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Abstract
One common approach to solve multi-objective reinforcement learning (MORL) problems is to extend conventional
Q-learning by using vector Q-values in combination with a utility function. However issues can arise with this
approach in the context of stochastic environments, particularly when optimising for the scalarised expected reward
(SER) criterion. This paper extends prior research, providing a detailed examination of the factors influencing the
frequency with which value-based MORL Q-learning algorithms learn the SER-optimal policy for an environment
with stochastic state transitions. We empirically examine several variations of the core multi-objective Q-learning
algorithm as well as reward engineering approaches and demonstrate the limitations of these methods. In particular,
we highlight the critical impact of the noisy Q-value estimates issue on the stability and convergence of these
algorithms.

1. Introduction
The goal of multi-objective reinforcement learning (MORL) is to expand the generality of reinforcement
learning (RL) methods to enable them to work for problems with multiple conflicting objectives (Roijers
et al., 2013; Hayes et al., 2022b). Traditional RL normally assumes that the environment is a Markov
decision process (MDP) in which the agent will receive a scalar reward after performing each action,
and the goal is to learn a policy that maximises a single long-term return based on those rewards (Sutton
& Barto, 2018). In contrast, MORL works with MOMDPs, where the reward values are vectors, with
each element in the vector corresponding to a different objective. Using vector rewards overcomes the
limitations of scalar rewards (Vamplew et al., 2022b) but also creates a number of new algorithmic
challenges.

One of the most common approaches used so far in the MORL literature is to extend standard scalar
RL algorithms such as Q-learning or Deep Q-Networks to handle vector rewards. We will cover the
details of how this is achieved in Section 2.2. While this method has been successfully applied, it has also
been demonstrated to have some significant shortcomings, particularly in the context of environments
with stochastic rewards and/or state transitions (Vamplew et al., 2022a).

This paper provides a more detailed examination of the issues identified by Vamplew et al. (2022a).
We explore various methods by which the issues caused by the local decision-making aspect of Q-
learning might be solved or ameliorated, including changes in reward design, as well as algorithm
modifications. In addition we examine the extent to which the noisy Q-value estimates issue is a key
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factor impeding the ability of value-based MORL methods to converge to optimal solutions in stochastic
environments.

Section 2 provides the required background, giving a general introduction to MORL and MOMDPs,
as well as more specific detail on the issues faced by value-based MORL algorithms in environments
with stochastic state dynamics. Section 3 provides an overview of the experimental methodology, includ-
ing the Space Traders MOMDP which will be used as a benchmark. The following four sections report
and discuss experimental results from four different approaches (baseline multi-objective Q-learning,
reward engineering, an extension of MO Q-learning to incorporate global statistics, and MO Q-learning
using policy options). The paper concludes in Section 8 with an overview of the findings, and suggestions
for future work to address the task of learning optimal policies for stochastic MOMDPs.

2. Background
2.1 Multi-objective reinforcement learning
The basic multi-objective sequential decision problem can be formalised as a multi-objective Markov
decision process (MOMDP). It is represented by the tuple 〈S, A, T , μ, γ , R〉 where:

• S is a finite set of states
• A is a finite set of actions
• T : S × A × S → [0, 1] is a state transition function
• μ : S → [0, 1] is a probability distribution over initial states
• γ ∈ [0, 1) is a discount factor
• R : S × A × S → Rd is a vector-valued reward function which defines the immediate reward for

each of the d ≥ 2 objectives.

So the main difference between a single-objective MDP and a MOMDP is the vector-valued reward
function R, which specifies a numeric reward for each of the considered objectives. The length of the
reward vector is equal to the number of objectives. The generalisation of RL to include vector rewards
introduces a number of additional issues. Here we will focus on those which are of direct relevance to
this study; for a broader overview of MORL we recommend (Roijers et al., 2013; Hayes et al., 2022b).

2.1.1 Action selection and scalarisation
The most obvious issue is that the optimal policy is less clear because there may be multiple optimal
policies (in terms of Pareto optimality). Therefore, MORL requires some approach for ordering those
vector values.

There has been a trend in recent literature to adopt a utility-based approach as proposed by Roijers
et al. (2013). This approach utilises domain knowledge to define a utility function which captures the
preferences of the user. In value-based MORL, the utility (aka scalarisation) function is used to deter-
mine an ordering of the Q-values for the actions available at each state, in order to determine the action
which is optimal with respect to the user’s utility. These functions can be broadly divided into two
categories, which are linear and monotonically increasing nonlinear functions.

Linear scalarisation is straightforward to implement, as it converts the MOMDP to an equivalent
MDP (Roijers et al., 2013). However, it also suffers from a fundamental disadvantage that it is inca-
pable of finding deterministic policies with expected returns lying in concave regions of the Pareto front
(Vamplew et al., 2008)1. Also in some situations, a linear scalarisation function is not sufficient to han-
dle all types of user preferences. For example, MORL approaches to fairness in multi-user systems use
nonlinear functions such as the Nash Social Welfare function or the Generalised Gini Index (Siddique
et al., 2020; Fan et al., 2022).

1For applications where stochastic or non-stationary policies are acceptable, linear scalarisation can be used to find a set of
policies on the convex hull of the Pareto front which can then be combined to form an SER-optimal policy (Vamplew et al., 2009;
Lu et al., 2023). In this work, we consider only deterministic stationary policies as in some applications these may be be the only
acceptable policies.
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Therefore, monotonically increasing (nonlinear) scalarisation functions have been introduced (e.g.
Van Moffaert et al., 2013). These adhere to the constraint that if a policy increases for one or more of
the objectives without decreasing any of the other objectives, then the scalarised value also increases
(Hayes et al., 2022b). One notable example is the thresholded lexicographic ordering (TLO) method
which allows agent to select actions prioritised in one objective and meet specified thresholds on the
remaining objectives (Gábor et al., 1998; Issabekov & Vamplew, 2012).

Under non-linear functions (such as TLO) the rewards are no longer additive which violates the
usage of the Bellman equation for value-based methods (Roijers et al., 2013). To address this, for value-
based MORL both action selection and Q-values must be conditioned on the current state as well as a
summary of the history of prior rewards (see Algorithm 1 —lines 11 and 17 create an augmented state
via a concatenation of the environmental state and the history of prior rewards, and Q-values and action
selection are based off this augmented state).

2.1.2 Single-policy versus multi-policy methods
In single-objective RL the aim is to find a single, optimal policy. In contrast for MORL, an algorithm
may need to find a single or multiple policies depending on whether or not the user is able to provide
the utility function prior to the learning or planning phase. For example, if the user already knows in
advance their desired trade-off between each objective, then the utility function is known in advance
and fixed. Therefore there is no need to learn multiple policies as the agent can simply find the optimal
policy which maximises that utility. On the other hand, if the utility function cannot be designed before
the training or the preferences could change over time, then the agent has to return a coverage set of all
potentially optimal policies. The user will then select from this set to determine which policy will be
used in a particular episode.

If we consider the scenario of planning a trip as an example, the traveller may or may not know the
exact preferences about getting to the destination in terms of when to get there and how much the trav-
eller is willing to spend on this journey. So in this case, the algorithm needs to learn all non-dominated
policies. However, if the traveller has a preference about how long they can take to arrive at their desti-
nation or there is a certain budget associated with this trip, then a single policy will be enough to satisfy
their preferences.

2.1.3 Scalarised expected returns versus expected scalarised returns
According to Roijers et al. (2013), there are two distinct optimisation criteria compared with just a single
possible criteria in conventional RL2. The first one is expected scalarised return (ESR). In this approach,
the agent aims to maximise the expected value which is first scalarised by the utility function, as shown
below (Equation 1) where w is the parameter vector for utility function f , rk is the vector reward on
time-step k, and γ is the discounting factor

Vπ

w (s) = E[f

( ∞∑
k=0

γ krk, w
)

| π , s0 = s) (1)

ESR is the appropriate criteria for problems where the aim is to maximise the expected outcome within
each individual episode. A good example is searching for a treatment plan for a patient, where there is a
trade-off between cure and negative side effect. Each patient would only care about their own individual
outcome instead of the overall average.

