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Abstract

A seminal result due to Wall states that if x is normal to a given base b, then so
is rx + s for any rational numbers r, s with r 6= 0. We show that a stronger result
is true for normality with respect to the continued fraction expansion. In particular,
suppose a, b, c, d ∈ Z with ad − bc 6= 0. Then if x is continued fraction normal, so is
(ax+ b)/(cx+ d).

1. Introduction

A number x ∈ [0, 1) with base 10 expansion x = 0.a1a2a3 . . . is said to be normal (to base 10) if
for any finite string s = [c1, c2, . . . , ck] we have that

lim
n→∞

#{0 6 i 6 n : ai+j = cj , 1 6 j 6 k}
n

=
1

10k
.

Although almost all real numbers are normal,1 we still do not know of a single commonly used
mathematical constant, such as π, e, or

√
2, that is normal.

In his PhD thesis under Lehmer, Wall [Wal50] proved a series of results on normal numbers
which are now considered classical, elementary facts. Among them, Wall proved that if x is
normal, then qx+ r is normal for any rational numbers q, r with q 6= 0. Chang [Cha76] appears
to have discovered this result independently, while Doty et al. [DLN07] knew of Wall’s result and
reproved it by a different method. Aistleitner [Ais11] has given the only significant extension of
Wall’s result the author is aware of, showing that if x is normal and y ∈ R is a number with
almost all of its digits equal to 0, then x + ry is normal for any rational r. (See also [Bug12,
p. 97].)

Although the definition of normality is easily extended to many other digital systems,
questions about which operations preserve normality are still unanswered in most cases. Recently,
the present author, with Airey and Mance [AMV15], studied how rational multiplication and
addition act for Q-Cantor series expansions.

However, in this paper, we shall be interested in normality for continued fraction expansions,
which we shall abbreviate as CF-normality and define explicitly in a moment. Mendès France first
asked the question of which operations preserve CF-normality [Mau00, pp. 17–18]. He actually
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Preserving continued fraction normality

asked a simpler question, namely if non-zero rational multiplication preserves simple normality2

for continued fractions. Yann Bugeaud extended the question to ask whether non-zero rational
multiplication preserved CF-normality [Bug12, Problem 10.56, p. 222]. Part of the difficulty of
proving such a result comes from the fact that rational multiplication and addition are operations
that are not very well understood for continued fractions. Research on these topics appears to
have come almost completely from a computational side (‘Given a continued fraction expansion
x, how can we quickly compute the continued fraction expansion of qx + r?’). Notable works
include Gosper [Gos72], Raney [Ran73], and Liardet and Stambul [LS98]. On the theoretical side
(‘If x has a continued fraction expansion with property Y , does qx+ r have property Z?’), the
author is unaware of any significant result.

We recall some standard definitions for continued fractions. The (regular) continued fraction
expansion of a number x ∈ R is given by

x = a0 +
1

a1 +
1

a2 + · · ·

, with a0 ∈ Z and ai ∈ N for i ∈ N.

We will denote this expansion by 〈a0; a1, a2, . . . 〉 for typographical simplicity. This expansion
is infinite if and only if x is irrational. We will refer to the nth digit of the continued fraction
expansion of x by an(x) or just an if the choice of x is clear. The Gauss map T : [0, 1) → [0, 1)
given by

Tx =


1

x
−
⌊

1

x

⌋
, x 6= 0,

0, x = 0,

acts as a forward shift on the continued fraction digits, ignoring a0. The Gauss measure µ
given by

µ(A) =

∫
A

1

(log 2)(1 + x)
dx

is a probability measure, preserved by T , and is ergodic with respect to T . Given a string
s = [c1, c2, . . . , ck], we define the cylinder set of s to be

Cs = {x ∈ [0, 1) : ai(x) = ci, 1 6 i 6 k},

and we say this cylinder set has rank k. We shall also need the usual matrix action on real
numbers given by (

α β

γ δ

)
x =

αx+ β

γx+ δ
.

With these definitions in mind, we say that a point x ∈ [0, 1) is CF-normal if for any string
s, we have

lim
n→∞

#{0 6 i < n : T ix ∈ Cs}
n

= µ(Cs). (1)

Since T ix ∈ Cs if and only if the string s appears in the continued fraction expansion of x starting
at the (i+ 1)th position, the left-hand side of (1) represents the limiting frequency with which s
appears in the continued fraction expansion of x. By the pointwise ergodic theorem, almost all

2 Simple normality asks that all of the one-digit strings appear with the correct limiting frequency.
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numbers x ∈ [0, 1) are CF-normal. We extend the definition of CF-normal to all x ∈ R to say x
is CF-normal if x− a0(x) is CF-normal.

Our main result will be the following, which not only answers Bugeaud’s question in
the affirmative, but shows that any non-trivial linear fractional transformation preserves CF-
normality. The method of proof, which we shall outline in § 1.1, makes use of ideas about
extending ergodicity to a skew product (as was done in [JL88]) as well as ideas about finite
automata acting on the digits of a normal number (as was done in [BCH15]).

Theorem 1.1. Let M be a 2 × 2 matrix with coefficients in Z and non-zero determinant. Let
x ∈ R be CF-normal. Then Mx is also CF-normal.

In particular, if x = 〈0; a1, a2, . . . 〉 is CF-normal, c0 ∈ Z, and c1, c2, . . . , ck ∈ N, then(
1 c0

0 1

)(
0 1

1 c1

)(
0 1

1 c2

)
. . .

(
0 1

1 ck

)
x = 〈c0; c1, c2, . . . , ck, a1, a2, . . .〉.

It is easy to see that this preserves normality. However, all of the matrices on the left here have
determinant ±1, and thus so does their product. In fact, for any matrix with determinant ±1,
the action of the matrix on an irrational number x will alter the head of the expansion and leave
the tail unchanged (see [BvdPSZ14, Theorem 2.37]), thus preserving CF-normality.

We emphasize that Theorem 1.1 works for any matrix that does not have determinant zero,
not just those with determinant ±1. The reason why we exclude matrices with determinant zero
is that in such a case Mx will always be the same rational number, regardless of which x is
chosen.

Due to earlier work of Kraaikamp and Nakada [KN00] and the author [Van14], we know that
normality for regular continued fraction expansions, the kind we are studying in this paper, is
equivalent to normality for nearest-integer continued fractions and continued fractions with odd
partial quotients. Thus, Theorem 1.1 holds for these expansions as well.

1.1 The idea and outline of the proof
Let us return to the question of normality to base 10 and give a glimpse into why Wall’s result
is true.

