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A HIERARCHICAL PROBABILITY
MODEL OF COLON CANCER

MICHAEL KELLY,∗ University of California, San Diego

Abstract

We consider a model of fixed size N = 2l in which there are l generations of daughter
cells and a stem cell. In each generation i there are 2i−1 daughter cells. At each integral
time unit the cells split so that the stem cell splits into a stem cell and generation 1
daughter cell and the generation i daughter cells become two cells of generation i + 1.
The last generation is removed from the population. A stem cell acquires first and second
mutations at rates u1 and u2, and a daughter cell acquires first and second mutations at
rates v1 and v2. We find the distribution for the time it takes to acquire two mutations as
N goes to ∞ and the mutation rates go to 0. The mutation rates may tend to 0 at different
speeds. We also find the distribution for the locations of the mutations. In particular, we
determine whether or not the mutations occur on a stem cell and if not, at what generation
in the daughter cells they occur. Several outcomes are possible, depending on how fast
the rates go to 0. The model considered has been proposed by Komarova (2007) as a
model for colon cancer.
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1. Introduction

In the 1950s Armitage and Doll [1] proposed that cancer may be the end result of an
accumulation of two or more cell mutations. Later, Cairns [2] first raised the question of
how stem cells affect the development of cancer. We are interested in a particular model in
which stem cells play a central role. Komarova [12] discussed three mathematical models
which may be used to model the mutations that lead to cancer. The first is the Moran model,
which may be used to model cancers in liquids such as leukemia. In this model there is a fixed
population of sizeN . Each of the cells acquires mutations independently at rateµ. Each cell in
the population dies at rate 1 and is replaced by any individual in the population, including itself,
with equal probability. The second is a spatial model which may be used to model cancers in
solid tissues. This model is similar to the Moran model except that the cells are given spatial
locations and, when they die, they are only replaced by nearby cells. The third model, the
one we focus on in this paper, is referred to as the hierarchical model in [12]. The difference
between this model and the other two is that we consider the difference between stem cells and
daughter cells. This model was proposed in [12] as a model for colon cancer.

As discussed in [12], many cells in the human body, including those in the colon, go through
a three-step process. It begins with a stem cell which will stay in the population for a long time
and have many descendants. Some of these descendants will also be stem cells, but others will
be differentiated progenitor cells. The progenitor cells, or what we will refer to as daughter
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cells in this paper, will split into more daughter cells. The number of times these cells split is
dependent upon what organ of the body they are in. We will refer to the number of splits that
a daughter cell has undergone as the generation of the cell. Once the cells split enough times
they reach maturity and are swept out of the population in a biological process called apoptosis.
The colon is lined with crypts that contain pockets of cells. The cells in the colon, as described
by Komarova [14], are such that stem cells reside at the bottom of the crypt and the daughters
migrate up the crypt so that the higher-generation daughter cells are near the top.

One can find many conjectures on the number of mutations necessary to cause cancer. In
the original model proposed in [12], cancer is the result of two mutations. The reason for
two mutations is that it represents the inactivation of two alleles in a tumor suppressor gene.
Knudson claimed that retinoblastoma is the result of two mutations in [10] and [11]. For other
sources on two-mutation models of cancer, we refer the reader to [8], [15], and [17]. We also
model cancer as a result of two mutations. In the hierarchical model there are three ways in
which the mutations may occur. Stem cells may acquire both mutations so that cancer is a
result of mutations of stem cells only. It is possible that a stem cell receives the first mutation
and a daughter cell receives the second, or a daughter cell and one of its descendants will each
receive mutations before they are swept from the crypt. In [12] these cases are abbreviated as
ss, sd, and dd, respectively.

The hierarchical model will be referred to as H1. This model has a fixed population of size
N = 2l , where l is the number of generations of daughter cells in the crypt. At all times t ≥ 0
there is one stem cell and, for k ∈ {1, 2, . . . , l}, there are 2k−1 daughter cells of generation k.
We start with a full crypt and no mutations. At each integral time unit all of the cells split in
the following way.

• The stem cell splits into a stem cell and a generation 1 daughter cell.

• For each generation k with 1 ≤ k ≤ l − 1, a daughter cell of generation k will split into
two cells of generation k + 1.

• The daughter cells of generation l undergo apoptosis and are swept from the population.

Note that the generations are a constant size throughout time. The cells will accumulate
mutations via Poisson processes. A cell with 0, 1, or 2 mutations is called a type-0, type-1, or
type-2 cell, respectively. A mutation which occurs on a type-0 or type-1 cell is called a type-1
or type-2 mutation, respectively. This terminology is used so that a mutation that makes a cell
type 2 is called a type-2 mutation. Once a type-2 mutation occurs the colon is assumed to have
cancer. The cells will each have two Poisson processes marking them, one which will cause
type-1 mutations and one which will cause type-2 mutations. The first Poisson process that
marks a cell will only cause a type-1 mutation if the cell is type 0. If a mark of the Poisson
process occurs while the cell is not type 0 then nothing happens. Likewise, the second Poisson
process only causes mutations on type-1 cells. If a mark from this Poisson process occurs
on a cell while it is type 1 then the cell becomes type 2, but if the cell is not type 1 then
nothing happens. All of the Poisson processes are independent. The mutations are passed to
the descendants when a cell splits. It is sometimes convenient to think of the cells as fixed in
a binary tree and the mutations as traveling through the tree in a direction which takes them
from the root to the leaves. Because of this we will often refer to the sequence of stem cells
as the stem cell line and we fix the Poisson processes that are marking the cells on particular
locations in the tree.

We should mention that several other very similar models have been used to study how stem
cells affect the development of cancer. In [13], Komarova and Cheng considered the effects of
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the development of cancer based on the quantity of stem cells in the population. In [6], Frank
et al. considered a model in which the stem cells split only finitely many times.

For our model, the rates at which stem cells acquire type-1 and type-2 mutations are u1 and
u2, respectively. The rates at which the daughter cells acquire type-1 and type-2 mutations
are v1 and v2, respectively. All of the rates are functions of N and will approach 0 as N
approaches ∞. We will always consider what happens as N goes to ∞. All limits will be
assumed as taking N to ∞ unless otherwise stated.

A type-1 mutation to a cell is called successful if that cell or one of its descendants receives
a type-2 mutation. A type-1 mutation to a stem cell is always successful and a type-1 mutation
to a daughter cell is successful if the daughter cell has a type-2 descendent before its progeny
is eliminated from the population. We will call the successful type-1 mutation whose type-2
descendant is the first type 2 to occur the cancer causing type-1 mutation. Note that being the
cancer-causing type-1 mutation is not equivalent to being the first successful type-1 mutation.

We prove the theorem by coupling various models. This motivates us to define the following
functions.

• τ ′(A) is the time at which the cancer-causing type-1 mutation occurs in model A.

• τ(A) is the first time that any cell acquires a type-2 mutation in model A.

• σ(A) := j/ lwhen the cancer-causing type-1 mutation occurs in generation j in modelA.
If the cancer-causing type-1 mutation occurs on a stem cell in model A then σ(A) = 0.

• ρ(A) := j/ l when the first type-2 mutation occurs in generation j in model A. If the
first type-2 mutation occurs on a stem cell in model A then ρ(A) = 0.

One of the two goals of this paper is to find the asymptotic distribution of τ(H1) as N
approaches ∞. Similar work has been done for the Moran model by Schweinsberg [18]
and Durrett et al. [5], in which more general results have already been found, and for the
spatial model by Durrett and Moseley [4]. In [12], Komarova made the following connection
between the Moran model and the hierarchical model. In the Moran model a mutation may
undergo fixation, meaning that it spreads throughout the entire population through the birth–
death process and all of the cells are the same type. Because the last generation is always
removed in the hierarchical model, the only way to get fixation is if a stem cell acquires a
mutation. These are the cases ss and sd. In these cases the mutation will spread throughout the
population in l time units. In the Moran model it is also possible that the progeny of mutated
cells undergo what is called stochastic tunneling. This is when multiple mutations are acquired
before they fixate. This is analogous to daughter cells acquiring two mutations before a stem
cell aquires one mutation in the hierarchical model. This is the dd case and can also happen in
the sd case if the second mutation occurs before the first has time to fixate (in particular, the
second mutation occurs in less than l time units).

The rate at which daughter cells acquire successful type-1 mutations is given in [12] to be
approximately

l∑
i=1

v12i−1(1 − e−v2(2l−i+1−2)). (1)

To see this, suppose that all the cells are type 0. When all of the cells in generation i are
type 0, then type-1 mutations occur on this generation at rate v12i−1. Each of the cells will
have 2l−i+1 − 2 descendants. Every descendant lives for one time unit and acquires type-2
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mutations at rate v2. This gives the probability of success of a type-1 mutation in generation i
to be approximately 1 − e−v2(2l−i+1−2). Then we sum over all generations.

Our second goal is to determine the limiting distributions of σ(H1) and ρ(H1). The location
of the mutations can be essential to the treatment of cancer. As an example, studies of the
effects of the drug imatinib on chronic myeloid leukemia have shown that leukemic stem cells
will most likely not cause tumors but rather that a tumor is a result of a mutation on one of
the daughter cells; see [3] and [16]. Imatinib treats leukemic daughter cells but not leukemic
stem cells. While using imatinib problems arising from cancer are prevented, but patients
cannot stop treatment because the leukemic stem cells will continue producing new leukemic
daughter cells. Therefore, the location of where the mutations occur may play a pivotal role in
determining how to treat the cancer.

We do not find the limiting distribution of τ ′(H1) as there seems to be no motivation to do
so. We only make the definition τ ′(A) because it will occasionally be useful for achieving the
two goals described above.

We have established most of the notation above, but some more will be included here. For
any real number a, we define a+ = a ∨ 0. For functions f (x) and g(x) we will denote the
limits f (x)/g(x) → 0, f (x)/g(x) → 1, and f (x)/g(x) → ∞ as x → ∞ by f 	 g, f ∼ g,
and f � g, respectively. To reduce the number of subscripts, we will use log x for log2 x.
Note that, with this notation, l = logN . We will use ‘

d−→’ to denote convergence in distribution
and ‘

p−→’ to denote convergence in probability. We make the following assumptions throughout
most of the paper.

Assumption 1. There exist constants α, β > 0 such that v2 ∼ βN−α .

Assumption 2. The mutation rates satisfy u1 ≤ u2 and v1 ≤ cv2 for some c > 0.

We do not allow α = 0 so as to reduce the number of cases to be considered. As a result of
Assumption 1, the probability that the cancer causing type-1 mutation occurs on a daughter cell
in generation i < l(1−α)+ tends to 0. According to Komarova [13], Assumption 2 agrees with
almost all of the biologically relevant cases. We let X be an exponentially distributed random
variable with mean 1, and we let Y be a random variable with the Rayleigh distribution so that
P(Y ≤ t) = 1 − e−t2/2 for any t > 0.

The following theorem is the goal of this paper.

Theorem 1. Suppose that Assumptions 1 and 2 hold. Recall that all limits are taken asN goes
to ∞.

1. If v1v2 	 1/(N(logN)2) and v1v2N logN � u1, (α ∧ 1)v1v2N(logN)τ(H1)
d−→ X.

The distribution of σ(H1) converges to the uniform distribution on ((1 − α)+, 1] and
ρ(H1) converges in probability to 1.

2. If 1/(N(logN)2) 	 v1v2 	 1/N and v1v2 � u2
1/N , then

√
v1v2Nτ(H1)

d−→ Y . Both
σ(H1) and ρ(H1) converge in probability to 1.

3. If v1v2 � 1/N then
√
v1v2Nτ(H1)

d−→ Y . Both σ(H1) and ρ(H1) converge in
probability to 1.

4. Assume that the following two conditions hold.

• Either v1v2 	 1/(N(logN)2) and u1 � v1v2N logN or 1/(N(logN)2) 	
v1v2 	 1/N and u1 � √

v1v2N .

• Both u2 	 1/ logN and u2 	 v2N .
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Figure 1: Case 1 of Theorem 1.

Then u1τ(H1)
d−→ X. The probability that the first mutation occurs on the stem cell line

converges to 1 and ρ(H1) converges in probability to α ∧ 1.

