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ON THE GEOMETRY OF AFFINE KAHLER IMMERSIONS

KATSUMI NOMIZU, ULRICH PINKALL AND FABIO PODESTA

In this paper we extend the work on affine immersions [N-Pi]-1 to

the case of affine immersions between complex manifolds and lay the

foundation for the geometry of affine Kahler immersions. The notion of

affine Kahler immersion extends that of a holomorphic and isometric

immersion between Kahler manifolds and can be contrasted to the notion

of holomorphic affine immersion which has been established in the work

of Dillen, Vrancken and Verstraelen [D-V-V] and that of Abe [A].

In Section 1 we discuss the groundwork for complex affine immersions

and in Sections 2 and 3 for affine Kahler immersions. We shall give two

parallel formulations, one in terms of real vector fields and the other in

terms of vector fields of type (1, 0). The former is useful in establishing

the fundamental theorem for affine Kahler immersions as we do in Section

4. The latter is useful in getting examples of complex manifolds with

affine Kahler connections, as was done in [N-Po], and in obtaining, in

Sections 5 and 6, several theorems on affine Kahler immersions into the

complex Euclidean space, including an analogue of the classical theorem

of Pick and Berwald on vanishing cubic forms.

§ 1. Complex connections and affine immersions

Let M be an n-dimensional complex manifold with complex structure

J. We consider a torsion-free linear connection F which is compatible

with J, that is, VJ = 0. Such a connection as covariant differentiation

(IJJeXxX^FJeX

with usual properties can be extended to a complex linear connection

with covariant differentiation

(X, Y)eXcχXc^FxYeXc,

where X c is the space of all complex vector fields X + iY with X, Y e X.
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We have then

We write Xα'0) (resp. X(0>1)) for the set of all vector fields of type (1, 0)

(resp. (0,1)). Since F is compatible with J, it follows that Vz, where

Z e X , maps each of X(1>0) and X(0)1) into itself. Conversely, it can be

checked that a torsion-free complex linear connection with these properties

comes from a torsion-free linear connection compatible with J. In the

following, we shall always consider this kind of linear connection F,

expressed in terms of real vector fields or complex vector fields.

We shall say that F is affine Kάhler if its curvature tensor has the

property

R(JX, JY) = R(X, Y) for all X, Ye X.

This condition is equivalent to

R(Z, W) = 0 for all Z, We X(1'o).

Affine Kahler connections are to contrasted with holomorphic connections

whose curvature tensors satisfy

R(JX, Y) = JR(X, Y) for all X, Ye X

or equivalently

R(Z, W) = 0 for all Z, We X ( M ) .

We now consider an (n + l)-dimensional complex manifold M with a

torsion-free affine connection V compatible with the complex structure J.

Let /: M—>M be a holomorphic immersion; we wish to consider how we

may induce an affine connection F on M with zero torsion and compatible

with the complex structure on M, which we shall denote by the same

symbol J.

First in terms of real vector fields, we choose a real transversal vector

field ξ- to M. Then Jξ is also transversal. Hence for vector fields X

and Y on M we may write

(1.1) PX(U Y) = Wx Y) + HX, Y)ξ + k(X, Y)Jξ ,

thus defining a torsion-free affine connection F and covariant symmetric

tensors h and k on M. Since / is holomorphic, we have

(1.2) UJY) = J(UY)
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therefore from VJ = 0 we obtain VJ == 0 as well as

(1.3) KX9 Y) = -h(JX, Y).

Since k and h are both symmetric, we have

(1.4) h(JXy Y) = h(X, JY), k(JX, Y) = k{X, JY).

We shall also write

(1.5) Pxξ = - MAX) + μ(X)ξ + v(X)Jξ,

thus defining a (1, l)-tensor A and two 1-forms μ and v on M. We get

(1.6) Vx(Jξ) = -JA(X) - v(X)ξ + μ(X)Jξ .

We shall now find formulas in terms of complex vector fields. For X, Y

e X, we write Z = X — ίJX and W = Y — iJY. We expand and simplify

(1.7) F*(/*W0 = fx.iJX{UY - iJY))

by using (1.1)-(1.4). The tangential component of (1.7) is equal to

(1.8) VzW=Vx_ux(Y-iJY).

The transversal component of (1.7) can be expressed in the form

(1.9) 2[h(X, Y) + ik(X, Y)](ξ - ίJξ).

We introduce a transversal (1, 0)-veetor field

(1.10) ζ = f-/J£.

By extending h as a complex bilinear function on complex tangent vectors

we get

(1.11) HZ, W) = 2(h(X, Y) + ik(X, Y)).

Using (1.10) and (1.11) we may rewrite the transversal component (1.9) in

the following form

(1.90 HZ,W)ζ.

From (1.7), (1.8) and (1.90 we get

(1.12) Pz(UW)) = U(VZW) + HZ, W)Z .

Now we compute Fz(f*(W)) and find
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without the transversal component on the right-hand side. This corre-

sponds to

(1.14) Λ(Z,Ψ) = 0,

which can be directly verified for the complex extension h.