Given a number x that is base 10 normal, how often do we expect to see the digit 7 appear
in the base 10 expansion of 2x? We should see a 7 appear in the nth position of 2x whenever
we see one of the strings [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [8, 5], [8, 6], [8, 7], [8, 8], or [8, 9] appear
starting in the nth position of x. We call these strings trigger strings for the string 7. But since x
is normal, each of these strings appears with limiting frequency 1/100 and there are 10 of them,
so we expect to see 7 appear with limiting frequency 1/10. In this case, understanding how often
trigger strings occur relies on knowing how the sequence (10nx) is distributed modulo 1.

A slightly harder problem: if x is base 10 normal, then how often do we expect to see 7 in
the base 10 expansion of x/3? Here, to determine what the nth digit of x/3 is, we must not only
know what the nth digit of x is, we must know something about all of the first n− 1 digits. In
particular, the nth digit of x/3 is 7 if the nth digit of x is 1, 2, or 3, and the sum of the first n−1
digits of x is 2 modulo 3. If one could show that each of these options appeared with limiting
frequency 1/30,3 that would give the desired limiting frequency for the string 7 in the base 10
expansion of x/3.

3 This is possible using the techniques of [Van14].
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Preserving continued fraction normality

This suggests that to show that division by 3 preserves normality to base 10, we want to
understand how the pairs (

10nx (mod 1),
n−1∑
i=1

ai(x) (mod 3)

)
(2)

distribute in the set [0, 1) × {0, 1, 2}. (Here ai(x) is referring to the ith digit of the base 10
expansion, not the continued fraction expansion, of x.)

We will run into a similar difficulty with continued fractions. What we will want is some
way to examine the tail of the expansion of Mx, and to do this, we want to be able to push the
matrix M through the first n digits of the continued fraction expansion for x like so:

M


1

a1 +
1

a2 + · · ·+
1

an + Tnx


= b0 +

1

b1 +
1

b2 + · · ·+
1

bm +Mn(Tnx)

, (3)

with Mn belonging to some set M. Our analogy to (2) will be the sequence (Tnx,Mn) and we
want to show this distributes nicely in the space [0, 1)×M.

As an explicit example, suppose M =
(

1 0
0 2

)
. Then

Mx =
1

2
x =

1

2

1

a1 + Tx
=

1

2a1 + 2(Tx)
.

By reinterpreting this in terms of matrices, we get that(
1 0

0 2

)(
0 1

1 a1

)
=

(
0 1

1 2a1

)(
2 0

0 1

)
.

If instead, M =
(

2 0
0 1

)
, then there are more possibilities, depending on the value of a1(x):(

2 0

0 1

)(
0 1

1 2n

)
=

(
0 1

1 n

)(
1 0

0 2

)
,(

2 0

0 1

)(
0 1

1 1

)
=

(
0 2

1 1

)
,(

2 0

0 1

)(
0 1

1 2n+ 1

)
=

(
0 1

1 n

)(
1 1

0 2

)
.

In § 2, we state some of the results of Liardet and Stambul mentioned earlier, which will
essentially say that if we started with a ‘nice’ matrix M , then we can in fact choose the matrices
Mn in (3) to always belong to a particular finite set M; and in Lemma 2.3, we show that it
suffices to prove Theorem 1.1 when M ∈M. Theorem 3.1 then says that the sequence (Tnx,Mn)
is nicely distributed with respect to some measure, provided M starts in a subset of M with
good properties. In § 4, we again show that it suffices to prove Theorem 1.1 when M is in such
a subset. Finally, we complete the proof of Theorem 1.1 in § 5, using a new definition of trigger
strings as part of a key lemma.
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1.2 Notation and definitions
We will denote the continued fraction expansion of x by 〈a0; a1, a2, . . . 〉 and the continued fraction
expansion of Mx by 〈b0; b1, b2, . . . 〉. We will commonly use n to denote an index for x (so we
might talk about the nth digit of x) while we will use m to denote an index for Mx. The length
of a string s = [c0; c1, . . . , cn], denoted by |s|, is n, regardless of the value of c0; and when c0 = 0,
we will often not write it or the semi-colon, so the string [c] with no semi-colon will always denote
the string [0; c]. When we wish to distinguish between strings of digits in x and strings of digits
in Mx, we will use s = [c0; c1, c2, . . . , cn] for strings in x and t = [d0; d1, d2, . . . , dm] for strings
in Mx. We will also make reference to a string r that is a substring in the expansion of Mx.
We will use M to denote an arbitrary matrix and M to denote a collection of matrices. Some
further definitions related to strings and matrices will be given in § 2.

We shall make use of standard asymptotic notation as well. We will say that f(n) = O(g(n))
if there exists a constant C (called an implicit constant) such that |f(n)| 6 C · g(n). We will say
that f(n) � g(n) (with implicit constant C) if f(n) = O(g(n)) and g(n) = O(f(n)) (both with
implicit constant C). If we have two k × k matrices K1,K2, then we say that K1 � K2 (with
implicit constant C) if (K1)i,j � (K2)i,j for 1 6 i, j 6 k (uniformly with implicit constant C).
We will say f(n) = o(g(n)) if f(n)/g(n) → 0 as n →∞. If a variable appears in a subscript of
a big-O or little-o, this denotes that the implicit constant or rate of decay is dependent on this
variable.

We will say a vector or matrix is non-negative (or positive) if all its coordinates are non-
negative (or positive). We will call a vector a probability vector if it is non-negative and the sum
of its coordinates is 1.

2. Matrices and resultant strings

In this section, we will make use of several results of Liardet and Stambul [LS98]. Since we rely
so heavily on their results, we will also borrow a lot of their notation. We make some critical
changes, however, and will point out where our use differs from theirs.

We will define S to be the set of all strings [c0; c1, c2, . . . , ck] with c0 ∈ N>0 and ci ∈ N
for 1 6 i 6 k. We will equate the string [0; ] with the empty string, denoted by ∧. We will
let S∗ denote the subset of S of strings with c0 = 0. Given two strings s = [c0; c1, c2, . . . , ck]
and s′ = [c′0; c′1, c

′
2, . . . , c

′
k′ ] both in S, we define the concatenation s.s′ ∈ S in the following

non-standard way:
s.s′ := [c0; c1, c2, . . . , ck−1, ck + c′0, c

′
1, c
′
2, . . . , c

′
k′ ].

We also have s.∧ = ∧.s = s. The definition of concatenation extends naturally to S∗.
Given a string s = [c0; c1, c2, . . . , ck] ∈ S, we let

Πs =

(
1 c0

0 1

)(
0 1

1 c1

)
. . .

(
0 1

1 ck

)
.

(If we let

J =

(
0 1

1 0

)
,

then, in Liardet and Stambul’s notation, this would be Πc0c1c2...ck multiplied by J on the right.)
We always have that |det(Πs)| = 1.