5. Assume that the following two conditions hold.

• Either v1v2 	 1/(N(logN)2) and u1 � v1v2N logN or 1/(N(logN)2) 	
v1v2 	 1/N and u1 � √

v1v2N .

• Either u2 � 1/ logN or u2 � v2N .

Then the probability that both mutations occur on the stem cell line converges to 1. Ifu1 	
u2 then u1τ(H1)

d−→ X and if u1 ∼ Au2 for someA > 0 then u1τ(H1)
d−→ X + Z,where

Z is an exponentially distributed random variable with mean A which is independent
of X.

The first three cases of Theorem 1 are the dd regime. Case 4 is the sd regime and case 5 is
the ss regime.

In case 1 the condition v1v2 	 1/(N(logN)2) indicates that, with probability tending to 1,
the first successful type-1 mutation on a daughter cell will occur after logN time. The condition
v1v2N logN � u1 indicates that a type-2 mutation will occur on a daughter cell before a type-1
mutation occurs on a stem cell with probability tending to 1. Because the amount of time that
can pass between a successful type-1 mutation and a type-2 mutation is bounded by logN ,
the time it takes for the type-2 mutation to occur is negligible in the limit. This is why the
distribution of τ(H1) converges to an exponential distribution.

There is a useful picture to keep in mind. We will graph time scaled by 1/ logN on the
horizontal axis and generation scaled by 1/ logN on the vertical axis. A mutation on a cell
in generation i at time t will be represented by a circle at (t/ l, i/ l). We represent only the
successful type-1 and type-2 mutations. When a successful type-1 mutation is marked, the
following type-2 mutation will be connected to it by a line. Figure 1 is an illustration of case 1.

The distribution of σ(H1) arises from a balance between the large number of cells in the
later generations versus the large number of descendants of cells in the earlier generations as
discussed above. The reasoning used to derive (1) shows that generation i acquires mutations
at a rate of approximately

v12i−1(1 − e−v2(2l−i+1)) ≈ v1v2N.

Note that the approximate rate is independent of i. This balance causes the distribution of
the marks of the successful type-1 mutations to converge to a uniform Poisson process on
[0,∞)×((1−α)+, 1). The probability that the second mutation occurs in the later generations
is just a result of the bulk of the population being concentrated in the later generations.

In case 2 the condition 1/(N(logN)2) 	 v1v2 indicates that a daughter cell will acquire
a successful type-1 mutation before logN time with probability tending to 1. The condition
v1v2 	 1/N indicates that the time it takes for a successful type-1 mutation to occur on a
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Figure 2: Case 2 of Theorem 1—a magnified image of the top-left corner.

daughter cell tends to ∞. The condition v1v2 � u2
1/N indicates that the cancer-causing type-1

mutation will occur on a daughter cell with probability tending to 1. As in case 1, ρ(H1)
p−→ 1

because most of the cells are in the later generations. Because cells split at rate 1 it takes
O(logN) time units before a significant number of an individual’s progeny is realized. In this
case the type-2 mutation will occur much faster than logN time with probability tending to 1.
Therefore, an individual’s progeny does not play such an important role. For this reason, the
cancer-causing type-1 mutation is approximately equally likely to occur on any cell. Most of
the cells are in the later generations so σ(H1) tends to 1. We illustrate this case in Figure 2.

In Figure 2, a type-2 mutation will occur by time t if a successful type-1 mutation has
occurred in the triangle beneath time t . Note that Figure 2 illustrates an example in which
the first successful type-1 mutation is not the cancer-causing type-1 mutation. Because the
marks of the type-1 mutations are converging to a uniform Poisson process in the triangle, the
distribution of τ(H1) will converge to the Rayleigh distribution.

In case 3 the condition v1v2 � 1/N indicates that some cell will receive two mutations
before time 1 with probability tending to 1. Any daughter cell is equally likely to acquire
the two mutations and because u1 → 0 the probability that the stem cell acquires the two
mutations tends to 0. This causes σ(H1) and ρ(H1) to tend to 1 in probability since the bulk of
the population is concentrated in the later generations. The waiting time for the first individual
to acquire two mutations has a Rayleigh distribution, which gives the result for τ(H1). The
results hold for this case when α = 0.

We now explain the assumptions of case 4 which ensure that the sd regime occurs with
probability tending to 1. If stem cells could not mutate and v1v2 	 1/(N(logN)2), then,
according to case 1, (α ∧ 1)v1v2N logNτ(H1)

d−→ X. The condition u1 � v1v2N logN
indicates that a type-1 mutation occurs on the stem cell line before a type-2 mutation occurs
on a daughter cell when the mutation rates of the daughter cells satisfy v1v2 	 1/N(logN)2.
Likewise, if the stem cell could not mutate and 1/(N(logN)2) 	 v1v2 	 1/N , then, according

to case 2,
√
v1v2Nτ(H1)

d−→ Y . The condition u1 � √
v1v2N indicates that the stem cell line

acquires a type-1 mutation before the daughter cells acquires a type-2 mutation when the
mutation rates of the daughter cells satisfy 1/(N(logN)2) 	 v1v2 	 1/N . The condition
u2 � 1/ logN or u2 � v2N indicates that the first type-2 mutation occurs on a daughter cell
rather than the stem cell line.

In case 4 the time at which the type-1 mutation occurs on the stem cell line is much larger
than logN with probability tending to 1. Therefore, the time it takes for the first type-2 mutation
to occur is negligible. This implies that the type-1 mutation that occurs on the stem cell line is
the cancer-causing type-1 mutation with probability tending to 1 and illustrates why u1τ(H1)

is converging to an exponential distribution. Once a stem cell acquires a type-1 mutation the
daughter cells inherit the type-1 mutation at an exponential rate. For any ε > 0, the probability
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Figure 3: Case 4 of Theorem 1—stem cell mutations occur on [0,∞)× {0}.
that the first type-2 mutation will occur when the type-1 mutation has spread to generation i

for some i ∈ ((α ∧ 1 − ε) logN, (α ∧ 1 + ε) logN) tends to 1. This is why ρ(H1)
p−→ (α ∧ 1).

Figure 3 gives an illustration of this case.
The first condition in case 5 is the same as the first condition in case 4. Under this condition,

the probability that the first successful type-1 mutation occurs on the stem cell line tends to 1.
The second condition in case 5 implies that the first type-2 mutation occurs on the stem cell
line with probability tending to 1.

The results for τ(H1) are similar to the results when waiting for two mutations in the Moran
model. In particular, when the mutation rates are slow in the Moran model, the time until two
mutations converges to the exponential distribution and when the rates are faster, the waiting
time converges to the Rayleigh distribution. The original results can be found in [8] and [19],
and they are also a special case of the results in [18].

There are many boundary cases and most of them are not included in this paper, where we
use the term boundary case to refer to the boundary between two of the conditions. That is, if
v1 	 1/N gives one result and v1 � 1/N gives another, we would consider v1 ∼ A/N for
some constantA to be a boundary case. If included, the boundary cases would make up the bulk
of this paper. One reason for this is that our variables {v1, v2, u1, u2} span a four-dimensional
space, so the regions will have many boundaries. Moreover, sometimes three regions intersect
in the same place. It does not seem that there would be any special difficulties in computing
most of these boundary cases using the same methods used in this paper.

We call H1 the null model when all of the mutation rates are the same. The following
proposition gives the results for the null model, including results for the boundary cases.

Proposition 1. Let µ = u1 = u2 = v1 = v2. Suppose that Assumption 1 holds, so that there
exist constants β, α > 0 such that µ ∼ βN−α .

1. If µ 	 1/(N logN) then µτ(H1)
d−→ X. The probability that the first successful type-1

mutation occurs on the stem cell line converges to 1 and ρ(H1) converges in probability
to 1.

2. If µ ∼ A/(N logN) then (1 + A)µτ(H1)
d−→ X. Let ξ be a Bernoulli random variable

such that P(ξ = 1) = A/(1 + A) and P(ξ = 0) = 1/(1 + A). Let U be a random
variable, independent of ξ , with the uniform distribution on [0, 1]. Then

σ(H1)
d−→ Uξ

and
ρ(H1)

p−→ 1.

3. If 1/(N logN) 	 µ 	 1/(
√
N logN) then (α ∧ 1)µ2N(logN)τ(H1)

d−→ X. The
distribution of σ(H1) converges to a uniform distribution on ((1 − α)+, 1] and ρ(H1)

converges in probability to 1.
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Figure 4: Case 4 of Proposition 1.

4. If µ ∼ A/(
√
N logN) then

lim P

(
τ(H1)

logN
≤ t

)
= (1 − e−A2t2/2) 1[0,1/2](t)+ (1 − e−A2t/2+A2/8) 1(1/2,∞)(t).

Let Z be a random variable with density

f (x) =
(∫ 1/2

1−x
A2e−A2t2/2 dt + 2e−A2/8

)
1[1/2,1](x).

AsN goes to ∞, σ(H1) converges in distribution toZ and ρ(H1) converges in probability
to 1.

5. If 1/(
√
N logN) 	 µ 	 1/

√
N then µ

√
Nτ(H1)

d−→ Y . Both σ(H1) and ρ(H1)

converge in probability to 1.

6. If µ ∼ A/
√
N then, for each fixed time t > 0, there exist constants c and C such that

lim inf P(τ (H1) ≤ t) ≥ c > 0 and lim sup P(τ (H1) ≤ t) ≤ C < 1. Both σ(H1) and
ρ(H1) converge in probability to 1.

7. If 1/
√
N 	 µ then µ

√
Nτ(H1)

d−→ Y . Both σ(H1) and ρ(H1) converge in probability
to 1.

Parts 1, 3, 5, and 7 of Proposition 1 follow directly from Theorem 1. Parts 2, 4, and 6, the
boundary cases, will be proved in Section 6.

In part 2 the cancer-causing type-1 mutation may occur on a stem cell or a daughter cell.
The event ξ = 1 corresponds to the cancer causing type-1 mutation occurring on a daughter
cell and the event ξ = 0 corresponds to the cancer-causing type-1 mutation occurring on the
stem cell line.

In part 4 the mutations occur inO(logN) time units. Figure 4 is an illustration for this case.
Note that the exponents in the limiting distribution for τ(H1) in part 4 correspond to the

area of a triangle or quadrilateral. This is because the cancer-causing type-1 mutation will
occur in O(logN) time units. Let t1 and t2 be the times marked in Figure 4. The probability
that a type-2 mutation has occurred by time t1/ logN is the probability that a mark indicating a
successful type-1 mutation has occurred in the triangle associated with t1 in Figure 4. Likewise,
the probability that a type-2 mutation has occurred by time t2/ logN is the probability that a
mark indicating a successful type-1 mutation has occurred in the quadrilateral associated with
t2 in Figure 4.

The main result of part 6 is that, when µ ∼ A/
√
N, the time until two mutations is O(1).

The results are therefore affected by the discreteness of the model.
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In the next section we introduce a new model which will be coupled with H1. Theorem 1
will be proved with this new model in place ofH1 and the coupling will give the results forH1.
The third section of this paper is devoted to obtaining results about the dd regime. The fourth
section is on results about the sd and ss regimes. In Section 5 we prove Theorem 1. The last
section is a discussion of the boundary cases in the null model and a proof of Proposition 1. In
Appendix A we give a glossary of the notation and of the descriptions of the auxiliary models
used throughout the paper.

2. A useful model

In this section we define a new model, H2, which will be useful to compare with H1. In
model H2 there is one stem cell and, for each integer i, there are 2i−1 generation i daughter
cells for all times t ≥ 0. The cells in model H2 split at each integral time unit in the same way
that the cells in modelH1 split. Just as in modelH1, the stem cells in modelH2 receive type-1
and type-2 mutations at rates u1 and u2, respectively, and the daughter cells receive type-1
and type-2 mutations at rates v1 and v2, respectively. The difference between the models is
how the cells accumulate type-1 mutations. In model H1 all type-1 mutations have the same
behavior. A type-1 mutation proposed to occur on a type-1 cell in H1 is rejected because the
cell is already a type 1. In model H2 the behavior of type-1 mutations differ depending on
whether or not the mutation occurred on a stem cell. If a type-1 mutation occurs on a stem cell,
it has the same behavior as in model H1. The mutation will eventually be passed to all other
cells in the population and any type-1 mutation proposed to occur on a type-1 stem cell or a
daughter cell that is the progeny of a type-1 stem cell is rejected. However, all type-1 daughter
cells which are type-1 cells as a result of a type-1 mutation occurring on a daughter cell are able
to accumulate type-1 mutations. If a type-1 mutation is proposed to occur on such a daughter
cell with one type-1 mutation, then the mutation is accepted and the cell now carries two type-1
mutations. Type-1 mutations to type-0 daughter cells result in cells that are allowed to carry
any number of type-1 mutations, and when a cell has k type-1 mutations, it receives type-2
mutations at rate kv2. Because the type-1 mutations on daughter cells do not change the rate at
which type-1 mutations occur, (1) is more accurate for model H2.