The second criteria is scalarised expected return (SER), which estimates the expected rewards per
episode and then maximises the scalarised expected return, as shown in (Equation 2)

Vπ

w (s) = f (Vπ (s), w) = f

(
E[

∞∑
k=0

γ krk | π , s0 = s], w
)

(2)

2Conventional single-objective RL does not use a scalarisation function, and so the ESR and SER criteria are the same in this
context. Similarly the ESR and SER criteria do not result in different policies for an MOMDP when using linear scalarisation.
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So SER formulation is used for achieving the optimal utility considered over multiple executions.
Continuing with the travel example, the employee wants to cut down on the amount of time spent trav-
elling to work each day. Travelling by car would be the good option on average, although there may be
rare days on which it is considerably slower due to an accident.

2.2 Multi-objective Q-learning and stochastic environments
In contrast to much of the prior work on MORL which has used deterministic environments, Vamplew
et al. (2022a) examined the behaviour of multi-objective Q-learning in stochastic environments. They
demonstrated that in order to find the SER-optimal policy for problems with stochastic rewards and
a non-linear utility function, the MOQ-learning algorithm needs action selection and Q-values to be
conditioned on the summed expected rewards in the current episode, rather than the summed actual
rewards (see Lines 15–18 in Algorithm 1).

2.2.1 SER optimality and local decision-making
Vamplew et al. (2022a) also identified that existing value-based model-free MORL methods may fail
to find the SER optimal policy in environments with stochastic state transitions. Under this type of
environment, following the same policy may result in different trajectories and rewards in each episode.
Since the scalarised expected reward (SER) criteria aims to achieve the optimal utility over multiple
executions, the overall policy in order to meet that constraint depends on the probability with which each
trajectory is encountered. Therefore, determining the correct action to select at each possible trajectory
requires the agent to also consider the returns received in every other trajectory in combination with the
probability of that trajectory having been followed (Bryce et al., 2007).

This requirement is incompatible with standard value-based model-free methods like Q-learning,
where it is assumed that the best action can be fully determined from the local information available to
the agent at the current state. Augmenting that state information with the sum of expected rewards as
in Algorithm 1 is insufficient as this still only provides information about the trajectory which has been
followed in this episode, rather than all possible trajectories that agent might experience under this same
policy.

A recent paper by Vincent (2024) proposes a model-free, value-based MORL algorithm called K-
learning which can, on most executions, successfully learn the optimal SER policy on the environments
from Vamplew et al. (2022a). This is achieved by conditioning the Q-values and the newly introduced
K-values (and hence the resulting policy) on the entire trajectory rather than just the current state. As
such, this approach suffers from scaling issues, as a tabular implementation of K-learning has memory
requirements that are exponential with respect to the number of states. One of the aims of this paper is
to examine whether SER-optimality can be reliably achieved by value-based algorithms which are more
suitable for large environments.

2.2.2 Noisy estimates
A second issue, identified by both Vamplew et al. (2021) and Vamplew et al. (2022a), is the problem of
noisy Q-value estimates. The current policy of the agent is determined by the Q-values, which estimate
the value of each action in the current state. Small errors in these estimates may lead to the selection of
an alternative action.

Noisy estimates are not unique to multi-objective RL. It is well-known that value-based RL algo-
rithms may produce estimates which deviate from the true values, with Q-learning in particular being
prone to over-estimation (Van Hasselt et al., 2018). However, MORL using non-linear scalarisation
is particularly sensitive to any errors in Q-values. Consider a situation in scalar RL where only two
actions exist (a1 and a2) and a1 is optimal, that is for the true values of each action, Q(a1) > Q(a2). If
the addition of a small amount of estimation noise is sufficient for the agent to instead prefer a2 (i.e. if
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Algorithm 1 Multi-objective Q(λ) using accumulated expected reward as an approach to finding
deterministic policies for the SER context (Vamplew et al., 2022a).

input: learning rate α, discounting term γ , eligibility trace decay term λ, number of objectives n,
action-selection utility function f and any associated parameters
1: for all augmented states sA, actions a and objectives o do
2: initialise Qo(sA, a)
3: initialise Io(s, a) � estimated immediate (single-step) reward
4: end for
5: for each episode do
6: for all augmented states sA and actions a
7: e(sA, a)=0
8: end for
9: sums of prior expected rewards Po = 0, for all o in 1.n
10: observe initial state st

11: sA
t = (st, P) � create augmented state

12: select at from an exploratory policy derived using f (Q(sA))
13: for each step of the episode do
14: execute at, observe st+1 and reward Rt

15: update I(st, at) based on Rt

16: P = P + I(st, at)
17: sA

t+1 = (st+1, P) � create augmented state
18: U(sA

t+1) = Q(sA
t+1) + P � create value vector

19: select a∗ from a greedy policy derived using f (U(sA
t+1))

20: select a′ from an exploratory policy derived using f (U(sA
t+1))

21: δ = Rt + γ Q(sA
t+1, a∗) − Q(sA

t , at)
22: e(sA

t+1, at) = 1
23: for each augmented state sA and action a do
24: Q(sA, a) = Q(sA, a) + αδe(sA, a)
25: if a′ = a∗ or (sA = sA

t+1 and a = a′) then
26: e(sA, a) = γ λe(sA, a)
27: else
28: e(sA, a) = 0
29: end if
30: end for
31: sA

t = sA
t+1, at = a′

32: end for
33: end for

Q(a1) < Q(a2) + ε), then this implies that the loss of utility from this incorrect decision can be no larger
than ε. A similar argument holds for the multi-objective case with linear scalarisation. However, in the
context of MORL with non-linear utility, this impact can be much larger as two actions with very dif-
ferent reward vectors may have similar scalarised values. This is particularly true for highly non-linear
functions like TLO. Here a small change in the estimated value of the thresholded objective for an action
can lead to it incorrectly being regarded as now satisfying the threshold (or vice-versa). Hence small
amounts of noise may have a large impact on the actual reward vector received. Consider an example
with two objectives where Q(a1) = (10, 5), Q(a2) = (8.5, 6) and the user’s utility function based on TLO
is defined as f (�v) = v2 if v1 > 0.88 and v2 − 100 otherwise. Adding a small amount of noise (0.5, 0) to
Q(a2) will cause the agent to perceive this action to have a utility of 6 and hence prefer it to a1. But
the actual utility of a2 is -94, which is substantially lower than the true utility of a1 which is 5. This
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demonstrates that for a non-linear definition of utility, the relationship between the magnitude of noise
in Q-value estimates and the regret from errors induced by that noise is itself non-linear, and therefore,
small errors in estimates may give rise to arbitrarily large losses in user utility.

As well as having an immediate impact on the utility of the user, noisy estimates may also neg-
atively impact on the actual learning process of a MORL agent. Vamplew et al. (2024) identified a
phenomenon which they label value interference, that can arise when an MORL agent attempts to learn
Q-values which are vectors. When a particular action (s,a) can lead to multiple different vector returns,
the agent will tend to learn a value of Q(s,a) which is a mean of those future returns, weighted by the
frequency with which these are experienced. For non-linear f , the utility of that weighted mean may
differ considerably from the utility of the actual future returns, and this may interfere with the agent’s
convergence to the optimal policy. Vamplew et al. (2024) demonstrate value interference arising from
stochasticity, either in the environment itself or in the behaviour of the agent. Noisy estimates can also
produce conditions under which value interference can occur. If noisy estimates lead to the agent’s
choice of optimal action changing frequently (as is evident in the empirical results later in this paper,
such as in Figure 2), the Q-values at previous states will transition from those of the previously greedy
action to the new greedy action. If those actions have substantially different vector values, this may cause
value interference and hinder the agent’s learning. Again, value interference arises only in the context
of vector Q-values and non-linear scalarisation, so this particular impact of noisy estimation is specific
to learning under those conditions.

The problem of noisy estimates is not specific to stochastic environments. However, it will be more
evident in this context as the variation in future returns due to the stochasticity will in itself result in
greater variation in the Q-value estimates.