Given a string s ∈ S, we will define s.x for x ∈ R by Πsx. By the way that concatenation is
defined, we can quickly see that Πs.s′ = ΠsΠs′ .
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We shall let E denote the set of matrices

E :=

{(
α β

γ δ

) ∣∣∣∣ α, β, γ, δ ∈ N>0, αδ − βγ 6= 0, (α− γ)(β − δ) < 0

}
.

(This is what Liardet and Stambul refer to as E2. We note that E is invariant under the action
of multiplying by J on the left or the right, so that our changes to the definition of Πs from
Liardet and Stambul will not have a noticeable impact here.)

Given D ∈ N, D > 1, letMD denote the subset of E of matrices M satisfying |det(M)| = D.

Lemma 2.1 [LS98, Lemma 5]. For any D ∈ N, D > 1, we have that MD is finite.

Let D ∈ N, D > 1 be fixed. For a ∈ N, we wish to define two functions φa :MD →MD and
ψa :MD → S given by the following:

(i) if MΠ[a] = M ′ for some M ′ ∈MD, then φa(M) = M ′ and ψa(M) = ∧; and

(ii) if MΠ[a] 6∈ MD, then according to [LS98, Theorem 1], there exists a unique factorization
MΠ[a] = ΠsM

′ with M ′ ∈MD and s ∈ S, and so we let φa(M) = M ′ and ψa(M) = s.

With the functions φa and ψa defined in this way, we have that for any M ∈ MD and
irrational x = 〈a1, a2, a3 . . . 〉 ∈ [0, 1), that

Mx = MΠ[a1](Tx) = Πψa1 (M)φa1(M)(Tx) = ψa1(M).(φa1(M)(Tx)).

Iterating this procedure again gives the following:

Mx = ψa1(M).ψa2(φa1(M)).(φa2(φa1(M))(T 2x)).

In order to continue iterating this procedure without devolving into a typographical
nightmare, let us define two new functions Φs : MD → MD and Ψs : MD → S for s ∈ S∗.4
These functions are defined iteratively beginning with the base cases

Φ∧(M) = M, Ψ∧(M) = ∧,

and the iterative relations

Φ[c1,c2,...,ck](M) = φck(Φ[c1,c2,...,ck−1](M)),

Ψ[c1,c2,...,ck](M) = Ψ[c1,c2,...,ck−1](M).ψck(Φ[c1,c2,...,ck−1](M)).

This function Ψs(M), which Liardet and Stambul refer to as the output of the transducer
associated to the string s and the initial state M , we shall instead refer to as the resultant
string of the pair (s,M).

With these definitions, we see that for any M ∈MD and any x = 〈a1, a2, a3 . . . 〉 ∈ [0, 1) the
following relation holds

Mx = Ψ[a1,a2,...,an](M).(Φ[a1,a2,...,an](M)(Tnx)), n ∈ N>0. (4)

Lemma 2.2. Let M ∈MD for an integer D > 1 and let s = [c1, c2, . . . , ck] ∈ S. We have that

k − 1

|MD|
− 1 6 |Ψs(M)| � k.

4 Our use of capital Φ and Ψ is substantially different from Liardet and Stambul’s. They use Φ and Ψ to denote
the set of functions {φc} and {ψc}, respectively. Our notation Ψ[c1,c2,...,ck](M) is equivalent to µ([Ψ,Φ]c1,...,ck ) in
their notation.
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Proof. The lower inequality is an immediate consequence of [LS98, Theorem 2].
The upper inequality starts with the fact that |s.s′| = |s| + |s′|, thus we only need to prove

that |ψc(M)| � 1
Consider the matrix MΠ[c]. If this is inMD, then ψc(M) = ∧ and there is nothing to prove.

Suppose otherwise for the remainder of the proof, that MΠ[c] 6∈ MD.
Let us define α, α′, β, β′, γ, γ′, δ, δ′ by

MΠ[c] =

(
α β

γ δ

)(
0 1

1 c

)
=

(
α′ β′

γ′ δ′

)
. (5)

By [LS98, Theorem 1, part (ii)], since the matrices of (5) equal Πψc(M)φc(M), we have that if γ′

(or δ′) is larger than 0, then the fraction α′/γ′ (respectively, β′/δ′) has at least |ψc(M)| digits
beyond the zeroth digit. However, any fraction with at least n digits in its continued fraction
expansion has a denominator that is at least n. Therefore γ′ (respectively, δ′) either is zero or is
greater than or equal to |ψc(M)|.

By Lemma 2.1, the set MD is finite, so the coefficients of M must be bounded from above,
let us say by K. If δ 6= 0, then γ′ = δ 6= 0 and thus |ψc(M)| 6 γ′ = δ 6 K. Otherwise, if δ = 0,
then δ′ = γ 6= 0, and so |ψc(M)| 6 δ′ = γ 6 K. These two cases complete the proof. 2

We also require the following result.

Lemma 2.3. It suffices to prove Theorem 1.1 in the case where M ∈MD for some D ∈ N, D > 1
and where x ∈ [0, 1).

Proof. By sending

x 7→ x− bxc and M 7→ M

(
1 bxc
0 1

)
,

we may assume without loss of generality that x ∈ [0, 1).
As noted after the statement of Theorem 1.1, if M is a 2 × 2 matrix with coefficients in Z

and determinant ±1, then Mx is normal if and only if x is normal. We will make frequent use
of this fact in the remainder of this proof.

Let M =
(α β

γ δ

)
have coefficients in Z and non-zero determinant.

Suppose that either γ = 0 or δ = 0. Since det(M) 6= 0, we must have that α 6= 0 or β 6= 0
respectively. Thus, there exists some integer a such that the bottom row of

M ′ =

(
1 0

a 1

)
, M =

(
α β

αa+ γ βa+ δ

)
consists only of non-zero integers. Since the determinant of

(
1 0
a 1

)
is 1, we have that M ′x is normal

if and only if Mx is normal. Also |det(M ′)| 6= 0. Thus, we may assume without loss of generality
that γ 6= 0 and δ 6= 0.

Now suppose that sgn(α) 6= sgn(γ) or that sgn(β) 6= sgn(δ). Then there exists some integer
a such that

M ′ =

(
1 a

0 1

)
, M =

(
α+ aγ β + aδ

γ δ

)
=

(
α′ β′

γ′ δ′

)
satisfies sgn(α′) = sgn(γ′) and sgn(β′) = sgn(δ′). Since

(
1 a
0 1

)
has determinant 1, we have that

M ′x is normal if and only if Mx is normal. Thus, we may assume without loss of generality
that sgn(α) = sgn(γ) and sgn(β) = sgn(δ).
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Now suppose sgn(γ) = −1 or sgn(δ) = −1. Then by appropriately multiplying M on the left
by a matrix of the form

(±1 0
0 ±1

)
(which again has determinant ±1), we may assume without loss

of generality that sgn(γ) = 1 and sgn(δ) = 1. This also preserves all previous assumptions.
Thus, in particular, we may assume that all of the coefficients of M are positive. By [LS98,

Theorem 1, part (i)], there exists a string s = [c0; c1, . . . , cn] ∈ S and M ′ ∈ MD such that
M = ΠsM

′. However, since Πs has determinant ±1, we have that Mx is normal if and only if
M ′x is normal, and thus we may assume without loss of generality that M ∈MD all along. 2

3. Normality on a skew product

By our heuristic argument in § 1.1, we want to show that the sequence

(Tnx,Φ[a1,a2,...,an](M))

is nicely distributed in some sense. This will allow us to show that the last term of (4), which
gives the tail of the CF expansion of Mx, is likewise nicely distributed.