We now give an alternate description of model H2 which will allow us to make a coupling
between models H1 and H2. Consider the daughter cells as fixed in a tree and consider
the mutations as moving to the higher-generation daughter cells at each integral time unit
in model H1. Label the daughter cells D1,D2, . . . , DN−1.

In modelH2 each daughter cellDi has a counterCi starting at 0 and is acted on by a sequence
of Poisson processes {P in}∞n=1, each having rate v2, which determine the type-2 mutations. All
of the Poisson processes are independent of one another. When a type-1 mutation occurs on a
daughter cell Di , it increases the counter Ci by 1. This is considered to be a type-1 mutation.
If a type-1 mutation increases the counter to n, it is the nth type-1 mutation on the cell. When
the counter Ci has reached n, all type-2 mutations that would occur according to the Poisson
processes P i1 , P

i
2 , . . . , P

i
n are accepted as type-2 mutations on cell Di . All type-2 mutations

that would occur according to the Poisson processes P in+1, P
i
n+2, . . . are rejected. If a type-2

mutation occurs on cell Di as a result of the Poisson process P in, then the nth type-1 mutation
according to Ci is considered to be successful. If the first type-2 mutation on a cell is a result
of the Poisson process P in, then the nth type-1 mutation according to Ci is the cancer-causing
type-1 mutation. Rather than the mutations moving up the tree, at each integral time unit the
daughter cells in generations i ≥ 2 will inherit the counter number from their ancestor in
the previous generation. The daughter cell in generation 1 will reset its counter to 0 at each
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integral time unit. However, a type-1 mutation on a stem cell does not have a counter. Once a
type-1 mutation has spread from a stem cell to a daughter cell the daughter cell can no longer
accumulate type-1 mutations and the model is the same as model H1.

We couple H1 and H2 as follows.

• The Poisson processes that mark the stem cells are the same.

• If a daughter cell has inherited a type-1 mutation from a stem cell then the Poisson
processes marking type-2 mutations on the cell are the same in each model.

• The Poisson processes marking type-1 mutations on daughter cells are the same.

• The Poisson processes marking type-2 mutations on daughter cells in model H1 are the
same as the Poisson processesP i1 in modelH2 so long as the daughter cells did not inherit
their type-1 mutations from a stem cell.

There are no analogous Poisson processes in model H1 for the N − 1 sequences of Poisson
processes P i2 , P

i
3 , . . . in model H2.

Lemma 1. Let the Poisson processes in models H1 and H2 be coupled as described above.
Then P(τ (H1) = τ(H2)), P(ρ(H1) = ρ(H2)), and P(σ (H1) = σ(H2)) all converge to 1.

Proof. A type-2 mutation which occurs in modelH2 but not inH1 is a result of the rejection
of the type-1 mutation in model H1 that has led to the type-2 mutation in H2. This type-1
mutation could only be rejected in model H1 because the cell on which it was supposed to
occur was already a type-1 cell. Type-1 mutations on the stem cell line will occur at the same
time in both models. If we consider a type-1 mutation that occurs on a daughter cell in model
H2, the probability that it also occurs in model H1 is the probability that the cell is a type 0.
Because the differentiated cells will be removed from the population after logN time, if we
propose a type-1 mutation at a time t on any cell that has not inherited a type-1 mutation from
a stem cell, then the probability that the cell has a type-1 mutation is at most 1 − e−v1 logN .
Therefore, if a type-1 mutation occurs in modelH2 at time t , with probability at least e−v1 logN,

it will also occur in modelH1. We show that the same will be true of the cancer-causing type-1
mutation.

We number the positions of the cells 1, 2, . . . , N and let 1 be the position of the stem cell line.
Let N̄ = {1, 2, . . . , N} and L = [0, l]∪ {∞}. First we note that the Poisson processes marking
the daughter cells in modelH2 induce a Poisson process on the space [0,∞)× N̄ × L. A point
(t, i, s) is marked to indicate that a type-1 mutation occurred at time t on the cell at location i
and at time s+ t the type-1 mutation became successful. If the type-1 mutation is not successful
then s = ∞. One may note that this is a Poisson process by two applications of the marking
theorem (see [9, p. 55]). Type-1 mutations occur according to a Poisson process on [0,∞) at
rate v1(N − 1)+ u1. Each daughter cell has probability v1/(v1(N − 1)+ u1) of being the cell
that receives the type-1 mutation and the stem cell has probability u1/(v1(N−1)+u1) of being
the cell that receives the type-1 mutation. By a first application of the marking theorem this
gives us a Poisson process on [0,∞)× N̄ . The probability that a type-1 mutation is successful
can be determined from the associated point (t, i) which tells us at what time and on what
cell the type-1 mutation occurred. Each one of these points has an associated value s that
indicates when, and if, the type-1 mutation becomes successful. This gives the Poisson process
on [0,∞)× N̄ × L.

LetZ be the random variable which indicates the value in [0,∞)× N̄ × L that corresponds
to the time of the cancer-causing type-1 mutation, the cell on which it occurred, and the time of
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the first type-2 mutation. If we condition on the event Z = (t0, i0, s0) for some i0 in generation
j which is not the stem cell line, then there can be no marks in subset

{(t, i, s) : s < t0 + s0 − t} ∪ {(t, i, s) : (�t� − i, {1}, s + t − �t�)}
of [0,∞)× N̄ × L. The marks that occur outside of this subset occur independently of the
marks that occur within. Conditioning does not change the probability that a mark outside of
this set has occurred by time t0. This only reduces the rate at which type-1 mutations occur
before time t0. Therefore, P(τ (H1) �= τ(H2) | Z = (t0, i0, s0)) ≤ 1 − e−v1 logN . Let PZ be
the probability measure on [0,∞)× N̄ × L induced by Z. Then

P(τ (H1) �= τ(H2)) =
∫

[0,∞)×N̄×L
P(τ (H1) �= τ(H2) | Z = x)PZ(dx)

≤
∫

[0,∞)×N̄×L
(1 − e−v1 logN)PZ(dx)

= 1 − e−v1 logN.

This shows that P(τ (H1) �= τ(H2)) → 0 if v1 	 1/ logN . It follows from Assumption 1 that
v2 	 1/ logN, and combining this with Assumption 2 we see that v1 	 1/ logN as well.

On the event τ(H1) = τ(H2) we have ρ(H1) = ρ(H2) and σ(H1) = σ(H2) with
probability 1. The only way these equalities can fail is if two type-2 mutations occur simul-
taneously in model H2, an event whose probability is 0. Therefore, P(ρ(H1) = ρ(H2)) and
P(σ (H1) = σ(H2)) both converge to 1 as well.

The rest of the work in proving Theorem 1 is in proving Theorem 1 with H2 in place of H1.
Once this is done Theorem 1 follows from Lemma 1.

3. The dd regime

To understand the behavior in the dd regime, we consider a new model which is the same as
H2 except that mutations only occur on daughter cells. That is, there are no Poisson processes
that mark mutations on the stem cells. This new model will be called model M1. The purpose
of this section is to prove the following proposition.

Proposition 2. 1. If v1v2 	 1/(N(logN)2) then (α ∧ 1)v1v2N(logN)τ(M1)
d−→ X. The

distribution of σ(M1) converges to a uniform distribution on ((1−α)+, 1] and ρ(M1) converges
in probability to 1.

2. If 1/(N(logN)2) 	 v1v2 	 1/N then
√
v1v2Nτ(M1)

d−→ Y . Both σ(M1) and ρ(M1)

converge in probability to 1.

Lemma 2. For any positive integer k < l, we have P(ρ(M1) ≥ (l − k)/ l) > 1 − 1/2k .

Proof. Let Z be the number of generations between the cancer-causing type-1 mutation and
the first type-2 mutation. Then Z ∈ {0, 1, 2, . . . , l}. Because there are only l generations,
if the second mutation occurs l − k generations or more after the first then it must be in
the last k generations. So P(ρ(M1) ≥ (l − k)/ l | Z ∈ {l − k, l − k + 1, . . . , l}) = 1.
If we condition on the event that Z = j for some j ≤ l − k − 1 then the probability
that the cancer-causing type-1 mutation occurs on any cell in generations 1, 2, . . . , l − j is
equally likely. This is because the Poisson processes marking the mutations on the descendants
of the cells j generations after any generation i are independent and identically distributed.
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The last k of the l − j generations always make up at least a fraction of 1 − 1/2k cells, so we
have P(ρ(M1) ≥ (l− k)/ l | Z ∈ {0, 1, 2, . . . , l− k−1}) > 1−1/2k , where we obtain a strict
inequality because we do not count the stem cell line. The result follows.

It is important to note that Lemma 2 holds for any N and we do not require N → ∞. Also,
the rates at which v1 and v2 tend to 0 are irrelevant.

Corollary 1. As N goes to ∞, ρ(M1) will converge to 1 in probability.

Lemma 3. Let (β1, β2] ⊂ (0, 1]. Let C be a positive constant, and let C′ ∈ {1, 2}. Then∑
i∈N∩(lβ1,lβ2]

v12i−1(1 − e−Cv2(2l−i+1−C′)) ∼ C(β2 − β1 ∨ (1 − α))+v1v2N logN.

Proof. We will first define some notation for this proof for the sake of readability. Let I ⊂ R.
We define

I ∗ := I ∩ (lβ1, lβ2] ∩ N.

First we consider the case when α ≥ 1. Using the upper bound 1 − e−Cv2(2l−i+1−C′) ≤
Cv22l−i+1, we have

∑
i∈(lβ1,lβ2]∗ v12i−1(1 − e−Cv2(2l−i+1−C′))

v1v22l l
≤ C(β2 − β1).

From the second-order Taylor expansion we obtain a lower bound of

1 − e−C(2l−i+1−C′) ≥ Cv2(2
l−i+1 − C′)− 1

2C
2v2

2(2
l−i+1 − C′)2.

We will break this sum into five parts:

2i−1(1 − e−Cv2(2l−i+1−C′)) ≥ Cv22l − CC′v22i − C2v2
222l−i + C2C′v2

22l − C2(C′)2v2
22i−2.

Computations for each of the five individual sums give

∑
i∈(lβ1,lβ2]∗

Cv22l

v22l l
→ C(β2 − β1),

∑
i∈(lβ1,lβ2]∗

CC′v22i

v22l l
≤ CC′2l+1

2l l
→ 0,

∑
i∈(lβ1,lβ2]∗

C2(C′)2v2
22i−2

v22l l
≤ C2C′2v2

l
→ 0,

∑
i∈(lβ1,lβ2]∗

C2C′v2
22l

v22l l
≤ C2C′v2 → 0,

∑
i∈(lβ1,lβ2]∗

C2v2
222l−i

v22l l
= C2v22l (

∑β2
i=�lβ1� 2−i )
l

≤ C2v22l(β2−β1) → 0,

so long as v2 	 1/2l(β2−β1) = N−(β2−β1), which will hold since α ≥ 1 in this case.
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So we have

lim
N→∞

(∑
i∈(lβ1,lβ2]∗ v12i−1(1 − e−Cv2(2l−i+1−C′))

v1v22l l

)
= C(β2 − β1),

which completes the α ≥ 1 case.
Now let 0 < α < 1 and let ε > 0 be small enough so that 0 < 1 − α − ε < 1 − α + ε < 1.

We now break the sum into three blocks:∑
i∈[1,l(1−α−ε))∗∪[l(1−α−ε),l(1−α+ε)]∗∪(l(1−α+ε),l]∗ 2i−1(1 − e−Cv2(2l−i+1−C′))

v22l l
.