3. Experimental methodology
The previous section identified two factors that might prevent value-based MORL algorithms from
learning SER-optimal policies in stochastic environments—local decision-making and noisy estimates.
The main aim of this paper is to examine the importance of these factors, and to empirically explore
possible approaches for addressing these issues, while remaining within the overall model-free value-
based MORL framework. We provide here an overview of the aspects of the experimental methodology
which were common across all experiments, while later sections will provide details of the individual
approaches and any specific experimental modifications required during their evaluation.

3.1 Approaches tested
The experiments evaluate four MORL methods, including a baseline method.

• Baseline approach—This is basic MOQ-learning with expected accumulated reward as shown
in Algorithm 1. This was used to replicate the original results of Vamplew et al. (2022a) to
serve as a baseline for evaluating the performance of the other approaches.

• Reward engineering approach—This approach modifies the design of the reward signal, while
continuing to use the baseline algorithm.

• Global statistics approach—Here we introduce a novel heuristic algorithm which includes
global statistical information during action selection in an attempt to address the issues caused
by purely local decision-making.

• Options-inspired approach—This approach draws on the concept of an option as a ‘meta-
action’ which determines the action selection over multiple time-steps compared with single
time-step in the baseline method.

In parallel with these experiments, we also investigate the impact of the noisy estimates issue on
the performance of these algorithms. This is achieved by decaying the learning rate of MOQ-learning
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A B
p=0.9; r=(0,-6)

p=0.1; r=(0,-1)

p=0.9; r=(1,-8)

p=0.1; r=(0,-7)

p=1.0; r=(1,-10)

p=1.0; r=(0,-12)

p=0.85; r=(0,0)
p=0.15; r=(0,0)

p=0.85; r=(1,0)

p=0.15; r=(0,0)

Direct Indirect Teleport

Figure 1. The Space Traders MOMDP. Solid black lines show the Direct actions, solid grey line show
the Indirect actions, and dashed lines indicate Teleport actions. Solid black circles indicate terminal
(failure) states (Vamplew et al., 2022a)

from its initial value to zero over the training period. This ensures that the Q-values should over time
vary from their true values by smaller amounts, and allows us to examine the impact this has on each
approach’s ability to correctly identify the SER-optimal policy.

3.2 Performance measure
The focus of this paper is on evaluating how effectively value-based MORL can identify the SER-optimal
policy for a MOMDP with stochastic state transitions. Therefore our key metric is the frequency with
which each approach converges to the desired optimal policy. Each approach was executed for twenty
trials, and we measure how many of these trials result in a final greedy policy which is SER-optimal.

For each of the approaches implemented in this research, the following data was collected for each
of the twenty trials in each experiment.

• The reward that is collected by the agent during 20 000 episodes of training
• For each episode, the greedy policy according to the agent’s current Q-values (note: this policy

was not necessarily followed during this episode, due to the inclusion of exploratory actions)
• After training, the final greedy policy learnt by the agent. This was compared against the SER-

optimal policy for the environment to determine whether the trial was a success or not.

3.3 Space Trader environment
The Space Traders shown in Figure 1 was the environment used by Vamplew et al. (2022a) to identify
the issues discussed in Section 2.2, and so it will form the basis for our experiments. It is a simple finite-
horizon task with only two steps and it consists of two non-terminal states with three actions (direct,
indirect, and teleport) available to choose from each state. The agent starts from planet A (State A) and
travels to planet B (state B) to deliver shipment and then returns back to planet A with the payment.
The reward for each action consists of two parts. The first element is whether the agent successfully
returned back to planet A. So the agent only receives 1 as reward on last successful action and 0 for all
other actions, including those which result in a terminating state corresponding to mission failure. The
second element is a negative penalty which indicates how long this action takes to execute.

Table 1 shows the transition probabilities, immediate reward for each state-action pair and mean
rewards as well. The reason for selecting Space Traders as the testing environment is because it is a
relatively small environment. So, it is easy to list all of the nine possible deterministic policies which
are shown in Table 2. For these experiments we assume the goal of the agent is to minimise the time
taken to complete the travel as well as having at least equal or above 88% probability of successful
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Table 1. The probability of success and reward values for each state-action pair in the
Space Traders MOMDP (Vamplew et al., 2022a)

State Action P(success) Reward on success Reward on failure Mean reward
A Indirect 1.0 (0,-12) n/a (0,-12)

Direct 0.9 (0, -6) (0, -1) (0, -5.5)
Teleport 0.85 (0,0) (0,0) (0, 0)

B Indirect 1.0 (1, -10) n/a (1, -10)
Direct 0.9 (1, -8) (0, -7) (0.9, -7.9)
Teleport 0.85 (1, 0) (0, 0) (0.85, 0)

Table 2. The mean return for the nine available deterministic policies for
the Space Traders Environment (Vamplew et al., 2022a)

Policy identifier Action in state A Action in state B Mean return
II Indirect Indirect (1, -22)
ID Indirect Direct (0.9, -19.9)
IT Indirect Teleport (0.85, -12)
DI Direct Indirect (0.9, -14.5)
DD Direct Direct (0.81, -12.61)
DT Direct Teleport (0.765, -5.5)
TI Teleport Indirect (0.85, -8.5)
TD Teleport Direct (0.765, -6.715)
TT Teleport Teleport (0.7225, 0)

Table 3. Hyperparameters used for experiments with the Space Traders environment

softmax-t initial softmax-t final Number of episodes
Parameter α λ γ temperature temperature per training run
Value 0.01 0.95 1 10 2 20 000

completion (i.e. we are using TLO, with a threshold applied to the success objective). Under this utility
function, the optimal policy is DI as it is the fastest policy which achieves a mean return of 0.88 or
higher for the first objective.

The hyperparameters used for experiments on the Space Traders environment can be found in Table 3.
These were kept the same across all experiments so as to facilitate fair comparison between the different
approaches. For exploration we use a multi-objective variant of softmax (softmax-t) (Vamplew et al.,
2017).

In some of the following experiments we will introduce variations of the original Space Traders
environment in order to demonstrate that methods solving the original problem may fail under small
changes in environmental or reward structure, illustrating that they do not provide a general solution to
the problem of learning SER-optimal policies.

3.4 Scope
We have made several decisions to restrict the scope of this study, so as to focus on the specific issues
of interest (solving SER-optimality for stochastic state transitions, and analysing the impact of noisy
estimates on MOQ-learning).

These issues can arise both in the context of single-policy and multi-policy MORL, but here we
consider only single-policy approaches to simplify the analysis. Similarly we examine only a single
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Table 4. The final greedy policies learned in twenty indepen-
dent runs of the baseline multi-objective Q-learning algorithm
(Algorithm 1) on the Space Traders environment

Policy DI ID II IT
Baseline 1 13 4 2

choice of utility function—TLO was selected as it has been widely used in the MORL literature (Gábor
et al., 1998; Hayes et al., 2020; Issabekov & Vamplew, 2012; Jin & Ma, 2017; Dornheim, 2022; Tercan,
2022; Lian et al., 2023), and has previously been shown to be particularly sensitive to noisy Q-value
estimates (Vamplew et al., 2022a). Finally, the simplicity of the Space Traders task allows us to use
a tabular form of MOQ-learning, meaning that the noisiness of the estimates arises directly from the
stochasticity of the environment. The problems identified in this study would be expected to be even more
prevalent for Deep MORL methods, where the use of function approximation introduces an additional
source of error for the Q-values.

4. Experimental results—baseline MOQ-learning
This experiment used the baseline MOQ-learning algorithm. The aim was to confirm the original find-
ings of Vamplew et al. (2022a), and provide a baseline for the later experiments. Table 4 summarises
the distribution of the final greedy policy learned over twenty independent training results.

