Canad. Math. Bull. Vol. 21 (1), 1978

CRITICAL GRAPHS FOR ACYCLIC COLORINGS

BY

DAVID M. BERMAN

Introduction. The concept of acyclic colorings of graphs, introduced by Grünbaum [2], is a generalization of point-arboricity. An acyclic coloring of a graph is a proper coloring of its points such that there is no two-colored cycle. We denote by a(G), the acyclic chromatic number of a graph G, the minimum number of colors for an acyclic coloring of G. We call G k-critical if a(G) = k but a(G') < k for any proper subgraph G'. For all notation and terminology not defined here, see Harary [3].

Kronk and Mitchem [4] and Bollobás and Harary [1] showed the existence of graphs of every possible order critical for point-arboricity. In this paper we prove the analogous result for acyclic colorings:

THEOREM. For each $k \ge 3$ and $n \ge k$ there exists a k-critical graph of order n.

We note that the only 2-critical graph is K_2 .

Proof of the Theorem. We first note without proof the following simple lemma.

LEMMA. If G = A + B then in any acyclic coloring of G, either all the points of A or else all the points of B must receive distinct colors.

The theorem is proved by presenting constructions for five classes of critical graphs.

PROPOSITION 1. The theorem is true for n = 2k - l, where $5 \le l \le k$ and k and l are of the same parity.

Proof. Let $G = (\bar{K}_{k-l} \cup \bar{K}_{l-3}) + C_{k-l+3}$. G can be colored either with k-3 colors for $\bar{K}_{k-l} \cup K_{l-3}$ and three more for the cycle, or else with l-3 colors for $\bar{K}_{k-l} \cup K_{l-3}$ and k-l+3 more for the cycle. Thus a(G) = k.

To show that G is critical, let $V(\bar{K}_{k-l}) = \{p_1 \cdots p_{k-l}\}, V(K_{l-3}) = \{q_1 \cdots q_{l-3}\}$ and $V(C_{k-l+3}) = \{r_1 \cdots r_{k-l+3}\}.$

(i) Delete line q_i , q_j . Then make q_i ; q_j and all of \overline{K}_{k-l} color 1. Use k-2 more colors for the remaining k-2 points.

Received by the editors March 31, 1977 and revised May 31, 1977.

DAVID M. BERMAN

(ii) Delete line r_i , r_{i+1} . Then two-color the cycle and use k-3 more colors for $\overline{K}_{k-l} \cup K_{l-3}$.

(iii) Delete line q_i , r_j . Then color the cycle with k - l + 3 colors. Use the same color for q_i as for r_j and use l-4 more colors for the remaining points of $\overline{K}_{k-l} \cup K_{l-3}$.

(iv) Delete line p_i , r_j . Then make p_i and r_j both color 1. Alternate colors 2 and 3 for the rest of the cycle. (Note that since k-l+3 is odd the two neighbours of r_j are colored differently.) Then use k-4 more colors for the remaining k-4 points of $\overline{K}_{k-l} \cup K_{l-3}$.

The proofs of Propositions 2 through 5 are similar to that of Proposition 1, and the details are left to the reader.

PROPOSITION 2. The theorem is true for n = 2k - l where $5 \le l \le k$, and k and l are of opposite parity.

Proof. Let G be as above, but for each i delete the line p_i , r_1 .

PROPOSITION 3. The theorem is true for $n \ge 2k - 4$ where k and n are of the same parity.

Proof. Let $G = \bar{K}_{k-3} + C_{n-k+3}$.

PROPOSITION 4. The theorem is true for n > 2k - 4 where k and n are of opposite parity.

Proof. Let $G = \overline{K}_{k-3} + C_{n-k+3}$, but for each i = 1 to k-3 delete the line p_i , r_1 for $p_i \in \overline{K}_{k-3}$ and $r_1 \in C_{n-k+3}$.

PROPOSITION 5. The theorem is true for n = 2k - 4 where k and n are of opposite parity.

Proof. Let $G = \overline{K}_{k-3} + C_{n-k+3}$, but for each i = 2 to k-3 delete the line p_i, r_1 for $p_i \in \overline{K}_{k-3}$ and $r_1 \in C_{n-k+3}$.

References

1. B. Bollobás and F. Harary, Point arboricity critical graphs exist, J. London Math. Soc. (2), 12 (1975), 97-102.

2. B. Grünbaum, "Acyclic colorings of planar graphs", Israel. J. Math., 14 (1973), 390-408.

3. F. Harary, Graph Theory (Addison-Wesley, Reading, Mass., 1969).

4. H. V. Kronk and J. Mitchem, Critical point-arboritic graphs, J. London Math. Soc. (2), 9 (1975), 459-466.

DEPARTMENT OF MATHEMATICS,

UNIVERSITY OF NEW ORLEANS, New Orleans, Louisiana 70122 USA

116