We can consider each of these three sums individually.
For the middle sum, we only need the bound

0 ≤
∑
i∈[l(1−α−ε),l(1−α+ε)]∗ 2i−1(1 − e−Cv2(2l−i+1−C′))

v22l l
≤ 2Cε,

which follows by the upper bound 1 − e−Cv2(2l−i+1−C′) ≤ Cv22l−i+1.
One can apply similar computations as in the α = 1 case to obtain∑

i∈(l(1−α+ε),l]∗ 2i−1(1 − e−Cv2(2l−i+1−C′))

v22l l
→ C(β2 − β1 ∨ (1 − α + ε))+.

For the first sum, note that 1 − e−Cv2(2l−i+1−C′) ≤ 1. This gives the bound

0 ≤
∑

i∈[1,l(1−α−ε))∗
2i−1(1 − e−Cv2(2l−i+1−C′))

v22l l

≤
∑

i∈[1,l(1−α−ε))∗
2i−1

v22l l

≤ 2l(1−α−ε)

v22l l
→ 0.

The convergence is a result of the definition of α. In particular, v2 � N−α−ε(logN)−1.
Combining the three sums yields

C(β2 − β1 ∨ (1 − α + ε))+ ≤ lim inf

∑
i∈(lβ1,lβ2]∗ v12i−1(1 − e−Cv2(2l−i+1−C′))

lv1v22l

and

lim sup

∑
i∈(lβ1,lβ2]∗ v12i−1(1 − e−Cv2(2l−i+1−C′))

lv1v22l
≤ C(β2 − β1 ∨ (1 − α + ε))+ + 2Cε.

Letting ε approach 0 gives the result.

Corollary 2. Let T be the time at which the first successful type-1 mutation occurs. Then
(α ∧ 1)v1v2N(logN)T

d−→ X.
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Proof. For 1 ≤ i ≤ l, there are 2i−1 cells in generation i. Each of these cells acquires type-1
mutations at rate v1. The cells in generation i have 2l−i+1 − 2 descendants. If the cell splits
as soon as it becomes a type 1, the probability that none of its descendants acquire a type-2
mutation is e−v2(2l−i+1−2). On the other hand, after a cell acquires a type-1 mutation it could
live for at most 1 time unit until it splits. If this is the case then the probability that neither the
cell that receives the type-1 mutation nor any of its descendants receives a type-2 mutation is
e−v2(2l−i+1−1). If we let R(t) be the rate at which the successful type-1 mutations occur at time
t then, for any time t , we have

1 = lim

∑l
i=1 v12i−1(1 − e−v2(2l−i+1−2))

(α ∧ 1)v1v2N logN

≤ lim inf
R(t)

(α ∧ 1)v1v2N logN

≤ lim sup
R(t)

(α ∧ 1)v1v2N logN

≤ lim

∑l
i=1 v12i−1(1 − e−v2(2l−i+1−1))

(α ∧ 1)v1v2N logN

= 1,

where the limits are results of Lemma 3.
The successful type-1 mutations occur according to a time inhomogeneous Poisson process

with an intensity measure ν, where ν([0, t]) = ∫ t
0 R(s) ds. We have shown that ν satisfies

t

l∑
i=1

v12i−1(1 − e−v2(2l−i+1−2)) ≤ ν([0, t]) ≤ t

l∑
i=1

v12i−1(1 − e−v2(2l−i+1−1))

for all t ≥ 0 and all N . For any t ≥ 0, we have

P

(
T ≤ t

(α ∧ 1)v1v2N(logN)

)
= 1 − e−ν([0,t])/((α∧1)v1v2N logN) → 1 − e−t ,

where the limiting results follow by Lemma 3. Therefore, (α∧1)v1v2N(logN)T is converging
in distribution to an exponentially distributed random variable with parameter 1.

The next lemma states that when v1v2 	 1/(N(logN)2), the probability that the first
successful type-1 mutation is the cancer causing type-1 mutation tends to 1.

Lemma 4. Let T be the time at which the first successful type-1 mutation occurs in modelM1.
If v1v2 	 1/(N(logN)2) then P(T = τ ′(M1)) → 1.

Proof. Let Z = τ(M1) − T be the time it takes to acquire the first type-2 mutation after
the first successful type-1 mutation has appeared, and let T̂ be the time it takes to acquire the
second successful type-1 mutation after the first.

By Corollary 2, (α ∧ 1)v1v2N(logN)T
d−→ X and (α ∧ 1)v1v2N(logN)T̂

d−→ X. Then,
because a type-2 mutation must occur within a logN time after a successful type-1 mutation
on a daughter cell, we have

P(T̂ < Z) ≤ P(T̂ < logN) = P((α ∧ 1)v1v2N(logN)T̂ < (α ∧ 1)v1v2N(logN)2) → 0.

Moreover, P(T̂ ≥ Z) ≤ P(T = τ ′(M1)) so P(T = τ ′(M1)) → 1.
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Lemma 5. If v1v2 	 1/(N(logN)2) then (α ∧ 1)v1v2N(logN)τ(M1)
d−→ X.

Proof. From Lemma 4 we know that the probability that the first successful type-1 mutation
is the cancer-causing mutation is converging to 1. Combining this with Corollary 2, (α ∧ 1)×
v1v2N(logN)τ ′(M1)

d−→ X.
Owing to apoptosis, τ(M1)− τ ′(M1) is bounded above by logN so (α∧1)v1v2N(logN)×

(τ (M1)− τ ′(M1))
p−→ 0. Then

(α ∧ 1)v1v2N(logN)τ(M1) = (α ∧ 1)v1v2N(logN)(τ ′(M1)+ (τ (M1)− τ ′(M1)))
d−→ X.

Lemma 6. If v1v2 	 1/(N(logN)2) then the distribution of σ(M1) converges to the uniform
distribution on ((1 − α)+, 1].

Proof. By Lemma 4, the first successful type-1 mutation will be the cancer-causing type-1
mutation with probability tending to 1. Therefore, to find the limiting results on σ(M1), it is
enough to find the depth at which the first successful type-1 mutation occurs as N tends to ∞.

Each generation i with 1 ≤ i ≤ l acquires successful type-1 mutations independently at a
rate bounded between v12i−1(1 − e−v2(2l−i+1−2)) and v12i−1(1 − e−v2(2l−i+1−1)) for any time t .
Therefore, for a fixed N and i, the probability that the first successful type-1 mutation occurs
on generation i is between

v12i−1(1 − e−v2(2l−i+1−2))∑l
j=1 v12j−1(1 − e−v2(2l−j+1−1))

and
v12i−1(1 − e−v2(2l−i+1−1))∑l
j=1 v12j−1(1 − e−v2(2l−j+1−2))

.

Let β ∈ [0, 1]. Using the notation and result from Lemma 3,

lim sup P(σ (M1) ≤ β) ≤ lim sup

∑
i∈(0,lβ]∗ v12i−1(1 − e−v2(2l−i+1−1))∑
j∈(0,l]∗ v12j−1(1 − e−v2(2l−j+1−2))

= (β − (1 − α)+)+

α ∧ 1

and

lim inf P(σ (M1) ≤ β) ≥ lim inf

∑
i∈(0,lβ]∗ v12i−1(1 − e−v2(2l−i+1−2))∑
j∈(0,l]∗ v12j−1(1 − e−v2(2l−j+1−1))

= (β − (1 − α)+)+

α ∧ 1
.

Combining the results of Corollary 1 and Lemmas 5 and 6 we have part 1 of Proposition 2.
For the next two proofs, we note that Corollary 1 already tells us that ρ(M1) converges to 1 in
probability.

Proof of part 2 of Proposition 2. For the slower mutation rates, it was enough to note that a
cell in generation i has 2l−i+1 − 2 descendants. Under these conditions, the mutation rates are
fast enough that we will need to consider how many descendants a cell in generation i has at a
time before its progeny undergoes apoptosis. For each k ∈ N ∪ {0}, let Ci,k be the collection
of cells in generation i during time [k, k + 1). If t ≥ l − i + k, the number of descendants of
each one of the cells in Ci,k will be 2i−1(2l−i+1 − 2) and their progeny will no longer be in
the population. For k < t < l − i + k, the number of descendants of each cell in Ci,k will be
between 2t−1−k and 2t+1−k . This will allow us to give upper and lower bounds on the number
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of cells in or descended from cells in generation i by time t . If we consider a time t < l− i then
the descendants of the cells in Ci,0 will not yet have undergone apoptosis. Therefore, at time
t < l − i the number of cells that have been in generation i and their descendants is between

�t�∑
j=0

2t−1−j ≥ 2t − 1 and
�t�∑
j=0

2t+1−j ≤ 2t+2 − 1.

If t ≥ l − i then some of the cells that have descended from generation i cells will have
undergone apoptosis. The total number of cells that have been in or descended from generation
i cells at time t , including those that have undergone apoptosis, will be between

l−i∑
j=0

2l−i−j−1 + (t − l + i)(2l−i+1 − 2) = 2l−i − 1 + (t − l + i)(2l−i+1 − 2)

and
l−i∑
j=0

2l−i−j+1 + (t − l + i)(2l−i+1 − 2) = 2l−i+2 − 1 + (t − l + i)(2l−i+1 − 2).

Recall that there are always 2i−1 cells in generation i which are acquiring type-1 mutations at
rate v1. We can once again multiply the rate of type-1 mutations on generation i by the bounds
on the probability that such a mutation is successful to find bounds on the rate of successful
type-1 mutations in generation i. We find that successful type-1 mutations occur on generation
i according to a Poisson process that has intensity measure between

2i−1v1(1 − e−v2(2t−1)) and 2i−1v1(1 − e−v2(2t+2−1))

if t < l − i, and

2i−1v1(1 − e−v2(2l−i−1+(t−l+i)(2l−i+1−2))) and 2i−1v1(1 − e−v2(2l−i+2−1+(t−l+i)(2l−i+1−2)))

if t ≥ l − i.
We now use the bounds on the rates of successful type-1 mutations in each generation i to

find the limiting distribution of τ(M1). For large enough N , we will have t <
√
v1v2N logN

for any real number t by the hypothesis 1/(N(logN)2) 	 v1v2. Let t/
√
v1v2N < l. Then

P

(
τ(M1) ≤ t√

v1v2N

)
= 1 − e−f (N,t),

where, by summing over the generations and using the fact that 1 − e−x ≤ x, we obtain

f (N, t) ≤
∑

0≤i<l−t/√v1v2N

2i−1v1(1 − e−v2(2
t/
√
v1v2N+2−1))

+
∑

l−t/(v1v2N)≤i≤l
2i−1v1(1 − e−v2(2l−i+2−1+(t/√v1v2N−l+i)(2l−i+1−2)))

≤
∑

0≤i<l−t/√v1v2N

2i−1(2t/
√
v1v2N+2 − 1)v1v2

+
∑

l−t/(v1v2N)≤i≤l
2i−1

(
2l−i+2 − 1 +

(
t√

v1v2N
− l + i

)
(2l−i+1 − 2)

)
v1v2.
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For the first sum,∑
0≤i<l−t/√v1v2N

2i−1(2t/
√
v1v2N+2 − 1)v1v2 ≤ 1

2
(2t/

√
v1v2N+2 − 1)(2l−t/

√
v1v2N+1 − 1)v1v2

≤ 2l+2v1v2

→ 0.

For the second sum, we first compute∑
l−t/√v1v2N≤i≤l

2i−1(2l−i+2 − 1)v1v2 ≤ 2l+2v1v2
t√

v1v2N
→ 0.

Lastly, ∑
l−t/√v1v2N≤i≤l

2i−1
(

t√
v1v2N

− l + i

)
(2l−i+1 − 2)v1v2

≤ 2lv1v2

∑
l−t/√v1v2N≤i≤l

(
t√

v1v2N
− l + i

)

≤ 2lv1v2

2

(
t√

v1v2N
+ 1

)2

→ t2

2
.

Therefore, lim sup P(
√
v1v2Nτ(M1) ≤ t) ≤ 1 − e−t2/2.

For the lower bound, we have

f (N, t) ≥
∑

0≤i<l−t/√v1v2N

2i−1v1(1 − e−v2(2
t/
√
v1v2N−1))

+
∑

l−t/√v1v2N≤i≤l
2i−1v1(1 − e−v2(2l−i−1+(t/√v1v2N−l+i)(2l−i+1−2)))

≥
∑

l−t/√v1v2N≤i≤l
2i−1v1(1 − e−v2(t/

√
v1v2N−l+i)(2l−i+1−2)).