Let Ω ⊂ [0, 1) denote the subset of irrational points and letM denote some finite set, which
we will later take to be a set of matrices. We will let x denote elements in Ω and M denote
elements of M. We will consider cylinder sets of Ω to be the intersection of the usual cylinder
sets (for the continued fraction expansion) of [0, 1) with Ω.

We wish to extend the Gauss map T to a transformation T̃ on a larger domain Ω̃ = Ω×M.
For any (x,M) ∈ Ω̃, we define the skew product

T̃ (x,M) = (Tx, fa1(x)(M))

for some function fa1 :M→M that is indexed by the first digit of x. Since the second coordinate
of T̃ (x,M) only depends on M and the first CF-digit of x, we see that this second coordinate is
constant for all x in the same rank 1 cylinder. Given a cylinder set Cs for Ω, we call Cs × {M}
(for any M ∈ M) a cylinder set for Ω̃. Moreover, we define µ̃(E × {M}) = µ(E)/|M| for any
measurable subset E of Ω and b ∈M.

For easier readability, we will use (E,M) to denote E ×{M} for any measurable set E ⊂ Ω,
with measurability being determined by Lebesgue measure or, equivalently, the Gauss measure.
We will also let (E,M) denote E ×M.

We adapt our definition of normality on this space. We will say that (x,M) ∈ Ω̃ is T̃ -normal
with respect to a measure ρ on Ω̃, if for any cylinder set (Cs,M

′) we have

lim
n→∞

#{0 6 i < n : T̃ i(x,M) ∈ (Cs,M
′)}

n
= ρ(Cs,M

′).

We say T̃ is transitive if for any M1,M2 ∈ M, there exists a string s ∈ S of length n such
that

Tn(Cs,M1) = (Ω,M2).

The goal of this section is to prove the following result, which is similar to a previous result of
the author [Van14]; however, as this paper contains significant departures (notably not assuming
that the functions fa are bijective and hence not being able to assume that µ̃ is T̃ -invariant), we
present the proof in full.

Theorem 3.1. If T̃ is transitive, then there exists a probability measure ρ on Ω̃ that is absolutely
continuous with respect to µ̃ and such that T̃ preserves ρ and is ergodic with respect to ρ.
Moreover, if x is CF-normal, then for any M ∈ M, the point (x,M) is T̃ -normal with respect
to ρ.
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Since almost all numbers x ∈ [0, 1) are CF-normal, almost all (x,M) ∈ Ω̃ are T̃ -normal with
respect to ρ. Therefore, calling these points (x,M) ‘normal’ is reasonable to do.

The proof of Theorem 3.1 breaks into two pieces. Proving that ρ exists and satisfies the
desired properties follows very standard ergodic theoretic techniques (such as Knopp’s lemma).
Proving that any CF-normal x ∈ Ω lifts to T̃ -normal points (x,M) requires much more work.
We will need to show that the density of ρ and the density of µ̃ are within a constant multiple
of one another and then apply the Pyatetskĭı–Shapiro normality criterion (Lemma 3.3).

Remark 3.2. Although we are using T as the Gauss map here, the only properties of the Gauss
map that we use are the fact that all cylinders are full (i.e. T |s|Cs = Ω), that the Pyatetskĭı–
Shapiro normality criterion can be applied via the cylinder sets, that the corresponding ergodic,
invariant measure µ is finite, and that T satisfies Renyi’s condition (6). Therefore, any map T
which also satisfies these conditions will also satisfy Theorem 3.1.

3.1 Necessary lemmata for Theorem 3.1
In order to simplify the readability of the proof of Theorem 3.1, we will include several lemmas
here. All of these results make use of the definitions and assumptions at the start of § 3.

In order to show that (x,M) is T̃ -normal with respect to ρ, we will need to make use of the
Pyatetskĭı–Shapiro normality criterion in the following form.

Lemma 3.3. Let (x,M) ∈ Ω̃ and suppose a measure ρ exists satisfying the first part of
Theorem 3.1. If for any cylinder set (Cs,M

′), we have

lim sup
n→∞

#{0 6 i 6 n− 1 : T i(x,M) ∈ (Cs,M
′)}

n
6 σ · ρ(Cs,M

′)

for some constant σ independent of our choice of cylinder set, then x is T̃ -normal with respect
to ρ.

Proof. This is a simple consequence of [MS03, Theorem 1]. We briefly describe how using the
terminology from their paper.

We let the family {Cm} denote the family of all cylinder sets on Ω̃ and also let ϕ(t) = σ · t.
Since the set Al(T, χI , δ) is a disjoint union of rank-l cylinder sets, we have that Hϕ(Al(T, χI , δ))
equals σ · µ(Al(T, χI , δ)) and thus goes to 0 as l →∞. 2

A well-known consequence of Renyi’s condition for continued fraction expansions (see [Sch95,
ch. 9]) states that there exists an absolute constant C > 0 so that for any measurable set E and
cylinder Cs of rank n, we have that

1

C
µ(E)µ(Cs) 6 µ(T−nE ∩ Cs) 6 Cµ(E)µ(Cs). (6)

It is clear that one could replace Cs by any set that can be expressed as a disjoint union of rank
n cylinder sets.

We will also want a similar equality (sans the cylinder set) to hold for T̃ and µ̃, for which
we will require the following results.