The empirical results show that the desired optimal policy (DI) was not converged to in practice,
with it being identified as the best policy in only one of twenty runs. This is comparable with the results
reported for this method by Vamplew et al. (2022a). They explained this behaviour by noting that regard-
less of which action the agent selected at state A, if state B is successfully reached, then a zero reward
will have been received by the agent for the first objective. In other words, the accumulated expected
reward for the first objective at state B is zero. Therefore, the choice of action at state B is purely based
on the action values at that state. Now looking at the mean action values for state B which is reported in
Table 1, it can be seen that the teleport action will be eliminated because it fails to meet the threshold for
the first objective, and the direct action will be preferred over indirect action as both meet the threshold,
and direct action takes less time penalty in second objective. Therefore, the agent will choose the direct
action at state B regardless of which action the agent selected at state A. As the result, this agent at
state A will only consider Policy ID, DD and TD and only policy ID is above the threshold for the first
objective if we look back the mean reward in Table 2. Therefore the agent converges to the suboptimal
policy ID in most trials.

In addition the issue of noisy estimates means that the agent will sometimes settle on another policy,
including a policy which does not even meet the success threshold. This is illustrated in Figure 2 which
visualises the learning behaviour of the baseline method (Algorithm 1) during four of the twenty trials,
selected so as to include one example of each of the four different final policies learned by this algorithm,
as listed in Table 4. Each subpart of the figure illustrates a single run of the baseline algorithm. For each
episode, the policy which the agent believed to be optimal at that stage of its learning is indicated by a
blue bar. The green dashed line indicates the threshold for the first objective. The policies on the vertical
axis are sorted to indicate that only the DI, ID and II policies meet this constraint. As we can see from all
of these policy charts, the agent’s behaviour is unstable with frequent changes in its choice of optimal
policy. Policy ID is the most frequently selected across 20 000 episodes, which reflects why it is the most
frequent final outcome, but in many runs the agent winds up with a different final policy. In particular,
it can be seen that policies beneath the threshold are regarded as optimal on an intermittent basis, which
indicates that the agent’s estimate of the value of these policies must be inaccurate.

To highlight the impact of noisy estimates, we ran a further twenty trials during which the learning
was linearly decayed from its initial learning rate to zero. All other hyperparameters were the same as
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Table 5. The final greedy policies learned in twenty indepen-
dent runs of baseline multi-objective Q-learning (Algorithm 1)
with constant or decayed learning rates for the Space Traders
environment

Policy DI ID II IT
Constant learning rate 1 13 4 2
Decayed learning rate 0 20 0 0

(a) (b)

(c) (d)

Figure 2. Policy charts showing the greedy policy produced by the baseline multi-objective Q-learning
algorithm (Algorithm 1) on the Space Traders environment. Each chart shows the greedy policy identified
by the agent at each episode of four different trials, culminating in different final policies. The dashed
green line represents the threshold used for TLO, to highlight which policies meet this threshold

in the previous trials of the baseline algorithm. Decaying the learning rate will minimise the impact of
the environmental stochasticity on the variation of the agent’s Q-values, and should result in increased
stability in the choice of greedy policy. Table 5 summarises the final policies learned during these trials,
while Figure 3 visualises the choice of greedy policy over two representative trials, one with a constant
learning rate and one with a decayed learning rate. Both of these trials culminate in the final greedy
policy being ID.

As can be seen from Table 5, the decayed learning rate does indeed result in more stable and consistent
learning behaviour, as the agent converges to the same final policy in all twenty trials, compared to the
diverse set of final policies evident under a constant learning rate. The policy chart in Figure 3 also indi-
cates that gradually decaying the learning rate reduces the influence of the environmental stochasticity.
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(a) (b)

Figure 3. The Policy chart for baseline method with a decayed learning rate in the Space Traders
Environment

After 15 000 episodes, the agent converges to a single fixed greedy policy until the end of the experiment.
So clearly the decayed learning rate helps to eliminate the impact of environmental stochasticity on this
agent, allowing it to reliably converge to the same solution. However this also highlights the inability
of the baseline method to learn SER-optimal behaviour, as it consistently converges to the suboptimal
policy ID in all twenty trials, never finding the desired DI policy.

The results in this section of the study reveal two main findings:
• The baseline MOQ-learning algorithm fails to learn the SER-optimal policy in the majority of

trials (confirming the findings of Vamplew et al., 2022a).
• The noisy estimates arising from environmental stochasticity lead to instability in the greedy

policy learned by MOQ-learning, with variations both within and between trials.

For clarity, the next two sections of the paper will focus on the first issue, by examining algorithmic
modifications designed to allow learning of the SER-optimal policy. We will present results of these
approaches in conjunction with the use of a decayed learning rate, so that the performance of each
approach can be assessed relatively independently of the noisy estimates issue. We will return to the
issue of noisy estimates in the latter half of Section 7. Results and discussion for the approaches covered
in Sections 5 and 6 with a constant learning rate are available in Appendix A.

5. Reward engineering
In the remainder of the paper we examine various approaches for addressing the inability of the baseline
MOQ-learning algorithm to reliably identify the SER-optimal policy for the Space Traders environ-
ment. The first approach we consider is to modify the reward structure of Space Traders, while retaining
the same environmental dynamics. While the dynamics of state transitions is an intrinsic component
of the environment, the reward function is generally specified by a human designer, with the aim of
producing the desired behaviour from the agent. Therefore modifying the reward structure is within
the designer’s control, and a better-designed reward signal may allow for improved performance by the
agent. Therefore, the most simple and natural approach is to modify the reward structure first without
actually changing the original MOQ-learning algorithm.

5.1 Modified reward structure and results
A version of Space Traders with a modified reward design is shown in Figure 4—we will refer to this
as Space Traders MR. The agent will receive a -1 reward for the first objective when visiting one of the
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Table 6. The probability of success and reward values for each state-action pair in Space
Traders MR

State Action P(success) Reward on success Reward on failure Mean reward
A Indirect 1.0 (0,-12) n/a (0,-12)

Direct 0.9 (0, -6) (-1, -1) (-0.1, -5.5)
Teleport 0.85 (0,0) (-1,0) (-0.15, 0)

B Indirect 1.0 (1, -10) n/a (1, -10)
Direct 0.9 (1, -8) (-1, -7) (0.8, -7.9)
Teleport 0.85 (1, 0) (-1, 0) (0.7, 0)

Table 7. The final greedy policies learned in twenty independent runs
of the Algorithm 1 with a decayed learning rate for Space Traders MR
environment, compared to the original Space Traders environment

Environment DI ID II IT TI DD
Space Traders—original 0 20 0 0 0 0
Space Traders MR 20 0 0 0 0 0

Figure 4. The Space Traders MR environment, which has the same state transition dynamics as the
original Space Traders but with a modified reward design. The changed rewards have been highlighted
in red

terminal states, receive +1 when reaching the goal state, and 0 for other intermediate transitions. The
motivation here is to provide additional information to the agent at State A regarding the likelihood of
any action leading to a terminal state. As can be seen from the top-half of Table 6, under the new reward
design, the three actions from state A have differing mean immediate rewards for the first objective of
0, -0.1, and -0.15.

As a consequence, the threshold value of the utility function also needs to be updated, because the
total rewards for the first element are now ranging from -1 to 1 instead of 0 to 1. Adjusting for this change
in range results in a revised threshold equal to 0.88 ∗ 1 + 0.12 ∗ (− 1) = 0.76. All other algorithmic
settings remain the same as in Section 4.

As shown in Table 7, the MOQ-learning agent using the modified reward signal and a decayed learn-
ing rate converges to the optimal DI policy in all 20 trials. The policy chart in Figure 5(a) shows the
agent learns quite stably, settling on the optimal policy without deviation after about 16,000 episodes.

5.2 Space Traders with modified state structure
The results in the previous section show that modifying the reward structure to explicitly provide a
negative reward component on transitions to fatal terminal states allows for improved performance from
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(a) (b)

Figure 5. Policy charts for MOQ-learning on the Space Traders MR and 3ST environments. Chart (a)
shows convergence to the SER-optimal DI policy on Space Traders MR, whereas (b) shows convergence
to the suboptimal ID policy when applying the same algorithm and reward design to the Space Traders
3ST environment

Figure 6. The Space Traders 3-State environment which adds an additional state C to the Space Traders
MOMDP with a more complex state structure. All the changes have been highlighted in red color

the MOQ-learning algorithm on the SpaceTraders environment. However in order for this approach to
be useful, we need to confirm that similar reward structures which capture relevant information about
transitions to terminal states are possible regardless of the structure of the environment and its state
dynamics.