Using the bound 1 − e−x ≥ x − x2/2, we have∑
l−t/√v1v2N≤i≤l

2i−1v1(1 − e−v2(t/
√
v1v2N−l+i)(2l−i+1−2))

will be greater than or equal to the sum over i ∈ [l − t/
√
v1v2N, l] of

2i−1v1

(
v2

(
t√

v1v2N
− l + i

)
(2l−i+1 − 2)− v2

2

(
t√

v1v2N
− l + i

)2
(2l−i+1 − 2)2

2

)
.

First consider

∑
l−t/√v1v2N≤i≤l

2i−1v1v
2
2

(
t√

v1v2N
− l + i

)2
(2l−i+1 − 2)2

2
.
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This sum is bounded between 0 and
∑
l−t/√v1v2N≤i≤l v2t

22l−i . Let 0 < ε < α. For large
enoughN , we have t <

√
v1v2Nl(α − ε),which is equivalent to l(1−α−ε) < l− t/√v1v2N.

So, for large enough N , we have∑
l−t/√v1v2N≤i≤l

v2t
22l−i ≤

∑
l(1−α+ε)≤i≤l

v2t
22l−i ≤ lv2N

α−ε → 0.

It remains to show that

lim inf
∑

l−t/√v1v2N≤i≤l
2i−1v1v2

(
t√

v1v2N
− l + i

)
(2l−i+1 − 2) ≥ t2

2
.

Let j ∈ N and t > 0. For large enough values of N , we will have j < t/
√
v1v2N < logN .

Note that if i ≤ l − j then 2l−i+1 − 2 ≥ (1 − 2−j )2l−i+1, so∑
l−t/√v1v2N≤i≤l

2i−1v1v2

(
t√

v1v2N
− l + i

)
(2l−i+1 − 2)

≥
∑

l−t/√v1v2N≤i≤l−j
2i−1v1v2

(
t√

v1v2N
− l + i

)
(1 − 2−j )2l−i+1.

Because j is fixed we have∑
l−j≤i≤l

2i−1v1v2

(
t√

v1v2N
− l + i

)
(1 − 2−j )2l−i+1 → 0,

since each of the summands converges to 0. Therefore, we can add this sum without changing
the limit. This gives us a lower bound of

lim inf
∑

l−t/√v1v2N≤i≤l
2lv1v2

(
t√

v1v2N
− l + i

)
(1 − 2−j ) ≥ t2

2
(1 − 2−j ).

We chose j to be any natural number, so lim inf P(
√
v1v2Nτ(M1) ≤ t) ≥ 1 − e−t2/2.

The above two bounds establish that P(
√
v1v2Nτ(M1) ≤ t) → 1 − e−t2/2 for any t ≥ 0. It

remains to show that σ(M1) converges in probability to 1. First note that, for any ε > 0, we
have

P(τ (M1) ≤ ε logN) = P(
√
Nv1v2τ(M1) ≤ √

Nv1v2ε logN) → 1,

which follows because the distribution of
√
Nv1v2τ(M1) is converging to the Rayleigh

distribution and
√
Nv1v2ε logN is converging to ∞. Let δ > 0. By Corollary 1 we know that

ρ(M1) converges in probability to 1, so, asN goes to ∞, P(ρ(M1) > 1 − δ) → 1. If σ(M1) <

1−2δ and ρ(M1) > 1−δ, then τ(M1) > δ logN . Because P(τ (M1) > δ logN) → 0 we must
also have P(σ (M1) < 1−2δ) → 0,where δ > 0 was arbitrary. Then P(1−σ(M1) > 2δ) → 0
for any δ > 0, so σ(M1)

p−→ 1.

4. The sd and ss regimes

In this section we need two different models. The first one is the same as model H2 except
that only stem cells receive type-1 mutations and only daughter cells receive type-2 mutations.
The second is the same as H2 except that only stem cells receive mutations. These will be
referred to as models M2 and M3, respectively.
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Proposition 3. 1. If u1 	 1/ logN and u1 	 Nv2, then u1τ(M2)
d−→ X and ρ(M2)

p−→
(α ∧ 1).

2. If u1 	 u2 then u1τ(M3)
d−→ X.

3. Let A > 0, and let Z be an exponentially distributed random variable with mean A that is
independent of X. If u1 ∼ Au2 then u1τ(M3)

d−→ X + Z.

The goal of this section is to prove Proposition 3. It will be shown later that the conditions
used in Proposition 3 for the sd regime are the only relevant conditions.

Lemma 7. For time t ≤ logN after a stem cell receives a type-1 mutation, we have

e−2t+2v2 ≤ P(τ (M2)− τ ′(M2) > t) ≤ e−(2t−2−2)v2 .

Proof. Let Z = τ(M2) − τ ′(M2). First we establish the upper bound. After the stem cell
line receives the first mutation it takes at most one time unit until the mutation is passed along
to the first generation daughter cell. Assuming that it does take one time unit until the first
generation daughter cell inherits the mutation, we can obtain an upper bound on P(Z > t).
Let time t = 0 denote the time at which the stem cell line receives the type-1 mutation. There
are no mutations being acquired by the daughter cells for time t ∈ [0, 1). For time t ∈ [1, 2),
the generation 1 daughter cell is the only type-1 daughter cell. So, for t ∈ [1, 2), we have
P(Z > t) = e−(t−1)v2 . For time t ∈ [2, 3), the first two generations have the mutation which
is a total of three cells. Therefore, for t ∈ [2, 3), we have P(Z > t) = e−(3(t−2)v2+v2), where
the v2 is added because of the probability of having a mutation before time 2. Extending this
inductively gives us

P(Z > t) ≤ exp

[
−

[
(2�t� − 1)(t − �t�)+

�t�∑
i=2

(2i−1 − 1)

]
v2

]
≤ e(−2t−2−1)v2

for any t ≤ logN .
For the lower bound, we use the same reasoning as above except that we assume that it takes

zero time for the generation 1 daughter cell to become type 1 after the stem cell line is type 1.
This yields

P(Z > t) ≥ exp

[
−

[
(2�t� − 1)(t − �t�)+

�t�∑
i=1

(2i − 1)

]
v2

]
≥ e−2t+2v2 .

Lemma 8. The location of the second mutation satisfies ρ(M2)
p−→ α ∧ 1.

Proof. Let Z = τ(M2) − τ ′(M2). By Lemma 7 we have P(Z > logN) ≥ e−4Nv2 . If
α > 1 then P(Z > logN) → 1 and the mutation will spread throughout the entire crypt.
If this is the case then any cell is equally likely to have the second mutation. Therefore,
P(ρ(M2) ≤ β) ≤ (2βl − 1)/(2l − 1) for any β ∈ [0, 1), so ρ(M2)

p−→ 1.
Now suppose that α ≤ 1. Let ε > 0, so that α − ε > 0. Then, by Lemma 7,

P(Z > l(α − ε)) ≥ e−2l(α−ε)+2v2 .

Because 4Nα−εv2 → 0 we obtain the convergence P(Z > l(α − ε)) → 1. By time l(α − ε)

the mutation will have spread to the first �l(α − ε)� generations, so, for times after l(α − ε),
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we know that at least 2�l(α−ε)� cells have the type-1 mutation. Therefore,

P({ρ(M2) ≤ β} ∩ {Z > l(α − ε)}) ≤ 2βl − 1

2(α−ε)l−1 − 1
.

Thus, for any β < α − ε,

P(ρ(M2) ≤ β) <
2βl − 1

2(α−ε)l−1 − 1
+ P(X2 ≤ l(α − ε)) → 0.

Hence, P(ρ(M2) ≥ α − ε) → 1. Because ε may be arbitrarily small we have completed the
α = 1 case.

Suppose that α < 1, and let ε > 0, so that α + ε ≤ 1. Then, by Lemma 7,

P(Z > l(α + ε)) ≤ e−(2l(α+ε)−2−1)v2 .

Because Nα+εv2/4 → ∞ we have P(Z > l(α + ε)) → 0. By time l(α + ε) the mutation has
only spread to the first l(α+ ε) generations, so P(ρ(M2) > α+ ε) → 0, where ε is arbitrarily
small.

Lemma 9. If u1 	 1/ logN and u1 	 Nv2, then u1τ(M2)
d−→ X.

Proof. Since the stem cell line acquires mutations according to a Poisson process at rate u1,

u1τ
′(M2) is an exponentially distributed random variable with mean 1. It remains to show that

u1(τ (M2)− τ ′(M2))
p−→ 0.

Suppose that we consider a new model M ′
2 which is the same as model M2 except that the

type-2 mutations can only occur on daughter cells a logN time after the stem cell line has a
type-1 mutation. We can couple models M2 and M ′

2 so that the same Poisson processes are
marking the mutations on the cells in each model but that any proposed type-2 mutation is
rejected in model M ′

2 until a logN time after the stem cell line is type 1. Under the coupling,
τ ′(M2) = τ ′(M ′

2). Also, if we letZ = τ(M ′
2)−τ ′(M ′

2) thenZ ≥ τ(M2)−τ ′(M2). Therefore,
it is enough to show that u1Z

p−→ 0.
If we wait a logN time after the stem cell line receives a type-1 mutation then all of the

daughter cells will be type 1. Thus, for any fixed N, we have

P(Z > t) = 1[0,logN ](t)+ e−v2(N−1)(t−logN) 1(logN,∞](t).

Let ε > 0. Then

P(u1Z > ε) = 1[0,logN ]
(
ε

u1

)
+ e−v2(N−1)(ε/u1−logN) 1(logN,∞]

(
ε

u1

)
.

By our assumptions, u1 logN → 0, so, for large enough N , this becomes

P(u1Z > ε) = e−v2(N−1)(ε/u1−logN).

Also, by our assumptions, −v2(N − 1)(ε/u1 − logN) ∼ −v2Nε/u1 → −∞, so

P(u1Z > ε) → 0.
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Proof of Proposition 3. Combining Lemmas 8 and 9 we obtain part 1 of Proposition 3.
Note that u1τ(M3) has the exponential distribution with mean 1. To prove part 2 of

Proposition 3, we need to show that u1(τ (M3)− τ ′(M3))
p−→ 0. Let ε > 0. Then

P(u1(τ (M3)− τ ′(M3)) > ε) = P

(
(τ (M3)− τ ′(M3)) >

ε

u1

)
= e−εu2/u1 .

Since u2/u1 → ∞, we have P(u1(τ (M3)− τ ′(M3)) > ε) → 0.
Lastly, we prove part 3 of Proposition 3. In modelM3 both mutations occur on the stem cell

line. In this case u1τ
′(M3) and u2(τ (M3) − τ ′(M3)) are both exponentially distributed with

mean 1. Because u1(τ (M3)− τ ′(M3)) = (u1/u2)u2(τ (M3)− τ ′(M3)), u1(τ (M3)− τ ′(M3))

is exponentially distributed with mean u1/u2. By assumption, u2/u1 → 1/A, so u1(τ (M3)−
τ ′(M3)) converges in distribution to Z. The random variables τ ′(M3) and τ(M3)− τ ′(M3) are
independent for each N, so

u1τ(M3) = u1τ
′(M3)+ u1(τ (M3)− τ ′(M3))

d−→ X + Z.

5. Proof of Theorem 1

Proof of part 3 of Theorem 1. We make use of the following well-known fact. If {an}∞n=1 is
a sequence of real numbers such that an → a then

lim
n→∞

(
1 − an

n

)n−1

= e−a.

Before time 1 the cells never split and there is no apoptosis. LetH ′
1 be the same as modelH1

except that stem cells never receive mutations. Note thatH ′
1 differs fromM1 because daughter

cells cannot accumulate type-1 mutations in modelH ′
1. If we ignore the splitting and apoptosis

and consider how long it takes for a cell to acquire two mutations under the mutation mechanism
alone, then we haveN−1 daughter cells acquiring mutations independently. For any individual
cell, the time it takes to acquire two mutations will have the same distribution as the sum of
two independent exponentially distributed random variables with means 1/v1 and 1/v2. If we
denote the time until cell i has a type-2 mutation by Ti and assume that v1 �= v2, then

P(Ti ≤ t) = 1 − v2e−v1t − v1e−v2t

v2 − v1
.