Lemma 3.4. Let {Kn}∞n=1 be a sequence of k×k Markov matrices such that Kn1 �Kn2 uniformly
for n1, n2 ∈ N. Assume that there exists a power ` such that K`

1 has all positive coordinates,
and also assume that {K1}i,i > 0 for 1 6 i 6 k. Then there exists an integer n0 ∈ N and a
constant c ∈ (0, 1) such that for any 1× k probability vector ~v and any n > n0, we have that all
coordinates of ~vK1K2K3 . . .Kn are in the interval (c, 1− c).
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Proof. This is a special case of [SCZ11, Proposition 2.13]: the restriction that Kn1 � Kn2

uniformly for n1, n2 ∈ N implies that Kn+1Kn+2 . . .Kn+` � K`
1 with an implicit constant

dependent on `. This allows us to replace the ‘uniform irreducibility’ assumption with our simpler
condition that there exists a power ` such that K`

1 has all positive coordinates. 2

Lemma 3.5. Suppose T̃ is transitive, then there exists a constant D > 0 and integer n0 ∈ N such
that for any measurable set E ⊂ Ω̃ and any n > n0, we have that

1

D
µ̃(E) 6 µ̃(T̃−nE) 6 Dµ̃(E). (7)

Proof. We will make a few definitions to start. Let Sn,i denote the set of cylinders (Cs,M) ⊂ Ω̃

such that |s| = n and T̃n(Cs,M) = (Ω,Mi). We let Ai,j denote the set of a ∈ N such that
fa(Mi) = Mj . We also consider a sequence of probability vectors ~vn = {vn,1, vn,2, . . . , vn,|M|},
n > 0, such that

vn,i = µ̃

( ⋃
(Cs,M)∈Sn,i

(Cs,M)

)
.

For example, ~v0 = {1/|M|, 1/|M|, . . . , 1/|M|}.
Our goal will be to show that there exists a constant c ∈ (0, 1) and integer n0 ∈ N so that

vn,i ∈ (c, 1− c) if n > n0.
Consider a sequence of |M| × |M| matrices (Kn)∞n=1 defined by

(Kn)i,j =
1

vn,i
µ̃

( ⋃
(Cs,M)∈Sn,i

⋃
a∈Ai,j

(Cs.[a],M)

)
.

It is clear by construction that these matrices are stochastic and that ~vn+1 = ~vnKn.
We let K`,n = K`+1K`+2 . . .Kn.
Unfortunately, the matrices Kn are not all the same, so K0,n represents a Markov chain that

is time-inhomogeneous. However, they are not far from being time-homogenous. By writing the
matrix coefficients in a different way and applying (6), we see that

(Kn)i,j =
1

vn,i
µ̃

( ⋃
(Cs,M)∈Sn,i

(
Cs ∩ T−n

( ⋃
a∈Ai,j

C[a]

)
,M

))

� 1

vn,i
µ̃

( ⋃
(Cs,M)∈Sn,i

(Cs,M)

)
µ

( ⋃
a∈Ai,j

C[a]

)

= µ

( ⋃
a∈Ai,j

C[a]

)
,

with the same implicit constant C as in (6). Thus, Kn1 � Kn2 for any n1, n2 ∈ N with uniform
implicit constant C2. This also implies that for any fixed L, we have that KL

1 � KnL,(n+1)L

uniformly for any n ∈ N with implicit constant C2L.
Since T̃ is assumed to be transitive, we know that for any Mi,Mj ∈ M, there exists a

cylinder (Cs,Mi) with |s| = ` such that T `(Cs,Mi) = (Ω,Mj). This implies that (K0,`)i,j > 0
and thus that (K`

1)i,j > 0. In other words, K1 is an irreducible matrix. Also, we can find integers

`1, `2, . . . , `|M| ∈ N so that (K`i
1 )i,i > 0. Since all terms of K1 are non-negative by construction,
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if (K`i
1 )i,i > 0 then we have (Km`i

1 )i,i > 0 for any m ∈ N. Thus, if we let L = lcm(`1, `2, . . . , `|M|),

then we have that KL
1 is strictly positive along its diagonal.

Suppose KL
1 is itself irreducible. Then since KL

1 has non-negative coefficients with a strictly
positive diagonal, there is some power of it such that every coefficient is strictly positive (see
[Mey00, equation (8.3.5) on p. 672]). We may therefore apply Lemma 3.4 to the sequence of
matrices {KnL,(n+1)L}∞n=0. So there exists c′ ∈ (0, 1) and n′0 such that vnL,i ∈ (c′, 1− c′) for all i
and all n > n′0.

Suppose KL
1 is not irreducible. By [BR91, Theorem 3.4.5], since K1 itself is irreducible, there

exists a permutation matrix P such that

PKL
1 P

T =


C1 0 · · · 0

0 C2 · · · 0
...

...
. . .

...

0 0 · · · Cr

, (8)

where the Cj are irreducible matrices. In this case, we would apply Lemma 3.4 to each Cj and
thus show that there exist c′j ∈ (0, 1) and n′j such that vnL,i ∈ (c′j , 1 − c′j) for n > n′j and for
indexes i corresponding to the matrix Cj after undoing the permutation. By taking c′ = min{c′j}
and n′0 = max{n′j}, we get the same result as in the previous paragraph.

Regardless of whether KL
1 is irreducible or not, we have shown that there exists c′ ∈ (0, 1)

and n′0 such that vnL,i ∈ (c′, 1− c′) for all n > n′0.
No column of K1 consists of all zeros (otherwise there would be an M ∈ M that is never

visited, contrary to the transitivity of T̃ ), therefore the sum of the coefficients in any column
vector of KnL,nL+j for j 6 L is uniformly bounded from below. Thus, we can therefore find a
constant c and n0 such that vn,i ∈ (c, 1− c) for all i and all n > n0. In particular, vn,i � 1.

Now we can prove the desired statement (7). It suffices to show the statement is true for
n > n0 and for sets of the form (E,Mi) for some measurable subset E ⊂ Ω and Mi ∈ M. In
this case, we have that T̃−n(E,Mi) equals the union of ((T−nE) ∩ Cs,M) for (Cs,M) ∈ Sn,i as
defined above. Therefore, by applying (6), we have

µ̃(T̃−n(E,Mi)) =
∑

(Cs,M)∈Sn,i

µ̃((T−nE) ∩ Cs,M) =
∑

(Cs,M)∈Sn,i

1

|M|
µ((T−nE) ∩ Cs)

� µ(E)
∑

(Cs,M)∈Sn,i

1

|M|
µ(Cs) = µ(E)vn,i � µ(E)

= |M| · µ̃(E,Mi) � µ̃(E,Mi),

as desired. 2

3.2 Proof of Theorem 3.1

First, we will show that T̃ is ergodic (despite not necessarily being invariant) with respect to µ̃.
Suppose, we have a T̃ -invariant subset of Ω̃ called E that has non-zero µ̃-measure. We define

Ec = Ω̃\E and define EM as the set of x ∈ Ω such that (x,M) ∈ E, so that E =
⋃
M∈M(EM ,M).

We claim that

µ̃(EM ,M) > 0 (9)

for all M ∈M. Since E has positive µ̃-measure, there must exist a set EM ′ of positive µ-measure.
By transitivity, for any M ∈M, there exists a string s with |s| = n so that T̃n(Cs,M) = (Ω,M ′).
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Thus,

µ̃((Cs,M) ∩ T̃−n(EM ′ ,M
′)) = µ̃((Cs ∩ T−nEM ′ ,M)) =

1

|M|
µ(Cs ∩ T−nEM ′).