To investigate this, we introduce a variant of the Space Traders environment with an additional state
as shown in Figure 6—this will be referred to as Space Traders 3-State (3ST). It includes a new state C
reached when the agent selects the direct action at state A. This introduces a delay between the selection
of the direct action at A, and the ultimate reaching of the terminal state (and consequent negative reward
for the first objective).

The empirical results from twenty trials in Table 8 show that the desired optimal policy (DI) was
not converged to in practice for the Space Traders 3-State environment. A closer examination of the
behaviour of the agent on Space Traders MR shows that at state B the agent will have different accu-
mulated expected reward for the first objective depending on which action was chosen at State A. For
example, if the agent selects the Direct action and successfully reaches state B, the ideal accumulated
expected reward for the first objective will be 0.9 ∗ 0 + 0.1 ∗ (− 1) = −0.1 when the action values are
learned with sufficient accuracy. This will lead the agent to select the indirect action in state B. But
in the Space Traders 3-State variant environment, the accumulated expected reward will be zero when
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Table 8. The final greedy policies learned in twenty independent runs of
the Algorithm 1 for Space Traders 3-State environment, compared to the
Space Traders MR environment. All runs used a decayed learning rate

Environment DI ID II IT TI DD TD
Space Traders MR 20 0 0 0 0 0 0
Space Traders 3ST 0 20 0 0 0 0 0

the agent reaches state B by taking direct action (as was also the case for the original Space Traders
MOMDP). As a result, the agent converges to the suboptimal policy ID in practice again.

This example illustrates that while it may be possible in some cases to encourage SER-optimal
behaviour via a careful designing of rewards, more generally the structure of the environment may make
it difficult or impossible to identify a suitable reward design. The modified reward used for Space Traders
MR was based on a simple principle of providing a -1 reward for the success objective on any transitions
to a terminal state. For this particular environment structure, this reward signal essentially captures the
required information such as the transition probabilities within the accumulated expected reward for the
first objective. However, as shown by the Space Traders 3-State variant, this reward design principle is
not sufficient in general. Therefore, relying on the reward designer being able to create a suitable reward
structure is insufficient to provide a general means to address issues in stochastic environments under
SER criteria.

6. Incorporation of global statistics
As identified previously, the main issue for applying MOQ-learning algorithm to stochastic environment
is that the action selection at given state is purely based on local information (the Q values for the current
state) and current episode information (accumulated expected reward) (Vamplew et al., 2022a). This is
the same issue previously identified for multi-objective planning algorithms by Bryce et al. (2007).
However, in order to maximise the expected utility over multiple episodes (SER criteria) the agent must
also consider the expected return on other episodes where the current state is not reached. In other
words, the agent must also have some level of knowledge about global statistics in order to maximise
scalarised expected return (SER). Therefore, the second approach we examine is to include extra global
information within the MOQ-learning algorithm.

6.1 Multi-objective Stochastic State Q-learning (MOSS)
To support this idea, Multi-objective Stochastic State Q-learning (MOSS)(Algorithm 2) is introduced3.
Here are the changes compared with previous MOQ-learning (Algorithm 1)

• The agent maintains two pieces of global information: the total number of episodes experienced
(vπ ), and an estimate of the average per-episode return (Eπ )—implemented by lines 7, 8, 10,
and 40 of Algorithm 2.

• For every state, the agent maintains a counter of episodes in which this state was visited at least
once (v(s) which is updated by line 2 of Algorithm 3), and the estimated average return in those
episodes (E(s)—lines 41–43 of Algorithm 2)).

• Action selection is based on U(SA
t ) which for each action in the current augmented state,

estimates the mean per-episode vector return for a policy which selects that action in this aug-
mented state. Importantly the value of U is determined not just by the returns of episodes in

3This algorithm was named by the second author in honour of IT pioneer Maurice Moss.
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Algorithm 2 The multi-objective stochastic state Q(λ) algorithm (MOSS Q-learning). Highlighted
text identifies the changes and extensions introduced relative to multi-objective Q(λ) as previously
described in Algorithm 1.

input: learning rate α, discounting term γ , eligibility trace decay term λ, number of objectives n,
action-selection function f and any associated parameters
1: initialise Qo(sA, a) all augmented states sA, actions a
2: for all states s, actions a and objectives o do
3: initialise Io(s,a) estimated immediate (single-step) reward
4: initialise Po(s) expected cumulative reward when s is reached
5: initialise v(s)= 0 count of visits to s
6: end for
7: initialise Eπ estimated return over all episodes
8: initialise vπ = 0 count of all episodes
9: for each episode do
10: vπ = vπ + 1 increment episode counter
11: for all augmented states sA and actions a do
12: e(sA, a)=0;
13: end for
14: for all states s do
15: b(s)= 0 binary flag−was s visited in this episode?
16: end for
17: sums of prior rewards Po = 0, for all o in 1.n
18: observe initial state st

19: call Algorithm 3 to update stats and create augmented state and utility vector
20: sA

t , U(sA
t ) = update-statistics(st,P)

21: select at from an exploratory policy derived using f (U(sA
t ))

22: for each step of the episode do
23: execute at, observe st+1 and reward Rt

24: P = P + Rt

25: sA
t+1, U(sA

t+1) = update-statistics(st+1,P)
26: select a∗ from a greedy policy derived using f (U(sA

t+1))
27: select a from an exploratory policy derived using f (U(sA

t+1))
28: δ = Rt + γ Q(sA

t+1, a
∗)− Q(sA

t , at)
29: e(sA

t , at)= 1
30: for each augmented state sA and action a do
31: Q(sA, a)= Q(sA, a)+ αδe(sA, a)
32: if a = a∗ or (sA = sA

t+1 and a = a ) then
33: e(sA, a)= γ λe(sA, a)
34: else
35: e(sA, a)= 0
36: end if
37: end for
38: sA

t = sA
t+1, at = a

39: end for
40: Eπ = Eπ + α(P − Eπ ) update estimates of per-episode return
41: for all states with b(s) 0 do
42: E(s)= E(s)+ α(P − E(s))
43: end for
44: end for
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Algorithm 3 The update-statistics helper algorithm for MOSS Q-learning (Algorithm 2). Given a
particular state s it updates the global variables which store statistics related to s. It will then return
an augmented state formed from the concatenation of s with the estimated mean accumulated
reward when s is reached, and a utility vector U which estimates the mean vector return over all
episodes for each action available in s

input: state s, accumulated rewards in the current episode P
1: if b(s) = 0 then � first visit to s in this episode
2: v(s) = v(s) + 1 � increment count of visits to s
3: b(s) = 1 � set flag so duplicate visits within an episode are not counted
4: end if
5: P(s) = P(s) + α(P − P(s))
6: sA = (s,P(s)) � augmented state
7: p(s) = v(s)/vπ � estimated probability of visiting s in any episode
8: if p(s)=1 then � treat states which are always visited as a special case
9: for each action a do
10: U(a) = P(s) + Q(sA, a))
11: end for
12: else
13: E�s = (Eπ − p(s)Es)/(1 − p(s)) � estimated return in episodes where s is not visited
14: � calculate estimated value over all episodes, assuming a is executed in sA

15: for each action a do
16: U(a) = p(s)(P(s) + Q(sA, a)) + (1 − p(s))E�s
17: end for
18: end if
19: return sA, U

which sA
t arises, but also by the returns of episodes which do not encounter this augmented

state. The calculations to achieve this are performed by Algorithm 3.

− Estimate the mean accumulated vector return when the current state is reached P(s) (line 5)
− Estimate the probability of encountering the current state in any episode p(s) (line 7)
− In the special case that p(s) = 1 (i.e. this state is always reached), U can be calculated directly

as the sum of P(s) and Q(sA, a) (line 10, which is equivalent to line 18 in Algorithm 1—the
difference is that in the latter case, this process is used for all states).