There are N − 1 cells independently acquiring mutations, so, for t ≤ 1, we have

P(τ (H ′
1) ≤ t) = 1 −

(
v2e−v1t − v1e−v2t

v2 − v1

)N−1

,

or, equivalently,

P(
√
v1v2Nτ(H

′
1) ≤ t) = 1 −

(
v2e−√

v1/(v2N)t − v1e−√
v2/(v1N)t

v2 − v1

)N−1

.

Note that N
√
v3

1/v2N3 = v2
1/

√
v1v2N → 0 and N

√
v3

2/v1N3 = v2
2/

√
v1v2N → 0. For

large enough N , we can apply the third-degree Taylor expansion of the exponential function to
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obtain the bounds

1 − t2

2N
−

√
v3

1

v2N3

t3

6
≤ v2e−√

v1/(v2N)t − v1e−√
v2/(v1N)t

v2 − v1
≤ 1 − t2

2N
+

√
v3

2

v1N3

t3

6
.

For any fixed t , we have

(
1 − t2

2N
−

√
v3

1

v2N3

t3

6

)N−1

→ e−t2/2

and (
1 − t2

2N
+

√
v3

2

v1N3

t3

6

)N−1

→ e−t2/2.

If v1 = v2 and we ignore splitting and apoptosis, then the probability that one cell has two
mutations by time t is 1 − e−v1t − v1te−v1t . The probability that one of the N cells has two
mutations by time t is 1 − (e−v1t − v1te−v1t )N . By applying the same techniques as above we
obtain P(

√
v1v2Nτ(H

′
1) ≤ t) → 1 − e−t2/2 when v1 = v2.

Combining the two results above we have P(
√
v1v2Nτ(H

′
1) ≤ t) → 1 − e−t2/2 when

ignoring splitting and apoptosis. Then P(τ (H ′
1) < 1) = P(

√
v1v2Nτ(H

′
1) <

√
v1v2N) → 1.

Therefore, the probability that two mutations occur before time 1 is converging to 1, so we may
ignore splitting and apoptosis in this case. This gives the desired result for τ(H ′

1).

Stem cells acquire type-1 mutations at rate u1 → 0 in modelH1. Let T be the first time the
stem cell line acquires a mutation in model H1. Then P(T < 1) → 0. We can couple models
H1 andH ′

1 so that the same Poisson processes are marking the mutations on the daughter cells.
Then P(τ (H1) = τ(H ′

1)) ≥ P({T ≥ 1} ∩ {τ(H ′
1) < 1}) → 1, which gives the results for

model H1.
Because any cell is equally likely to acquire the two mutations, it is clear that σ(H1) and

ρ(H1) both converge in probability to 1.

This gives the result for part 3 of Theorem 1 even if α = 0.
The following lemma, whose proof is elementary, will be used several times in this section.

Lemma 10. Let {αn}∞n=1 and {βn}∞n=1 be sequences of positive numbers which converge to 0.
Let {Xn}∞n=1 and {Yn}∞n=1 be independent sequences of random variables, and let X and Y be

positive random variables such that αnXn
d−→ X and βnYn

d−→ Y as n → ∞. If αn 	 βn then
P(Xn ≥ Yn) → 1 as n → ∞.

We will couple the models H2, M1, M2, and M3 so that the Poisson processes used in
models M1, M2, and M3 are the appropriate subcollections of Poisson processes which are
used in model H2. Let T be the time that a type-1 mutation occurs on the stem cell line in
model H2. Note that because stem cells cannot inherit type-1 mutations the coupling implies
that T = τ ′(M2) = τ ′(M3).

Lemma 11. Suppose that v1v2 	 1/(N(logN)2). If u1 	 v1v2N logN then P(τ (M1) <

T ) → 1. If u1 � v1v2N logN then P(τ (M3) < τ(M1)) → 1.

Proof. By part 1 of Proposition 2, (α∧1)v1v2N(logN)τ(M1)
d−→ X. Mutations to the stem

cell line occur at rate u1, so u1T
d−→ X. Because the Poisson processes that mark the mutations

in model M1 are independent of the Poisson process that marks the mutations on the stem cell
line, if u1 	 v1v2N logN then P(τ (M1) < T ) → 1 by Lemma 10.
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On the other hand, suppose that u1 � v1v2N logN . We assume that u1 ≤ u2, so we could
decrease P(τ (M3) < τ(M1)) by decreasing u2 to u1. Then the distribution of u1τ(M3) is
the distribution of the sum of two independent exponentially distributed random variables. By
Lemma 10, P(τ (M3) < τ(M1)) → 1.

Lemma 12. Suppose that 1/(N(logN)2) 	 v1v2 	 1/N . If u1 	 √
v1v2N then P(τ (M1) <

T ) → 1. If u1 � √
v1v2N then P(τ (M3) < τ(M1)) → 1.

Proof. Let u1 	 √
v1v2N . By part 2 of Proposition 2 we have

√
v1v2Nτ(M1)

d−→ Y . The
stem cell line acquires mutations at rate u1, so u1T → X. The Poisson processes that are
marking the mutations in modelM1 are independent of the Poisson process that marks mutations
on the stem cell line, so the result follows by Lemma 10.

If u1 � v1v2N logN then the proof follows by the same reasoning as used in the proof of
Lemma 11 when u1 � v1v2N logN .

Lemma 13. If u2 	 1/ logN and u2 	 Nv2, then P(τ (M2) < τ(M3)) → 1.

Proof. By the coupling, τ ′(M2) = τ ′(M3). After time τ ′(M2) the Poisson processes
marking the mutations in models M2 and M3 are independent. Let T2 = τ(M2) − τ ′(M2)

and T3 = τ(M3)− τ ′(M3). Then P(τ (M2) < τ(M3)) = P(T2 < T3).
Consider again the model M ′

2 that was introduced in the proof of Lemma 9 which is the
same as model M2 except that the type-2 mutations can only occur on daughter cells logN
time units after the stem cell line has a type-1 mutation. We can couple models M2 and M ′

2
as we did before so that the time at which the stem cell line acquires a mutation is the same in
models M2 and M ′

2. In particular, τ ′(M ′
2) = τ ′(M2) = τ ′(M3). Let T ′

2 = τ(M ′
2) − τ ′(M ′

2).
Then T ′

2 ≥ T2, so it is enough to show that P(T ′
2 < T3) → 1.

If we wait a logN time after the stem cell line receives a type-1 mutation then all of the
daughter cells will be type 1 and the N − 1 daughter cells acquire type-2 mutations at rate v2.
Thus, for any fixed N , we have

P(T ′
2 > t) = 1[0,logN ](t)+ e−v2(N−1)(t−logN) 1(logN,∞](t).

Let ε > 0. Then

P(T ′
2 < T3) = P(T ′

2 < T3 | T3 < logN)P(T3 < logN)

+ P(T ′
2 < T3 | T3 ≥ logN)P(T3 ≥ logN).

Because u2 	 1/ logN and u2T3 has the exponential distribution with mean 1, we have
P(T3 ≥ logN) → 1. The memoryless property of the exponential distribution gives

P(T ′
2 < T3 | T3 ≥ logN) = v2(N − 1)

v2(N − 1)+ u2
→ 1,

which completes the proof.

Lemma 14. If u2 � 1/ logN or u2 � Nv2, then P(τ (M3) < τ(M2)) → 1.

Proof. By the coupling, τ ′(M2) = τ ′(M3). After time τ ′(M2) the Poisson processes
marking the mutations in models M2 and M3 are independent. Let T2 = τ(M2) − τ ′(M2)

and T3 = τ(M3)− τ ′(M3). Then P(τ (M3) < τ(M2)) = P(T3 < T2).
Suppose thatu2 � 1/ logN . By Lemma 8 we know thatρ(M2)

p−→ α∧1. If 0 < δ < (α∧1)
then P(ρ(M2) > (α ∧ 1)− δ) → 1. If ρ(M2) > (α ∧ 1)− δ then the second mutation occurs
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on a generation higher than ((α ∧ 1) − δ)l. Since only stem cells acquire type-1 mutations
in model M2, we have T2 ≥ �((α ∧ 1) − δ)l� because it takes at least that much time for the
type-1 mutation to spread to the generation �((α ∧ 1)− δ)l� daughter cells. On the other hand,
in model M3 the second mutation occurs at rate u2, so u2T3 is exponentially distributed with
mean 1. Then P(T3 < K logN) = P(u2T3 < u2K logN) → 1 for any positive number K
since u2 logN → ∞. Therefore, P(T3 < T2) → 1.

Suppose that u2 � Nv2. The rate at which type-2 mutations occur in model M2 is always
bounded by (N − 1)v2. Suppose that we consider a new model M ′′

2 which is the same as M2
except that once the stem cell line has a type-1 mutation, all of the daughter cells also have a
type-1 mutation instantaneously. ModelsM2 andM ′′

2 can be coupled so that after the stem cell
line acquires a type-1 mutation then any type-2 mutation proposed by a Poisson process on a
daughter cell is accepted in model M ′′

2 . Let T ′′
2 = τ(M ′′

2 ) − τ ′(M ′′
2 ). Then (N − 1)v2T

′′
2 has

the exponential distribution with mean 1. By Lemma 10, P(T3 < T ′′
2 ) → 1. Because T2 ≥ T ′′

2 ,
we have the desired result.

Proof of Theorem 1. From the coupling we have τ(H2) = τ(M1)∧τ(M2)∧τ(M3) because
any type-2 mutation which occurs in modelH2 must occur in at least one of the modelsMi for
some i, and if a mutation occurs in model Mi then it will also occur in model H2.

Suppose that P(τ (M1) < T ) → 1. Before time T only stem cells acquire type-1 mutations
in modelsM2 andM3. Therefore, modelsM2 andM3 only have type-0 cells before time T and
P(τ (M1) < τ(M2) ∧ τ(M3)) → 1.

• By Lemma 11, if v1v2 	 1/(N(logN)2) and u1 	 v1v2N logN , then P(τ (M1) <

T ) → 1, so, by part 1 of Proposition 2 and the coupling ofH2 withM1,we have (α∧1)×
v1v2N(logN)τ(H2)

d−→X. Also, by Lemma 11, the distribution of σ(H2) converges to a
uniform distribution on ((1 − α)+, 1] and ρ(H2) converges in distribution to 1.

• By Lemma 12, if 1/(N(logN)2) 	 v1v2 	 1/N and u1 	 √
v1v2N , then P(τ (M1) <

T ) → 1, so, by part 2 of Proposition 2 and the coupling of H2 with M2, we have√
v1v2Nτ(H2)

d−→ Y . Also, by Lemma 12, both σ(H2) and ρ(H2) converge in distribu-
tion to 1.

If either v1v2 	 1/(N(logN)2) and u1 � v1v2N logN or 1/(N(logN)2) 	 v1v2 	 1/N
and u1 � √

v1v2N, then P(τ (M3) < τ(M1)) → 1 by Lemmas 11 and 12, respectively.
Therefore, P(τ (M2) ∧ τ(M3) < τ(M1)) → 1, which implies that the cancer-causing type-1
mutation occurs on the stem cell line in model H2 with probability converging to 1. Given
these four conditions, it only remains to compare τ(M2) and τ(M3).

• By Lemma 13, if u2 	 1/ logN and u2 	 Nv2, then P(τ (M2) < τ(M3)) → 1.
Because u1 ≤ u2, the hypotheses are true for u1 as well. Therefore, by the coupling
of H2 with M2 and part 1 of Proposition 3, u1τ(H2)

d−→ X and ρ(H2) converges in
probability to α ∧ 1.

• By Lemma 14, if u2 � 1/ logN or u2 � Nv2, then P(τ (M3) < τ(M2)) → 1.
If u1 	 u2 then, by the coupling of H2 with M3 and part 2 of Proposition 3, we

have u1τ(H2)
d−→ X. If u1 ∼ Au2 then, by the coupling of H2 with M3 and part 3

of Proposition 3, we have u1τ(H2)
d−→ X + Z, where Z is an exponentially distributed

random variable with mean A that is independent of X.