However, by Renyi’s condition, this is within a positive constant multiple of µ(Cs)µ(EM ′), and
in particular is positive. Since E is a T̃ -invariant set, T̃−n(EM ′ ,M

′) ⊂ E, and thus (9) holds.
Now we wish to show that E has a substantial intersection with every cylinder set on Ω̃, in

particular, by showing that there exists a constant ε > 0 so that for all cylinder sets (Cs,M), we
have

µ̃(E ∩ (Cs,M)) > ε · µ̃(Cs,M). (10)

Since there are only finitely many elements in M, there must exist ε′ > 0, such that
µ(EM ′) > ε′ for all M ′ ∈M. Let us now fix an arbitrary cylinder (Cs,M) with n := |s|, and let
M ′ be such that T̃n(Cs,M) = (Ω,M ′). By applying (6), we have

µ̃((Cs,M) ∩ E) = µ̃((Cs,M) ∩ T̃−n(EM ′ ,M
′)) = µ̃((Cs ∩ T−nEM ′ ,M))

=
1

|M|
µ(T−nEM ′ ∩ Cs) >

1

C|M|
µ(EM ′)µ(Cs)

>
ε′

C|M|
µ(Cs) =

ε′

C
µ̃(Cs,M).

Therefore, letting ε = ε′/C gives (10).
Since the cylinder sets generate the Borel sets on Ω̃, we can find, for any δ > 0, a set Eδ such

that µ̃(Ec4Eδ) < δ and Eδ is a disjoint union of a finite number of cylinder sets. Therefore, by
applying (10), we have

µ̃(E ∩ Ec) = µ̃(E ∩ Eδ) +O(δ) > εµ̃(E)µ̃(Eδ) +O(δ)

= εµ̃(E)µ̃(Ec) +O(δ).

But µ̃(E ∩Ec) = 0 and δ was an arbitrary positive number. Thus, either µ̃(E) = 0 or µ̃(Ec) = 0.
Since we know E has positive measure, this therefore implies that E must have full measure,
and T̃ is ergodic with respect to µ̃.

We will now construct a measure ρ that is absolutely continuous with respect to µ̃ such that
T̃ is not only ergodic but also invariant with respect to ρ.

We define a sequence of measures ρn on Ω̃ by

ρn(A) =
1

n

n−1∑
k=0

µ̃(T̃−kA) =

∫
Ω̃

(
1

n

n−1∑
k=0

χA(T kt)

)
dµ̃(t). (11)

By Lemma 3.5, we can show that

lim sup
n→∞

1

n

n−1∑
k=0

µ̃(T̃−kE) 6 Dµ̃(E),

for any measurable set E. Therefore, by a theorem of Ryll–Nardzewski (see [DS58, p. 683]),
the integrand of (11) converges pointwise to a L1 function gA almost everywhere, and since
the integrand is dominated by 1, the integrand must in fact converge uniformly to gA almost
everywhere. Therefore, we may define ρ(A) = limn→∞ ρn(A). The Vitali–Hahn–Saks theorem
[Bro69] shows that ρ is in fact a probability measure on Ω̃. Since ρn(T̃−1E) = ρn(E) + O(1/n)
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for any measurable set E, we have that ρ is preserved by T̃ . Likewise, by Lemma 3.5 again, we
can see that

µ̃(E)

D
6 ρn(E) 6 Dµ̃(E), (12)

and thus the same is true if we replace ρn by ρ.5

Thus it remains to show that if x ∈ Ω is CF-normal, then (x,M) is T̃ -normal with respect
to ρ for any M ∈M.

So consider a point x ∈ Ω that is CF-normal. Then for every cylinder Cs and every M ∈M,
we have

lim
N→∞

1

N
#{1 6 n 6 N | T̃n(x,M) ∈ (Cs,M)} = lim

N→∞

1

N
#{1 6 n 6 N | Tnx ∈ Cs}

= µ(Cs).

Thus, in particular, we have for any M,M ′ ∈M that

lim sup
N→∞

1

N
#{1 6 n 6 N | T̃n(x,M) ∈ (Cs,M

′)}

6 lim sup
N→∞

1

N
#{1 6 n 6 N | T̃n(x,M) ∈ (Cs,M)}

= µ(Cs) =
1

|M|
µ̃(Cs,M

′) 6
D
|M|

ρ(Cs,M
′).

Thus, by Lemma 3.3, the points (x,M) for all M ∈M are T̃ -normal with respect to ρ. 2

The referee of this paper proposed an alternative method for studying ρ. We include the
outline of this other method in case it proves more useful to those wishing to extend these
results than the method given above.

One could consider the map T which acts by

T (x, y,M) =

(
Tx,

1

y + a1(x)
, fa1(x)(M)

)
.

Let X = {T n(x, 0,M) : n > 0, x ∈ [0, 1),M ∈M}, and let dν be dx dy/(1 + xy)2 crossed with
the counting measure on M and appropriately normalized to be a probability measure. Then
(X, T , ν) can be shown to be the natural extension of (Ω̃, T̃ , ρ) via the methods of [KSS12].
Moreover ρ can be given explicitly by

dρ =

∫
{y∈[0,1):(x,y,M)∈X}

dν.

By picking an appropriate cylinder set in X and applying T enough times, one can show that
for each M there exists a ‘horizontal stripe’ [0, 1] × [yM1 , yM2 ] × {M} in X. One can then show
that, for any set E ⊂ EM , one has

µ(E)� ν(E × [yM1 , yM2 ]×M)� ρ(E,M) 6 µ(E).

This provides the crucial relationship between µ and ρ that is used in the final part of
Theorem 3.1.

5 This part of the proof draws heavily on techniques used in the proof of [IG90, Theorem 5.3.5].
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4. Building a dynamical system

As we hinted at the start of § 3, we would like to build a dynamical system T̃ from Ω×MD to
itself by T̃ (x,M) = (Tx, φa1(M)), with φa defined as it was in § 2. We will use this definition for
T̃ throughout the rest of the paper; however, it may turn out that this system is not transitive
and thus Theorem 3.1 may not apply. Thus, we will require the following definition to modify
our dynamical system.

We will call a subset M′D ⊂ MD a transitive component if the following conditions are
satisfied:

(i) for any string s ∈ S, and any M ∈M′D we have that Φs(M) ∈M′D;

(ii) for any M,M ′ ∈M′D there exists a string s ∈ S such that Φs(M) = M ′.

Note that any two distinct transitive components of MD must have empty intersection.
With this definition the transformation T̃ given by T̃ (x,M) = (Tx, φa1(M)) is transitive on

Ω×M′D for any transitive component M′D ⊂MD. Thus, Theorem 3.1 applies for this T̃ .

Lemma 4.1. There exists at least one transitive component of MD. Moreover, there exists a
string s such that Φs(M) is in a transitive component for any M ∈MD (although not necessarily
always in the same transitive component for each M).

