CRITICAL GRAPHS FOR ACYCLIC COLORINGS

BY

DAVID M. BERMAN

Introduction. The concept of acyclic colorings of graphs, introduced by Grünbaum [2], is a generalization of point-arboricity. An acyclic coloring of a graph is a proper coloring of its points such that there is no two-colored cycle. We denote by $a(G)$, the acyclic chromatic number of a graph G, the minimum number of colors for an acyclic coloring of G. We call $G k$-critical if $a(G)=k$ but $a\left(G^{\prime}\right)<k$ for any proper subgraph G^{\prime}. For all notation and terminology not defined here, see Harary [3].

Kronk and Mitchem [4] and Bollobás and Harary [1] showed the existence of graphs of every possible order critical for point-arboricity. In this paper we prove the analogous result for acyclic colorings:

Theorem. For each $k \geq 3$ and $n \geq k$ there exists a k-critical graph of order n.
We note that the only 2 -critical graph is K_{2}.
Proof of the Theorem. We first note without proof the following simple lemma.

Lemma. If $G=A+B$ then in any acyclic coloring of G, either all the points of A or else all the points of B must receive distinct colors.

The theorem is proved by presenting constructions for five classes of critical graphs.

Proposition 1. The theorem is true for $n=2 k-l$, where $5 \leq l \leq k$ and k and l are of the same parity.

Proof. Let $G=\left(\bar{K}_{k-l} \cup K_{l-3}\right)+C_{k-l+3} . G$ can be colored either with $k-3$ colors for $\bar{K}_{k-l} \cup K_{l-3}$ and three more for the cycle, or else with $l-3$ colors for $\bar{K}_{k-l} \cup K_{l-3}$ and $k-l+3$ more for the cycle. Thus $a(G)=k$.

To show that G is critical, let $V\left(\bar{K}_{k-l}\right)=\left\{p_{1} \cdots p_{k-l}\right\}, V\left(K_{l-3}\right)=\left\{q_{1} \cdots q_{l-3}\right\}$ and $V\left(C_{k-l+3}\right)=\left\{r_{1} \cdots r_{k-l+3}\right\}$.
(i) Delete line q_{i}, q_{j}. Then make $q_{i} ; q_{j}$ and all of \bar{K}_{k-l} color 1 . Use $k-2$ more colors for the remaining $k-2$ points.
(ii) Delete line r_{i}, r_{i+1}. Then two-color the cycle and use $k-3$ more colors for $\bar{K}_{k-l} \cup K_{l-3}$.
(iii) Delete line q_{i}, r_{j}. Then color the cycle with $k-l+3$ colors. Use the same color for q_{i} as for r_{j} and use $l-4$ more colors for the remaining points of $\bar{K}_{k-l} \cup K_{l-3}$.
(iv) Delete line p_{i}, r_{j}. Then make p_{i} and r_{j} both color 1 . Alternate colors 2 and 3 for the rest of the cycle. (Note that since $k-l+3$ is odd the two neighbours of r_{j} are colored differently.) Then use $k-4$ more colors for the remaining $k-4$ points of $\bar{K}_{k-l} \cup K_{l-3}$.

The proofs of Propositions 2 through 5 are similar to that of Proposition 1, and the details are left to the reader.

Proposition 2. The theorem is true for $n=2 k-l$ where $5 \leq l \leq k$, and k and l are of opposite parity.

Proof. Let G be as above, but for each i delete the line p_{i}, r_{1}.
Proposition 3. The theorem is true for $n \geq 2 k-4$ where k and n are of the same parity.

Proof. Let $G=\bar{K}_{k-3}+C_{n-k+3}$.
Proposition 4. The theorem is true for $n>2 k-4$ where k and n are of opposite parity.

Proof. Let $G=\bar{K}_{k-3}+C_{n-k+3}$, but for each $i=1$ to $k-3$ delete the line p_{i}, r_{1} for $p_{i} \in \bar{K}_{k-3}$ and $r_{1} \in C_{n-k+3}$.

Proposition 5. The theorem is true for $n=2 k-4$ where k and n are of opposite parity.

Proof. Let $G=\bar{K}_{k-3}+C_{n-k+3}$, but for each $i=2$ to $k-3$ delete the line p_{i}, r_{1} for $p_{i} \in \bar{K}_{k-3}$ and $r_{1} \in C_{n-k+3}$.

References

1. B. Bollobás and F. Harary, Point arboricity critical graphs exist, J. London Math. Soc. (2), 12 (1975), 97-102.
2. B. Grünbaum, "Acyclic colorings of planar graphs", Israel. J. Math., 14 (1973), 390-408.
3. F. Harary, Graph Theory (Addison-Wesley, Reading, Mass., 1969).
4. H. V. Kronk and J. Mitchem, Critical point-arboritic graphs, J. London Math. Soc. (2), 9 (1975), 459-466.