By Lemma 1, the results hold for model H1 as well.
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6. The null model

In this section, we always have u1 = u2 = v1 = v2 = µ and we prove Proposition 1 for
model H2. Then Proposition 1 will hold for model H1 as well by Lemma 1. We begin this
section by pointing out that the conditions of part 5 of Theorem 1 always fail in the null model.
The two conditions in the first conjunction become µ 	 1/(N logN). Of the two conditions
in the second conjunction, one becomes

√
N 	 1, which always fails. This reduces all of the

conditions in the first bullet point to µ 	 1/(N logN). The conditions in the second bullet
point become µ � 1/ logN or 1 � N , so the conditions in part 5 are reduced to

√
N 	 1,

1 � N , or 1/ logN 	 µ 	 1/(N logN), which all fail.
This shows that the probability that the first type-2 mutation occurs on the stem cell line

converges to 0. For this reason, we will never consider model M3 in this section.

Proof of part 2 of Proposition 1. We can couple model H2 with models M1 and M2 such
that the Poisson processes marking modelM1 are independent of the Poisson processes marking
modelM2. Before time τ ′(M2), the Poisson processes marking modelM1 are also marking the
daughter cells in modelH2 and the Poisson process that marks the stem cell in modelM2 is also
marking the stem cell line in model H2. After time τ ′(M2), the Poisson processes marking the
cells in model M1 are only marking the daughter cells in model H2 that have not yet inherited
the type-1 mutation from the stem cell. All of the Poisson processes marking type-2 mutations
on cells in model M2, meaning that those cells have inherited the type-1 mutation from the
stem cell, also mark the corresponding cells in modelH2. After time τ ′(M2)+ logN , only the
Poisson processes marking model M2 are marking model H2.

Let T be the time at which the first successful type-1 mutation occurs in modelM1, and letZ
be the time at which the first successful type-1 mutation occurs in modelH2. By Corollary 2 we
have AµT

d−→ X. Because the stem cell acquires type-1 mutations at rate µ and every type-1
mutation on the stem cell is successful, we have (A+ 1)µZ

d−→ X. If the first successful type-1
mutation occurs on a daughter cell then the type-2 mutation must occur within logN time of
Z since after this time the progeny of the cell will no longer be in the population. Let Y2 be
the time it takes to obtain the second successful type-1 mutation after the first has occurred. If
the first successful type-1 mutation occurs on the stem cell then all of the cells will be type 1
within logN time. Therefore, if the first successful type-1 mutation occurs on the stem cell and
there is not another successful type-1 mutation within logN time, Y2 = ∞ since there can be
no more type-1 mutations. We have lim sup P((1 + A)µY2 ≤ t) ≤ 1 − e−t . Therefore,

lim sup P(Y2 < (τ(H2)− Z)) ≤ lim sup P(Y2 < logN)

= lim sup P((1 + A)µY2 < (A+ 1)µ logN)

≤ 1 − e−(1+A)µ logN

→ 0.

Similarly to the result given in Lemma 4, we have P(Z = τ ′(H2)) → 1. Hence, it is enough
to find the distribution of the time of the first successful type-1 mutation.

We have established that (A+ 1)µZ
d−→ X and P(Z = τ ′(H2)) → 1, which imply that

(1 + A)µτ ′(H2)
d−→ X. Let A1 be the event that the first successful type-1 mutation occurs

on a daughter cell, and let A2 be the event that the first successful type-1 mutation occurs on
the stem cell. If the first successful type-1 mutation occurs on a daughter cell then, due to
apoptosis, τ(H2)− Z is bounded above by logN . Therefore,

P({Aµ(τ(H2)− Z) > ε} ∩ A1) → 0.
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If the first successful type-1 mutation occurs on a stem cell then in logN time all of the cells will
be type 1, and type-2 mutations will occur at rate µN . Let Ẑ be an exponentially distributed
random variable with mean 1/µN . Then we have

P({Aµ(τ(H2)− Z) > ε} ∩ A2) ≤ P(Aµ(logN + Ẑ) > ε) → 0.

Since either A1 or A2 must occur, we have Aµ(τ(H2)− Z)
p−→ 0. Then

(1 + A)µτ(H2) = Aµ(Z + (τ (M1)− Z))
d−→ X.

By the coupling, before time τ ′(M2) the daughter cells in model H2 acquire successful
type-1 mutations at the same rate as the daughter cells in modelM1. We know from the proof of
Lemma 6 that each generation i with 1 ≤ i ≤ l acquires successful type-1 mutations indepen-
dently at a rate bounded between µ2i−1(1 − e−µ(2l−i+1−2)) and µ2i−1(1 − e−µ(2l−i+1−1)) for
any time t in modelM1. Therefore, these bounds also hold for the rate at which daughter cells
acquire successful type-1 mutations in modelH2 before time τ ′(M2). Let β ∈ [0, 1]. Using the
notation and result from Lemma 6 and the fact that the stem cell line acquires type-1 mutations
at rate µ,

lim sup P(σ (H2) ≤ β) ≤ lim sup
µ+ ∑

i∈(0,lβ]∗ µ2i−1(1 − e−µ(2l−i+1−1))

µ+ ∑
i∈(0,l]∗ µ2j−1(1 − e−µ(2l−j+1−2))

= 1

1 + A
+ A

1 + A
β

and

lim inf P(σ (H2) ≤ β) ≥ lim inf
µ+ ∑

i∈(0,lβ]∗ µ2i−1(1 − e−µ(2l−i+1−2))

µ+ ∑
i∈(0,l]∗ µ2j−1(1 − e−µ(2l−j+1−1))

= 1

1 + A
+ A

1 + A
β.

Lemma 1 gives the result for σ(H1).
Because ρ(M1) and ρ(M2) both converge in probability to 1, we will have ρ(H2)

p−→ 1 as
well. Lemma 1 then implies that ρ(H1)

p−→ 1.

Let N be the set of Radon measures ν on a Polish space (
,B), where B is the Borel σ -field
such that ν({x}) ∈ N ∪ {0,∞} for all x ∈ 
. For the next proof, we will consider a point
process to be a random variable taking on elements of N . We consider ν({x}) to be the number
of times the point x has been marked. For a Poisson point process whose intensity measure has
no atoms, ν({x}) is 0 or 1 for all x and {x ∈ 
 : ν({x}) > 0} is discrete with probability 1.

Let
 = [0,∞)×[0, 1]. The Poisson point process of successful type-1 mutations in model
M1 induces a point process on 
, where if a successful type-1 mutation occurs at time t on a
cell in generation i in model M1 then there is a point of 
 at (t/ l, i/ l). We will call this point
process PM .

Lemma 15. If µ ∼ A/(
√
N logN) then the limiting distribution of PM is a Poisson point

process P∞ which has intensity measure ν′ = A2(λ × λ[1/2,1]), where λ is the Lebesgue
measure and λ[1/2,1] is the measure defined by λ[1/2,1](B) = λ(B ∩ [ 1

2 , 1]) for any Lebesgue
measurable set B.
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Proof. We let CC(
, [−1, 0]) be the set of continuous functions h : 
 → [−1, 0] such that
the set {ψ ∈ 
 : h(ψ) �= 0} is precompact. Recall that a point process X has an associated
generating functional F : CC(
, [−1, 0]) → R defined by

F(h) = E

[ ∏
ψ∈


(h(ψ)+ 1)ν(ψ)
]
,

where ν is a Radon measure on 
 as described above. Probability generating functionals
uniquely determine the distribution of point processes (see Theorem 14 of [7, Section 29.5]).
Moreover, a sequence of point processes converges in distribution to a point process if and only
if the corresponding sequence of generating functionals converges pointwise to a functional F
that satisfies the following. If hm is in the domain of F for each m,

⋃∞
m=1{ψ : hm(ψ) �= 0} is

relatively compact, and hm(ψ) → 0 as m → ∞ for each ψ , then F(hm) → 1 as m → ∞. In
this case F is the probability generating functional of the limiting point process (see Theorem 20
of [7, Section 29.7]).

Note that, for any N, the points marked in 
 will all have coordinates (x, y), where y
takes values in {1/ logN, 2/ logN, . . . , 1}. We know from the proof of Lemma 6 that the rate
at which mutations occur along generation i is bounded between 2i−1µ(1 − e−µ(2l−i+1−2))

and 2i−1µ(1 − e−µ(2l−i+1−1)). Therefore, if we look at the points that are marked in 

whose second coordinate is fixed at i/ logN , the rate at which the marking will occur will
be between (logN)2i−1µ(1 − e−µ(2l−i+1−2)) and (logN)2i−1µ(1 − e−µ(2l−i+1−1)), where the
logN appears because time is scaled by 1/ logN . This observation will allow us to work with
time homogeneous Poisson point processes.

Let F denote the generating functional associated with PM . Let F1 be the generating
functional associated with the Poisson process on 
 which marks points at rate (logN)2i−1 ×
µ(1 − e−µ(2l−i+1−2)) on y = i/ l, and let F2 be the generating functional associated with the
Poisson process on
 which marks points at rate (logN)2i−1µ(1 − e−µ(2l−i+1−1)) on y = i/ l.
Call the time homogeneous Poisson point processes P1 and P2, respectively. Because the
intensity measure of PM is always between the intensity measures of P1 and P2 we have the
bounds F1 ≤ F ≤ F2.

Let X be a Poisson process with intensity measure ν. It is known that the probability
generating functional associated with X is

P(h) = exp

[
−

∫



h dν

]
.

To show that a sequence of Poisson processes {Xn}∞n=0 with intensity measures {νn}∞n=0
converges in distribution to a Poisson process X with intensity measure ν, it is enough to
show that {νn}∞n=0 converges weakly to ν. That is, for each h ∈ CC(
, [−1, 0]), we need∫


h dνn → ∫



h dν as n → ∞. Let ν1

N be the intensity measure of P1 when there are N
cells in the population, and let ν2

N be the intensity measure of P2 when there are N cells in the
population. The goal is to show that ν1

N and ν2
N both converge weakly to ν′. Then the limiting

distribution of PM will be P∞.
Let R = (a, b] × (c, d] ⊂ 
. Then

ν1
N(R) = (b− a)(logN)

∑
i∈(lc,ld]

2iµ(1 − e−µ(2l−i+1−2)) → A2
(
d − c∨ 1

2

)+
(b− a) = ν′(R)
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by Lemma 3 and the assumption that µ ∼ A/(
√
N logN) which implies that µ2N logN ∼

A2/ logN . Now let O be any open subset of 
. We can write O = ⋃∞
n=1 Rn, where each Rn

is a half open rectangle in the same form as R above and the sets {Rn}∞n=1 are pairwise disjoint.
Then

lim inf
N→∞ ν1

N(O) = lim inf
N→∞

∞∑
j=1

ν1
N(Rj ) ≥

∞∑
j=1

ν′(Rj ) = ν′(O),

where the inequality follows by Fatou’s lemma. By the same reasoning, lim inf ν2
N(O) ≥ ν′(O)

for any open subsetO of
. It follows by the Portmanteau theorem that both ν1
N and ν2

N converge
weakly to ν′ as N goes to ∞. Hence, the limiting distribution of PM is P∞.

The notation used in Lemma 15 will also be used in the following proof.

Proof of part 4 of Proposition 1. Note that this is the boundary between two cases that are
determined by modelM1. By Corollary 1 we know that ρ(M1)

p−→ 1 for all the conditions that
we consider. Therefore, ρ(H1)

p−→ 1 in this case.
The strategy is to define functions g and h on the set of Radon measures that are continuous

everywhere except a set of measure 0. Then we will apply the continuous mapping theorem to
obtain the desired convergence in distribution. Let D be the subset of N such that ν ∈ D if
there exists (x, y) ∈ 
 and t ∈ R such that ν(x, y) > 0 and ν(x+ t, y+ t) > 0. For all t ≥ 0,
define the sets Tt = {(x, y) : 1

2 ≤ y ≤ 1 and 0 ≤ x ≤ y + t − 1} ⊂ 
. These sets correspond
the triangles and quadrilaterals that were shown in Figure 4. Let V = {(x, y) ∈ 
 : ν(x, y) >
0}, and define t0 = inf{t : V ∩ Tt �= ∅}. Define

g(ν) = lim
ε→0

sup{y : (x, y) ∈ V ∩ Tt0+ε for some x}

and h(ν) = t0.
Given a Poisson point process P on 
 whose intensity has no atoms, we can project the

points of P onto the line y = −x in R
2 along perpendicular angles of π/4. With probability 1,

no two points of P will be mapped to the same point under the projection. That is, under the
law of P ,D has probability 0. Moreover, with probability 1, there will be no limit points under
the projection. Therefore, under the intensity measure A2(λ[1/2,1] × λ), there exists a unique
point (x0, y0) ∈ V ∩ Tt0 and an ε > 0 such that V ∩ Tt0+ε = {(x0, y0)} with probability 1. By
definition, g(P ) = y0. We claim that g and h are continuous at any Radon measure ν ∈ N \D.