Proof. Consider a directed graph G whose vertices are matrices M ∈MD and which has an edge
from M1 to M2 if there exists a j ∈ N such that φj(M1) = M2. Note this graph has out-degree
always at least 1. A subgraph G′ of G is said to be strongly connected if for any M1, M2 in
V (G′), the vertex set of G′, there exists a path from M1 to M2 and vice versa. We can partition
G into its strongly connected components, which are the maximal strongly connected subgraphs
of G. (Note that if there is a vertex M such that there is no path from M to another vertex and
back to itself, then M is its own strongly connected component.) Let us call these components
G1, G2, . . . , Gn. Note that if M ∈ V (Gi), then V (Gi) consists of all vertices which are strongly
connected to M .

Now let us consider another directed graph G whose vertices are G1, G2, . . . , Gn and where
there is an edge from Gi to Gj with i 6= j if there exists an edge from some M ∈ Gi to some
M ′ ∈ Gj in the directed graph G. We do not let G contain an edge which goes from a vertex
to itself. Note that if there is an edge from Gi to Gj , then by the strong-connectivity of these
components, there is a path from any M ∈ Gi to any M ′ ∈ Gj . We see that G cannot have
any cycles, as otherwise it would be possible to find matrices in two different strongly connected
components that are strongly connected to one another, contradicting the maximality of these
components. Thus, G is acyclic.

Any finite acyclic directed graph must contain at least one sink. We claim that the set of
vertices of any sink Gi of G is a transitive component for MD. Let us fix a sink Gi and let M′
denote the matrices in V (Gi). The first condition for being a transitive component is satisfied
because if there existed a string s ∈ S andM ∈M′ such that Φs(M) 6∈M′, then there would be at
least one path from Gi to another strongly connected component, contradicting the assumption
that Gi is a sink. For the second condition, this follows from the fact that within any Gi there
is a path from any vertex to any other vertex and also to itself.

Now consider all of the matrices that do not lie in a transitive component, let us call them
M1,M2, . . . ,Mk. Consider M1 and suppose it is in Gi. As there must be a path from Gi to a
sink of G, there exists a string s1 such that Φs1(M1) is in a transitive component. Now consider
Φs1(M2). Regardless of what matrix inMD the matrix Φs1(M2) happens to be, there is, by the
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same argument, a string s2 such that Φs2(Φs1(M2)) = Φs1.s2(M2) is in a transitive component.
(The string s2 could equal ∧ if Φs1(M2) is already in a transitive component.) Likewise there is
a string s3 such that Φs1.s2.s3(M3) is in a transitive component, and so on. The desired string s
is simply s1.s2.s3. · · · .sk. 2

The second part of Lemma 4.1 allows us to reduce the cases of Theorem 1.1 yet further.
By Lemma 2.3, it suffices to prove Theorem 1.1 in the case where x ∈ [0, 1) is a CF-normal
number and M ∈ MD for some D ∈ N, D > 1. Let s be a string satisfying Lemma 4.1. If x
is CF-normal, its continued fraction expansion contains s. Thus, there exists some n such that
T̃n(x,M) ∈ Ω×M′D, for some transitive component M′D ⊂MD, and so

Mx = Ψ[a1,a2,...,an](M).(Φ[a1,a2,...,an](M)(Tnx)),

with Φ[a1,a2,...,an](M) ∈ M′D. Since the action of T and the action of string concatenation both
preserve CF-normality and CF-non-normality, it suffices to assume that x ∈ [0, 1) is CF-normal
and that M is in some transitive component M′D.

Lemma 4.2. Let T̃ and ρ be the transformation and measure corresponding to some transitive
componentM′D, the latter of whose existence is guaranteed by Theorem 3.1. Let k ∈ N, and let
f : Ω×M′D → R be a bounded function that is constant on rank-k cylinder sets.

For any CF-normal x ∈ [0, 1) and any M ∈M′D, we have

n−1∑
i=0

f(T̃ i(x,M)) = n ·
(∫

Ω̃
f dρ

)
(1 + o(1)).

Proof. Since there are countably many pairs (s,M) with |s| = k, let us enumerate them as
(si,Mi)

∞
i=1.

Since f is constant on rank-k cylinder sets, we may write

f =
∞∑
i=1

ai · 1(Csi ,Mi)(·),

where ai ∈ R is uniformly bounded and 1E(·) is the standard indicator function of a set E. Let
us write A+ = supi ai and A− = infi ai. We then construct functions f+

j and f−j , j ∈ N, by

f±j = A± +

j∑
i=1

(ai −A±)1(Csi ,Mi)(·).

By construction we have that f−j 6 f 6 f+
j and, moreover, both f+

j and f−j converge pointwise
to f (and, hence, by dominated convergence, also converge in norm).

Now let x ∈ [0, 1) be CF-normal and let M ∈ M′D. From the second part of Theorem 3.1,
we have that for any cylinder set (Cs,M

′) that

n−1∑
i=0

1(Cs,M ′)(T̃
i(x,M)) = n ·

(∫
Ω̃

1(Cs,M ′) dρ

)
(1 + o(1)).

This statement also holds if 1(Cs,M ′) is replaced by any function that can be expressed as a finite

sum of indicator functions of cylinder sets, such as f±j .
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Thus, we have, for any j > 0,

n−1∑
i=0

f−j (T̃ i(x,M)) 6
n−1∑
i=0

f(T̃ i(x,M)) 6
n−1∑
i=0

f+
j (T̃ i(x,M)),

n ·
(∫

Ω̃
f−j dρ

)
(1 + o(1)) 6

n−1∑
i=0

f(T̃ i(x,M)) 6 n ·
(∫

Ω̃
f+
j dρ

)
(1 + o(1)).

As both integrals above converge in norm to
∫

Ω̃
f dρ as j tends to infinity, this completes

the proof. 2

5. Proof of Theorem 1.1

As we have noted in Lemma 2.3 and § 4, it suffices to prove Theorem 1.1 in the case where
x ∈ [0, 1) is CF-normal and M ∈M′D where M′D is some transitive component of MD.

Note that Theorem 3.1 applies to T̃ acting on the set Ω×M′D, giving us an ergodic, invariant

measure ρ on this space, and (x,M) is normal with respect to T̃ and ρ.
For the first and largest step of the proof, we want to show that for any string r ∈ S∗, this

string appears in Mx with a limiting frequency that does not depend on the CF-normal number
x. (However, we will resume throughout the proof that M is a fixed matrix.) In particular, we
want a constant ρr such that

lim
m→∞

#{0 6 i 6 m : T i(Mx (mod 1)) ∈ Cr}
m

= ρr, (13)

for all CF-normal x ∈ [0, 1).
Let x = 〈a1, a2, a3, . . . 〉, and let Mx = 〈b0; b1, b2, . . . 〉 so that

Mx = Ψ[a1,a2,...,an](M).(Φ[a1,a2,...,an](M)(Tnx)).

