justice.

Supplementarymaterial

For supplementary material accompanying this paper, please visit

https://doi.org/10.1017/pan.2018.55.
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