− In the more general case where p(s) < 1 (i.e. the state is only sometimes encountered, due
to stochasticity), U is calculated in two steps:

∗ The mean vector return for episodes in which s does not occur (E�s) is estimated based on
the estimated return over all episodes Eπ , the estimated return in episodes in which s does
occur Es, and the probability of s occurring p(s) (line 13)

∗ The estimated return vector of this action in episodes when state s does arise (P(s) +
Q(sA, a)) is combined with the estimated return vector for episodes in which s does not
occur (E�s) via a probability-weighted average (lines 15–16).

Essentially U provides a holistic, non-local measure of the value for each action in each state. Using
this value rather than the purely local measure (P(s) + Q(sA, a)) aims to make action-selection more
compatible with the goal of finding the SER-optimal policy.
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Table 9. The final greedy policies learned in twenty indepen-
dent runs of the MOSS algorithm with a decayed learning rate
for both the Space Traders and Space Traders ID environments.
Red text highlights the SER-optimal policy for each environment

Environment DI ID II IT TI
Space Traders 20 0 0 0 0
Space Traders ID 20 0 0 0 0

Figure 7. The Policy chart for the MOSS algorithm with the decayed learning rate in original Space
Traders Environment

Figure 8. The Space Traders ID variant environment. All the changes compared with original have been
highlighted in red. The changed rewards result in ID being the SER-optimal policy for this environment

6.2 MOSS Q-learning results
The results in Table 9 show that the MOSS algorithm performs successfully on the SpaceTraders envi-
ronment when applied in conjunction with a decayed learning rate. The agent converges to the optimal
DI policy in all twenty runs. The policy chart in Figure 7 is drawn from a representative run, and shows
that MOSS stabilises on the desired optimal policy DI and doesn’t deviate from it after around 15 000
epsiodes.

In order to further test the MOSS algorithm we introduce a further variant of the Space Traders
Problem (Space Traders ID) as shown in Figure 8.

All the changes compared with original one have been highlighted in red. The main difference is
that the time penalty for each action has been swapped from state A to state B. The new probability
of success and reward values for each state-action pair in the new variant Space Traders are shown in
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Table 10. The probability of success and reward values for each state-action pair in the
new variant Space Traders ID environment

State Action P(success) Reward on success Reward on failure Mean reward
A Indirect 1.0 (0,-10) n/a (0,-10)

Direct 0.9 (0, -8) (0, -7) (0, -7.9)
Teleport 0.85 (0,0) (0,0) (0, 0)

B Indirect 1.0 (1, -12) n/a (1, -12)
Direct 0.9 (1, -6) (0, -1) (0.9, -5.5)
Teleport 0.85 (1, 0) (0, 0) (0.85, 0)

Table 11. Nine available deterministic policies mean return for Space Traders ID
environment

Policy identifier Action in state A Action in state B Mean Reward
II Indirect Indirect (1, -22)
ID Indirect Direct (0.9, -15.5)
IT Indirect Teleport (0.85, -10)
DI Direct Indirect (0.9, -18.7)
DD Direct Direct (0.81, -12.85)
DT Direct Teleport (0.765, -7.9)
TI Teleport Indirect (0.85, -10.2)
TD Teleport Direct (0.765, -4.675)
TT Teleport Teleport (0.7225, 0)

Table 10. The only difference between policies DI and ID in the original Space Traders Problem is the
second objective—the time penalty. Therefore in this new variant of Space Traders problem, policy ID
has become the desired SER-optimal policy as we can see from Table 11.

A closer examination of the MOSS algorithm (Algorithm 2) reveals that the estimated values used
for action-selection (st, P(st), p(st), and E�st+1) should be based only on the trajectories produced during
execution of the greedy policy, whereas in the current algorithm they are derived from all trajectories. As
a result, the estimated probability of visiting state s in any episode p(st) is below 1 because of exploratory
actions. In turn, the U(a) values at state B for the direct and teleport actions are below threshold for first
objective. So it can already be seen that this agent will not converge to the desired policy ID.4

The results in Table 9 show that, for the original Space Traders environment, the combination of the
MOSS algorithm and a decayed learning rate does reliably converge to the correct SER-optimal policy
DI. However when we apply them to Space Traders ID, the agent fails to learn the desired optimal policy
ID. Therefore the MOSS algorithm is not an adequate solution to the problem of learning SER-optimal
policies for stochastic MOMDPs.

7. Policy-options
7.1 Policy-options algorithm
The final approach we examine to address the issue of SER-optimality is inspired by the concept of
options. An option is a temporally-extended action, consisting of a sequence of single-step actions which

4We speculated that this might be addressed using a two-phase variant of MOSS which had separate learning and global statistics
gathering phases, with the latter based strictly on the agent’s current greedy policy. However this failed to overcome the issues
reported here, and so for reasons of space and clarity we have omitted that algorithm from this paper. Full details are available in
Ding (2022).
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the agent commits to in advance, as opposed to selecting an action on each time-step (Sutton et al.,
1999). The agent selects an option and executes the sequence of actions defined by it, while continuing to
observe states and rewards on each time-step, and learning the Q-values associated with the fine-grained
actions.

Algorithm 4 multi-objective Q(λ) with policy-options.
input: learning rate α, discounting term γ , eligibility trace decay term λ, number of objectives n,

action-selection function f and any associated parameters, set of policy-options P
1: for all states s, policy-options p and objectives o do
2: initialise Qo(s, p)
3: end for
4: for each episode
5: for all states s and options p do
6: e(s, p)=0
7: end for
8: observe initial state st

9: select option pe using f (Q(st)) (with possible exploratory selection)
10: select at from pe(st)
11: for each step of the episode
12: execute at, observe st+1 and reward Rt

13: select a′ from pe(st+1)
14: δ = Rt + γ Q(st+1, pe) − Q(st, Pe)
15: e(st, pe) = 1
16: for each state s do
17: Q(s, pe) = Q(s, pe) + αδe(s, pe)
18: e(s, pe) = γ λe(s, pe)
19: end for
20: st = st+1, at = a′

21: end for
22: end for

The use we make of options here differs from their usual application. The simplicity of the original
Space Traders environment (2 states, 3 actions per state) means it is possible to define nine options
corresponding to the nine deterministic policies which we know exist for this environment. At the start
of each episode the agent selects one of these policy-options to perform, and pre-commits to following
that policy for the entire episode. Therefore, rather than learning state-action values for all states, it is
sufficient for the agent to just learn option values for the starting state (State A). Over time the state-option
values the agent has learnt at state A should match the mean rewards for each of the nine deterministic
policies in Table 2. This policy-options approach is detailed in Algorithm 45.

Performing action-selection in advance based on the estimated values of each policy eliminates the
local decision-making at each state which has been identified as the cause of the issues which methods

5We note that our implementation of policy-options as described in Algorithm 4 does in fact learn Q-values for all states rather
than just the starting state, although only those of the starting state are ever actually used for action-selection. This was done
so as to introduce as few possible changes to the code implementation of MO Q-learning. An alternative, and more efficient,
implementation would be to map the MOMDP to a multi-objective multi-armed bandit (MOMAB), where each arm corresponds
to a different deterministic policy. This would support the use of specialised MOMAB algorithms (Drugan & Nowe, 2013; Huanca-
Anquise et al., 2023). However, it is important to note that these approaches would still suffer from the same fundamental scaling
issues as our implementation, as the number of arms equals |A||S|.
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Table 12. The final greedy policies learned in twenty independent runs of the policy-
options MOQ-Learning algorithm for the variants of the Space Traders environment,
with a decayed learning rate—red indicates the SER-optimal policy for each variant

Environment DI ID II IT TI DD
Space Traders—original 20 0 0 0 0 0
Space Traders ID 1 19 0 0 0 0
Space Traders 3-state 20 0 0 0 0 0

like multi-objective Q-learning have in learning SER-optimal policies (Bryce et al., 2007; Vamplew
et al., 2022a). Clearly such an approach is infeasible for more complex environments, as the number of
deterministic policies will equal |A||S| and so grows extremely rapidly as the number of actions and states
extends beyond the 3 actions and 2 states which exist in SpaceTraders. However applying this approach
to this simple environment provides a clear indication of the role which local action-selection plays in
hampering attempts to learn SER-optimal behaviour.