Let ν ∈ N \ D, and let {νn}∞n=1 be a sequence of Radon measures that converges weakly
to ν. Let ε > 0, and let (x0, y0) be the unique point of Tt0+ε such that ν(x0, y0) > 0. For each
point (x′, y′) ∈ 
 and every natural number m, define a function

f(x′,y′),m(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 if |(x, y)− (x′, y′)| < ε/m,

−
(

2 − m|(x, y)− (x′, y′)|
ε

)
if ε/m ≤ |(x, y)− (x′, y′)| ≤ 2ε/m,

0 otherwise.

For large enoughm, we have
∫


f(x0,y0),m(x, y) dν = −1, so

∫


f(x0,y0),m(x, y) dνn → −1 as

n → ∞ for large enough values ofm. Because we can makem arbitrarily large, there must be
a sequence of points {(xn, yn)}∞n=1 such that νn(xn, yn) = 1 for all n and (xn, yn) → (x0, y0)

as n → ∞. Likewise, for any point (x′, y′) ∈ Tt0+ε, there exists a large enough m such that∫


f(x′,y′),m(x, y) dν = 0, so

∫


f(x′,y′),m(x, y) dνn → 0 asn → ∞. This shows that, for large

enough n, the Radon measures νn will assign measure 0 to all points in a ball of radius ε/m
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about (x′, y′). From this, it is easy to conclude that g(νn) → g(ν) and h(νn) → h(ν).
Therefore, g and h are both continuous on N \D. By Lemma 15 and the continuous mapping
theorem, g(PM) converges in distribution to g(P∞) and h(PM) converges in distribution to
h(P∞).

The next goal is to show that g(PM)− σ(M1)
p−→ 0 and h(PM)− τ(M1)/ logN

p−→ 0. Then
we will haveσ(M1)

d−→ g(P∞) and τ(M1)/ logN
d−→ h(P∞). To achieve this, we will first show

that the probability that (x0, y0) corresponds to the cancer-causing type-1 mutation converges
in probability to 1. Suppose that (x0, y0) does not correspond to the cancer-causing type-1
mutation, and let (x1, y1) denote the point in 
 corresponding to the cancer causing type-1
mutation in M1. Let ε > 0, and suppose that (x1, y1) /∈ Tt0+ε. The point (x0, y0) ∈ Tt0
corresponds to a successful type-1 mutation in modelM1, and by the way that modelM1 marks
points in 
, there will be a type-2 mutation in model M1 that corresponds to a point in Tt0 .
The ray starting at (x1, y1) with an angle of π/4 will represent all of the descendants of the
cancer-causing type-1 mutation. The point on this line whose first coordinate is t0 will be
(t0, y

′′), where y′′ ≤ 1 − ε. In this case ρ(M1) = y′′ ≤ 1 − ε.
Let E1 be the event that (x0, y0) is the point in 
 that corresponds to the cancer-causing

type-1 mutation, and let E2 be the event that two or more points occur in Tt0+ε. On EC1 , let
(x1, y1) be the point in 
 corresponding to the cancer-causing type-1 mutation. We know that
PM converges in distribution to P∞ by Lemma 15, so

lim sup P(EC1 ) = lim sup(P(EC1 ∩ {(x1, y1) ∈ Tt0+ε})+ P(EC1 ∩ {(x1, y1) /∈ Tt0+ε}))
≤ lim sup P(E2)+ lim sup P(ρ(M1) < 1 − ε)

≤ A2

2
ε,

where the last line follows because ρ(M1)
p−→ 1 and P(E2) ≤ P(V ∩ (Tt0+ε \ Tt0) �= ∅).

Because ε > 0 was chosen arbitrarily, we have lim P(EC1 ) = 0.
The above has established that lim P(E1) = 1. By the definitions of σ(M1) and g(PM), it

is clear that
P(σ (M1)− g(PM) = 0 | E1) = 1

because σ(M1) = g(PM) = y0. Conditional on the event E1, we also know that τ ′(M1) =
(logN)x0. Let (x′

0, y
′
0) be the point in
 that corresponds to the type-2 mutation inM1, so that

ρ(M1) = y′
0. Let ν be the Radon measure of points in
 induced byM1, and consider the fact

that the descendants of the cancer-causing type-1 mutation will lie on a line starting at (x0, y0)

with angle π/4. It is clear that h(ν) = t0 = x0 +1−y0 and ρ(M1) = y0 +τ(M1)/ log(N)−x0.
Thus, if h(ν) − τ(M1)/ logN > ε then 1 − ρ(M1) > ε, or, equivalently, ρ(M1) < 1 − ε.
Therefore, because P(E1) → 1,

P

(
h(PM)− τ(M1)

logN
> ε

∣∣∣∣ E1

)
= P(ρ(M1) < 1 − ε | E1) → 0.

Again, using the fact that P(E1) → 1, we obtain the desired result.
Now we are left to show that g(P∞) and h(P∞) have the distributions that are stated in part 4

of Proposition 1. We have P(h(P∞) ≤ t) is the probability that a point of the Poisson process
with intensity A2(λ[1/2,1] × λ) has been marked in Tt . For t ≤ 1

2 , this is 1 − e−A2t2/2 and, for

t > 1
2 , this is 1 − e−A2t/2+A2/8. Therefore,

P

(
τ(M1)

logN
≤ t

)
→ (1 − e−A2t2/2) 1[0,1/2](t)+ (1 − e−A2t/2+A2/8) 1(1/2,∞)(t).
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To find the distribution of g(P∞), we will use the joint density function of g(P∞) and
h(P∞). From the above computation, it is clear that the density of h(P∞) is

fh(t) = A2te−A2t2/2 1[0,1/2](t)+ A2

2
e−A2t/2+A2/8 1(1/2,∞)(t).

Conditioned on the event that h(P∞) = t, we know that g(P∞) will have uniform distribution.
If t ≤ 1

2 then g(P∞) is uniformly distributed on the interval [1 − t, 1]. If t > 1
2 then g(P∞) is

uniformly distributed on [ 1
2 , 1]. This gives us the conditional density function

fg|h(s|t) =
⎧⎨
⎩

1

t
if 1 − t ≤ s ≤ 1 and 0 ≤ t ≤ 1

2 ,

2 if 1
2 ≤ s ≤ 1 and t > 1

2 .

Therefore, the joint density function of g(P∞) and h(P∞) is

f (s, t) = A2e−A2t2/2 1[0,1/2](t) 1[1−t,1/2](s)+ A2e−A2t/2+A2/8 1(1/2,∞)(t) 1[1/2,1](s).

Integrating over t we find that the density of g(P∞) is

fg(s) =
(∫ 1/2

1−s
A2e−A2t2/2 dt + 2e−A2/8

)
1[1/2,1](s).

This gives the desired limiting distribution for modelM1. By the usual coupling arguments,
the results will hold for model H1 as well.

Proof of part 6 of Proposition 1. Note that, under these conditions, both mutations occur
on daughter cells with probability tending to 1. First we consider a model M ′

1 in which only
generation l − 1 will acquire type-1 mutations and generation l will acquire type-2 mutations.
Also, assume that only one of the daughters will keep a mutation when the cells split so that
if a type-1 cell splits it has a type-0 daughter and a type-1 daughter. The rate at which the
type-1 mutations occur will be µN/4 since there are N/4 cells in generation l − 1. Note
that µN/4 ∼ A

√
N/4. The probability that a type-1 mutation will have a type-2 descendant is

1 − eµt ∼ µt ∼ At/
√
N . Therefore, the type-2 mutations occur according to a Poisson process

whose intensity measure ν satisfies ν([0, t]) ≥ (A
√
N/4)(At/

√
N) = A2t/4. We may have to

wait up to two time units for the type-2 mutation to occur after the successful type-1 mutation
appears. For the sake of a lower bound, we will always assume that it takes two time units after
a successful type-1 mutation until the type-2 mutation occurs. By coupling model M ′

1 with
model M1 in the obvious way we have lim inf P(τ (M1) ≤ t) ≥ 1 − e−2−A2t/4.

For the upper bound, we consider a modelM ′′
1 in which type-1 cells never undergo apoptosis.

There are N − 1 cells that acquire type-1 mutations, so the type-1 mutations occur at rate
µ(N − 1) ∼ A

√
N. If we wait t time units after a type-1 mutation has occurred on a cell then

the cell will have at most 2t descendants. If the type-1 mutation had occurred at time 0 and all
of the descendants had existed since the type-1 mutation occurred, then the probability that one
of the cells had acquired a type-2 mutation would be t2�t�µ ≤ t2tµ ∼ t2tA/

√
N . Because the

type-1 mutation may occur after time 0 and there have not been 2t descendants with the type-1
mutation since the mutation occurred, this is an upper bound on the probability that a type-2
mutation has occurred by time t . Therefore, the type-2 mutations occur according to a Poisson
process with intensity ν([0, t]) ≤ (A

√
N)(t2tA/

√
N) = t2tA2. By coupling model M ′′

1 with
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modelM1 in the obvious way we have lim sup P(τ (M1) ≤ t) ≤ 1 − e−A22t t . This shows part 6
of Proposition 1 with c = 1 − e−2−A2t/4 and C = 1 − e−A22t t .

By Corollary 1 we know that ρ(M1) → 1. By the definitions of σ(M1) and ρ(M1) for any
ε > 0, if ρ(M1)− σ(M1) > ε then τ(M1) > ε logN . Therefore,

P(ρ(M1)− σ(M1) > ε) ≤ P(τ (M1) > ε logN) ≤ e−A22δ logN(δ logN) → 0.

Let ε > 0 and δ > 0, and choose N large enough so that P(1 − ρ(M1) > ε/2) < δ/2 and
P(ρ(M1)− σ(M2) > ε/2) < δ/2. Then

P(1 − σ(M1) > ε) = P(1 − ρ(M1)+ ρ(M1)− σ(M1) > ε)

≤ P
(
1 − ρ(M1) >

1
2ε

) + P
(
ρ(M1)− σ(M1) >

1
2ε

)
< δ.

Therefore, σ(M1)
p−→ 1.

By the usual coupling arguments we obtain the same results for H1.

Appendix A

A.1. Notation

N The size of the population.
l Equals logN.
u1 The rate at which the stem cell line acquires type-1 mutations.
u2 The rate at which the stem cell line acquires type-2 mutations.
v1 The rate at which the daughter cells acquire type-1 mutations.
v2 The rate at which the stem cell line acquires type-1 mutations.
τ ′(A) The time at which the cancer-causing type-1 mutation occurs.
τ(A) The first time that any cell acquires a type-2 mutation in model A.
σ(A) Equals j/ l when the cancer-causing type-1 mutation occurs in generation j in

model A. If the cancer-causing type-1 mutation occurs on the stem cell then
σ(A) = 0.

ρ(A) Equals j/ l when the first type-2 mutation occurs in generation j in model A. If the
first type-2 mutation occurs on the stem cell then ρ(A) = 0.

α The number satisfying limN→∞ v2N
α = β for some β > 0.

X A exponentially distributed random variable with mean 1.

Y A random variable with the Rayleigh distribution. Namely, P(Y ≤ t) = 1 − e−t2/2
for t > 0.

µ The rate at which cells acquire mutations when u1 = u2 = v1 = v2.

A.2. Auxiliary models

H2 The same as model H1 except daughter cells may accumulate multiple type-1
mutations.

M1 The same as model H2 except no mutations occur on the stem cell line.
M2 The same as model H2 except that only stem cells receive type-1 mutations and only

daughter cells receive type-2 mutations.
M3 The same as model H2 except that only stem cells receive mutations.
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