We let `(n) denote the length of Ψ[a1,a2,...,an](M). The following two lemmas assume that r and
M′D are fixed and that x is any CF-normal number in [0, 1) and M ∈ M′D. We will also let

Ω̃ = Ω×M′D.

Lemma 5.1. We have for some constant c1 > 0

`(n) = c1n(1 + o(1)).

Proof. It is clear that |s.s′| = |s| + |s′|, so that `(n) is just the sum of the lengths of the
corresponding resultant strings

n∑
i=1

|ψai(Φ[a1,a2,...,ai−1](M))|.

As a result, let us consider the function g : N×M′D → N which acts by taking the pair (a,M)
to the length of the resultant string ψa(M). Let G(x,M) equal g(a,M) if x ∈ C[a]. Note that

G =
∑

a∈N,M∈MD

g(a,M) · 1(C[a],M)(·).

By Lemma 2.2, we have that g(a,M)� 1, so that G is a bounded function that is constant on
all rank-one cylinder sets.

So we have that `(n) =
∑n−1

i=0 G(T̃ i(x,M)), and by Lemma 4.2, `(n) = n · (
∫

Ω̃
Gdρ)(1 +

o(1)). 2
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Lemma 5.2. We have for some constant cr > 0,

#{0 6 i 6 `(n) : T i(Mx (mod 1)) ∈ Cr} = crn(1 + o(1)).

Proof. In order to prove this lemma, we will need to define trigger strings for this system in
the same way that we loosely defined trigger strings to help us understand base-10 normality
in § 1.1. This will require a few ancillary definitions. Throughout these definitions, we shall allow
s, s′, s∗ ∈ S∗ and M,M ′,M∗ ∈M′D.

We say that (s,M) is a subpair of (s′,M ′) if s′ can be written as s+.s.s− for strings s+, s− ∈ S∗
with M = Φs+(M ′). In particular, T̃ |s+|(Cs′ ,M

′) ⊂ (Cs,M).
We say that r appears nicely in the resultant of (s,M) if r is a substring of Ψs(M) starting

after the zeroth digit of Ψs(M) and ending before the last digit. Thus, by our definition of string
concatenation, r also appears as a substring of Ψs′(M

′) for any pair (s′,M ′) of which (s,M) is
a subpair. In fact, if s′ = s+.s.s−, as in the previous paragraph, and r appears as a substring
of Ψs(M) starting at the nth digit, then r appears as a substring of Ψs′(M

′) starting at the
|Ψs+(M ′)|+ nth digit. We refer to these two copies of r as being in the same relative position.

Finally we will define (s,M) to be a trigger string for r of multiplicity k if there are k copies
of r that appear nicely in the resultant of (s,M) each of which does not appear nicely in the
same relative position in the resultant of (s∗,M∗) for any pair (s∗,M∗) that is a proper subpair
of (s,M). By the lower inequality in Lemma 2.2, we see that the length of s in a trigger string
(s,M) must be bounded, say by ` = `r. In consequence, since |s| is bounded, the upper inequality
in Lemma 2.2 implies that the multiplicity k of any trigger string must be bounded as well.

From these definitions, we can see that for each occurrence of r that appears nicely within
the resultant of (s′,M ′), there exists a unique subpair (s,M) of (s′,M ′) for which (s,M) is a
trigger string for r and for which r appears nicely in the resultant of (s,M) in the same relative
position as it did within the resultant of (s′,M ′). In particular, the number of occurrences of
r that appear nicely within the resultant of (s′,M ′) should be equal to the sum of all of the
multiplicities of all the subpairs (s,M) of (s′,M ′).

The count

#{0 6 i 6 `(n) : T i(Mx (mod 1)) ∈ Cr}

can be thought of as counting the number of occurrences of r that appear nicely within the
resultant of ([a1, a2, . . . , an],M), up to O(1). The O(1) accounts for those appearances of r that
start within the first `(n) + 1 digits of Mx but do not appear nicely within the resultant of
([a1, a2, . . . , an],M).

So let f(x,M) denote the sum of the multiplicities of all trigger strings (s,M) such that
x ∈ Cs. Our above work implies that f(x,M) is a bounded function and is constant on cylinder
sets of rank `. We can then apply Lemma 4.2 to see that

#{0 6 i 6 `(n) : T i(Mx (mod 1)) ∈ Cr} =

n−1∑
i=0

f(T̃ i(x,M)) +O(1) = n

(∫
Ω̃
f dρ

)
(1 + o(1)),

as desired. 2

From here we are nearly done. First, let `−1(m) := max{n : `(n) 6 m}. By Lemma 5.1,
`−1(m) = m/c(1 + o(1)), so therefore we have that

0 6 m− `(`−1(m)) 6 o(m).
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Thus, we have that

lim
m→∞

#{0 6 i 6 m : T i(Mx (mod 1)) ∈ Cr}
m

= lim
m→∞

#{0 6 i 6 `(`−1(m)) : T i(Mx (mod 1)) ∈ Cr}+ o(m)

`(`−1(m)) + o(m)

and so (13) follows from Lemmas 5.1 and 5.2.
Now consider the sets

EM = {Mx : x ∈ [0, 1) is CF-normal} and E = {x : x ∈ R is CF-normal}.

We have shown that for any string r ∈ S∗ there exists a constant ρr such that for all y ∈ EM ,
the string r appears in the continued fraction expansion of y with limiting frequency ρr, even
though we do not know what any of these constants ρr equal. On the other hand, for all strings
r ∈ S∗ and all x ∈ E, the limiting frequency of r in the continued fraction expansion of x is
µ(Cr). Thus, either ρr = µ(Cr) for all r and EM is a subset of E or ρr 6= µ(Cr) for some r and
EM is disjoint from E.

However, E has full Lebesgue measure and EM , being a non-trivial linear fractional
transformation of a positive measure set, has positive measure, so EM must be a subset of
E, and the theorem is proved.

6. Further questions

In one, admittedly peculiar, sense, the generalization that we have proved of Wall’s result is not
the natural generalization to make. What makes rational numbers so nice for any base b, is that
they are eventually periodic. So one could ask the following.

Suppose x is CF-normal and q and r have eventually periodic continued fraction expansions,
that is, they are both quadratic irrationals, with q 6= 0. Must it be true that qx+ r is CF-normal
as well?

Also, while Theorem 1.1 solves Bugeaud’s problem, it does not solve Mendès France’s
problem. CF-normality is a much stronger condition than CF-simple normality, and our proof
relies crucially on full CF-normality. So we ask, as Mendès France did: does non-zero rational
multiplication and rational addition preserve CF-simple normality?
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