7.2 Policy-options experimental results
The results in Table 12 demonstrate that, as expected, the policy-options approach is effective.
Eliminating local decision-making by committing to the entire policy at the start of each episode enables
this approach to converge to the optimal policy in all but one trial across all variants of the SpaceTraders
environment. This shows that unlike the earlier approaches which failed on some of these variants,
policy-options is a reliable approach across all of the tested environments.

When combined with decaying the learning rate, policy-options learning is able to address both the
local decision-making issue and the problem of noisy Q-value estimates for stochastic environments.
However this method suffers from a more fundamental problem—the curse of dimensionality. For prob-
lems with more states and actions, the number of pre-defined options are going to increase exponentially,
and so this method is not able to scale up to solve more complex problems in real-life.

7.3 Policy-options and noisy estimates
As shown in the previous section, because the policy-options method eliminates any local decision-
making, it nearly always converges to the SER-optimal policy when used in conjunction with a decayed
learning rate. This provides an opportunity to more closely examine the effect of noisy estimates on the
behaviour of an MORL agent. By re-applying the policy-options algorithm to each of the Space Traders
environment but this time using a constant learning rate, we can isolate the impact of the noisy estimates
induced by that form of learning rate.

Table 13 shows the distribution of the final policy learned under these settings on the original
SpaceTraders environment and its variants. When compared against the performance of the same agent
with a decayed learning rate from Table 12, it can be seen that the noise in the estimates caused by the
large constant learning rate substantially hinders the agent, which converges to a non-optimal policy in
multiple runs.

Figure 9 highlights the noisy estimates issue as it can be seen that the policy identified as being
optimal fluctuates on a frequent basis during learning when the learning rate is constant, and quite often
includes policies which fail to achieve the threshold on the first objective. Seeing as both the agent’s
value estimates and action-selection are being performed at the level of complete policies, this can only
arise due to errors in those estimated values arising from the stochastic nature of the environment.

Figure 10 visualises a single trial of policy-options for the original Space Traders problem which
eventually selects policy TI. The first layer is the normal policy chart where each policy has been
assigned a unique colour for clarity. The middle layer indicates the Q-value at state A for the first
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Table 13. A comparison of the final greedy policies learned in twenty independent runs of
the policy-options MOQ-Learning algorithm for the Space Traders environment variants,
with either a decayed or constant learning rate—red indicates the SER-optimal policy for
each variant

Environment Learning rate DI ID II IT TI DD
Space Traders—original Decayed 20 0 0 0 0 0
Space Traders—original Constant 14 2 1 1 2 0
Space Traders ID Decayed 1 19 0 0 0 0
Space Traders ID Constant 3 13 0 2 2 0
Space Traders 3-state Decayed 20 0 0 0 0 0
Space Traders 3-state Constant 10 3 0 3 4 0

objective, and the bottom layer shows the Q-value at state A for the second objective. As we can see
from these three graphs, due to the combination of the stochastic environment, the constant learning rate,
and the utility function’s hard threshold, the agent’s greedy policy never stabilised even though it stays
on the desired optimal policy DI most of time. There is an extreme case just before 10 000 episodes and
again at around 18 000 episodes, where the policy DD (in brown color) has several unlikely successes
in a row, and its estimated value rises above the threshold. This means it is temporarily identified as the
optimal policy in the policy chart at those times, despite in actuality being the least desirable policy—
this indicates the extent of the impact of noisy estimates within a highly stochastic environment such as
Space Traders.

8. Conclusion
Multi-objective Q-learning is an extension of scalar value Q-learning that has been widely used in the
MORL literature. However it has been shown to have limitations in terms of finding the SER-optimal
policy for environments with stochastic state transitions. This research has provided the first detailed
investigation into the factors that influence the frequency with which value-based MORL Q-learning
algorithms learn the SER-optimal policy under a non-linear scalarisation function for an environment
with stochastic state transitions.

8.1 Major findings
This study explored three different approaches to address the issues identified by Vamplew et al. (2022a)
regarding the inability of multi-objective Q-learning methods to reliably learn the SER-optimal policy
for environments with stochastic state transitions. The first approach was to apply reward design methods
to improve the MORL agent’s performance in stochastic environments. The second approach (MOSS)
utilised global statistics to inform the agent’s action selection at each state. The final approach was to
use policy-options (options defined at the level of complete policies).

The results for the first approach showed that with a new reward signal which provided additional
information about the probability of transitioning to terminal states, standard MOQ-learning was able to
find the desired optimal policy in the original Space Traders problem. However, using a slightly modified
variant of Space Traders we demonstrated that in general it may be too hard or even impossible to design
a suitable reward structure for any given MOMDP.

It was found in the second approach that the augmented state combined with use of global statistics in
the MOSS algorithm clearly outperformed the baseline method for the Space Traders problem. However,
the MOSS algorithm fails to find the correct policy for the Space Traders ID variation of the environment,
and therefore does not provide a reliable solution to the task of finding SER-optimal policies.
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(a) (b)

(c) (d)

(e)

Figure 9. Policy charts for five sample runs of the policy-options MOQ-Learning algorithm with a
constant learning rate on Space Traders

The results for the third approach reveal that policy-option learning is able to identify the optimal
policy for the SER criteria for a relatively small stochastic environment like Space Traders. However
clearly this method still fails from a more fundamental problem—the curse of dimensionality means it
is infeasible for environments containing more than a small number of states and actions.

The key contribution of this work is isolating the impact of noisy Q-estimates on the performance
of MO Q-learning methods. The final experiments using policy-options clearly illustrated the extent to
which noisy estimates can disrupt the performance of MO Q-learning agents. By learning Q-values and
performing selection at the level of policies rather than at each individual state, this approach avoids
the issues with local decision-making which are the primary cause of difficulty in learning SER-optimal
policies (Bryce et al., 2007; Vamplew et al., 2022a). However the empirical results showed that when
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Figure 10. The Noisy Q Value Estimate issue in policy-options MOQ-learning with a constant learning
rate. These graphs illustrate agent behaviour for a single run. The top graph shows which option/policy
is viewed as optimal after each episode, while the lower graphs show the estimated Q-value for each
objective for each option

https://doi.org/10.1017/S0269888925100052 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888925100052


24 Kewen Ding et al.

used in conjunction with a constant learning rate, the variations in estimates introduced by the stochas-
ticity in the environments lead to instability in the agent’s greedy policy. In many cases this meant the
final greedy policy found at the end of learning was not the SER-optimal policy.

These results highlight that in order to address the problems of value-based MORL methods on
stochastic environments, it will be essential to solve both the local decision-making issue and also the
noisy estimates issue, and that a decaying learning rate may be valuable in addressing the latter.

8.2 Implications for MORL research and practice
The main implication of these findings is that value-based MORL algorithms may be unable to be effec-
tively applied for the combination of optimising the SER-criteria with a non-linear utility in stochastic
environments. This does not necessarily invalidate prior work on value-based MORL, as in many cases
that research was not addressing this specific combination of factors. For example, many value-based
MORL approaches assume linear utility (Abels et al., 2019; Yang et al., 2019; Xu et al., 2020; Basaklar
et al., 2022; Alegre et al., 2023). The approach of Cai et al. (2023) learns scalarised returns rather
than vectors and so is targeting ESR-optimality. Similarly Tessler et al. (2018) and Skalse et al. (2022)
address optimising a utility function akin to TLO, but in the context of ESR rather than SER. Meanwhile
the Pareto-conditioned network of Reymond et al. (2022) is restricted to deterministic environments.
However our findings have implications for possible extensions of these methods. For example, a seem-
ingly obvious means of implementing multi-policy learning for non-linear SER utility might be to merge
the augmented state and action-selection methods from MO Q-learning (Algorithm 1) with the condi-
tioned network structure of Abels et al. (2019), conditioning on the parameters of the utility function.
However the results of our experiments indicate that this approach is likely to fail if applied to stochastic
environments.

The issues identified in this research may have been previously unreported in part because of the
limitations of MORL benchmarks, which have in the past had limited coverage of stochasticity. For
example the first widely-adopted set of benchmark environments from Vamplew et al. (2011) features
three fully-deterministic environments (Deep Sea Treasure, MO-Puddleworld and MO-MountainCar)
and one with just a single state with a stochastic transition and reward (Resource Gathering). The recent
benchmark suite of MO-Gymnasium (Felten et al., 2023) improves this situation by introducing some
environments featuring stochasticity, but even here this is often limited to adding noise to the starting
states (as in Four Room, and the MuJoCo tasks).

While the Space Traders environment and the variants thereof were sufficient to demonstrate the
limitations of the approaches tested in this study by providing counter-examples where these approaches
failed, more broadly this is not a sufficient benchmark for future MORL studies. There is a need for a
suite of MORL benchmark environments which exhibit a range of stochasticity in both rewards and state
transitions, with a more challenging size of state and action spaces than exhibited by Space Traders.
Ideally these will be implemented within the MO-Gymnasium framework so as to facilitate widespread
adoption (Felten et al., 2023).

8.3 Future work
There are two issues existing for MO Q-learning in stochastic environments—the core stochastic SER
issue caused by local decision-making and also the noisy Q value estimates. Therefore a successful
algorithm must address both of those problems together. Due to the flaws in each investigated method,
none of them could be directly applied into real-world applications, and so there is a need for further
research to develop more reliable approaches for SER-optimal MORL.

The first recommendation for future research is to look at policy-based methods such as policy
gradient RL. As these methods directly maximise the policy as a whole by defining a set of policy
parameters, therefore they do not have the local decision-making issue faced by model-free value-based
methods such as MOQ-learning. Several researchers have developed and assessed policy-based methods
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for multi-objective problems (Parisi et al., 2014; Bai et al., 2021). In the work which inspired our study,
Vamplew et al. (2022a) argued that most policy-based MORL methods produce stochastic policies,
whereas in some applications deterministic policies may be required. However, recently Röpke et al.
(2024) reported that in practice the policy-gradient algorithms they applied to non-linear MORL typi-
cally converged toward deterministic policies during learning, and that determinism could be enforced
at the policy execution stage.

A second promising research direction is to investigate distributional reinforcement learning (DRL).
Conventional value-based RL learns a single value per state-action pair which represents the expected
return. Distributional reinforcement learning on the other hand works directly with the full distribution
of the returns instead. This can be beneficial for MORL, as shown by Hayes et al. (2022a) who applied
Distributional Multi-objective Value Iteration to find optimal policies for the ESR criteria. The additional
information about the rewards captured by DRL algorithms could potentially prove useful in overcoming
both the noisy estimates and stochastic SER issues.

We also note that while the specific form of policy-options used in Section 7 is not practical due to its
poor scaling to larger state or actions spaces, more sophisticated forms of options may be applicable. In
particular, approaches to options discovery based on successor representations and successor features
(Kulkarni et al., 2016; Machado et al., 2023) allow automated discovery of options without designer
intervention, and may enable application of the approach described in Section 7 to larger real-world
problems. We speculate that a dynamic options algorithm may be able to constrain the agent to only
switch options when in a state which has only deterministic state transitions (this is not possible for
Space Traders as both non-terminal states lead to stochastic transitions). For environments with a limited
amount of stochasticity this may allow options-based algorithms to scale sufficiently to be practical for
finding SER-optimal policies.

Data availability statement. The experimental data that supports the findings of this study are available in Figshare with the
identifier https://doi.org/10.25955/24980382

Competing interests. The authors declare that they have no conflict of interest.
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Appendix A. Additional Results with a Constant Learning Rate
Sections 5 and 6 presented experimental results for the reward engineering and MOSS approaches.
Those experiments were based on a decayed learning rate, so as to allow the underlying capabilities of
each approach to be assessed without the additional complication of noisy estimates. For completeness,
this appendix reports results for these approaches using a constant learning rate, further illustrating the
substantial impact of noisy estimates on the convergence stability of multi-objective Q-learning.

A.1. Reward engineering with noisy estimates
Table A1 presents the results of an MO Q-learning agent on each of the variants of the Space Traders
environment from Section 5, with both a constant and a decayed learning rate. As discussed earlier in
the paper, the constant learning rate tends to produce noisier and more variable value estimates than
a decayed learning rate, so this table highlights the negative impact that this noise has on the agent’s
performance.

As we can see from Table A1, for both variants of the environment, learning with a decayed learning
rate results in consistent convergence to a single policy (for Space Traders MR this is the optimal DI
policy, whereas for SpaceTraders 3ST it is a suboptimal policy, as previously discussed in Section 5). In
contrast, when a constant learning rate is used, the resulting noisy estimates produce much less consistent
outcomes.

Table A1. The final greedy policies learned in twenty independent runs of the Algorithm 1
for Space Traders 3-State environment, compared to the Space Traders MR environment

Environment Learning rate DI ID II IT TI DD TD
Space Traders MR Decayed 20 0 0 0 0 0 0
Space Traders MR Constant 10 5 1 1 2 1 0
Space Traders 3ST Decayed 0 20 0 0 0 0 0
Space Traders 3ST Constant 0 14 2 1 2 0 1

This is particularly problematic in the case of Space Traders MR runs, where the agent with a decayed
learning rate converges to the optimal DI policy in all runs. The most common outcome for the agent
using a constant learning rate is the desired DI policy. However this occurs in only 10 of 20 runs. The
ID policy (5 repetitions) is the second most common outcome, and other policies also occur in some
runs. From Figure A1, most of time across 20 000 episodes, the agent prefers policy DI which is the
desired optimal policy. However the intermittent identification of the other policies as optimal means
that overall this approach still only yields the correct policy 50% of the time. It is also worth noting that
this reward structure results in an even greater variety of suboptimal solutions being found compared to
the original reward design (see results for the baseline algorithm with constant learning rate in Table 4).

A.2. MOSS with noisy estimates
Table A2 presents the results of the MOSS Q-learning algorithm on each of the variants of the
SpaceTraders environment from Section 6, with both a constant and a decayed learning rate.

As was the case for the agents discussed in the previous subsection, the MOSS agents with a decayed
learning rate reliably converge to the same policy in all runs. In this case, MOSS always converges
to policy DI—this is optimal for the original Space Traders environment, but not for Space Traders
ID. Again, the use of a constant learning rate induces noisier Q-value estimates which in turn leads to
variations in the policies to which the MOSS agent converges. On both of the variants of Space Traders,
the agent occasionally converges to either the IT or TI policy rather than DI.
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(a) (b)

(c) (d)

(e) (f)

Figure A1. Policy charts for MOQ-learning with a constant learning rate on the Space Traders MR
environment—each chart illustrates a sample run culminating in a different final policy

The policy charts in Figure A2 highlight the impact of the noisy estimates on learning stability and
convergence. MOSS with a decayed learning rate successfully stabilises on the desired optimal policy
DI after around 15 000 episodes, compared with the policy chart on the left where the constant learning
rate agent is still struggling to stabilise the final policy right up to the end of the run.
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Table A2. The final greedy policies learned in twenty independent runs of the MOSS
algorithm with either a constant or decayed learning rate for both the Space Traders
and Space Traders ID environments. Red text highlights the SER-optimal policy for each
environment

Environment Learning rate DI ID II IT TI
Space Traders Decayed 20 0 0 0 0
Space Traders Constant 15 0 0 3 2
Space Traders ID Decayed 20 0 0 0 0
Space Traders ID Constant 15 0 0 3 2

(a) (b)

Figure A2. The Policy chart for the MOSS algorithm with either a constant or decayed learning rate
in original Space Traders Environment
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