We also note that, for any complex vectors Z and W in general,

h(Z, W) is conjugate to h(Z, W), VZW is conjugate to VZW, and we have

the formulas conjugate to (1.12), (1.13) and (1.14).

Now we work with the complex versions of (1.5) and (1.6). By com-

putation we get

Vzζ = -(A - iJA)(Z) + (μ + iv){Z)ζ

so that

(1.15) Fzζ = -S(Z) + τ(Z)ζf

where

(1.16) S = A - iJA, τ = μ + iv .

On the other hand we have

(1.17) F*ζ=-S(Z)4-τ(Z)ζ

(1.18) Fzζ = -S(Z)+t(Z)ζ

(1.19) F£ζ^-S(Z) + ϊ(Z)ζ,

where by definition

(1.20) S = A + iJA, t = μ - iv .

We easily see that the conjugate of S(Z) is S(Z) and the conjugate of

τ(Z) is τ(Z).

§2. Antiholomorphic transversal vector field and afiine Kahler

immersions

We recall here that in Cn a vector field Z = Σ£-ιΦkdldzk i n χ ( 1 ' 0 ) i s

said to be holomorphic or antiholomorphic if each function φk is holomor-

phic or antiholomorphic. The notion of holomorphic vector field can, of

course, be extended to the case of an arbitrary complex manifold, but

that is not the case with antiholomorphic vector fields. We make the

following definition.
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Let M be a complex manifold with a torsionfree affine connection V

compatible with the complex structure J. We shall say that a vector

field ζ of type (1, 0) is antiholomorphic if Fzζ = 0 for every tangent vector

of type (1, 0). If ζ is antiholomorphic and if φ is an antiholomorphic

function, then φζ is antiholomorphic. The set of antiholomorphic vector

fields of type (1, 0) forms a vector space over C and for Cn this notion

coincides with the obvious one.

Let ζ = ξ — ίJξ and Z — X — ίJX, where ξ and X are real vector

fields; then Fzζ = Fxξ — VJXJξ — ίFJxξ — iFxJξ is zero if and only if

FJχξ = — JFxξ. Therefore we have the following characterization:

(2.1) ζ is antiholomorphic if and only if FIxξ = — JFxξ for every X.

This can be compared to the well-known fact that ζ is holomorphic if

and only if [£, JX] — J[ξ, X] for every X, which can be rephrased: if and

only if FJxξ = JVxξ for every X.

For the complex immersion /: M—> M a (1,0) vector field ζ along /

is said to be antiholomorphic if Fzζ = 0 for every (1, 0)-vector field Z on

M.

Remark. All the work so far on affine differential geometry of com-

plex hypersurfaces depends on the choice of a holomorphic transversal

vector field (see [DFV]). We know, however, that this premise does not

hold for a kahlerian hypersurface; namely if/: M->M is a holomorphic

immersion of a kahlerian manifold M into M, then the choice of a holo-

morphic (1, 0)-tranversal vector field ζ leads to a holomorphic connection

on M, which cannot agree with the connection from the induced kahlerian

metric unless it is flat. On the other hand, for any kahlerian hyper-

surface we can choose an antiholomorphic (1, 0)-transversal vector field.

Suppose now we have chosen an antiholomorphic (1,0)-transversal

vector field ζ along /. With such a choice we call / an affine Kdhler

immersion. We have that

FJXξ = - μ

but by (2.1) this is equal to

- JVxξ = UJAX) + »(X)ξ - μ(X)Jξ

so that for every X we have

(2.2) AJ^-JA
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(2.3) v{X) = μ{JX) .

Actually, (2.2) and (2.3) are necessary and sufficient for ζ to be antiholo-

morphic.

§3. Curvature tensors on the hypersurface in Cn+1

From now on we shall assume that we take a (1, 0)-antiholomorphic

transversal vector field for our immersion /. We derive basic equations

for geometry of the complex hypersurfaces in Cn+1. We summarize the

basic formulas (omitting /* where there is no danger of confusion and

also writing D for covariant differentiation in Cn+1); X, Y, Z, W will be

(1, 0)-vector fields on M:

(la) DzW = VZW + h(Z, W)ζ and its conjugate,

(Ib) DZW = VZW and its conjugate.

Since h is defined or all complex vectors, it is worth noting that

(Ic) h(Z, W) = h(Z, W) = 0,

(Πa) Dzζ = 0 and its conjugate,

(lib) DΣζ = -S(Z) + τ(Z)ζ and its conjugate.

It is useful to note that

(Πc) S(Z) = S(Z) = 0, τ{Z) = τ(Z) = 0.

To be sure, the conjugate of (lib) reads:

where S and S are related by

S(Z) - S(Z),

and τ and t are related by

We now compute the curvature tensor of F. Using (la) and (Πa) we

have

= VXVYZ + h(X, VYZ% + X(h(Y, Z))ζ + h(Y, Z)Dxζ

= VXVYZ + h(X, VγZ)ζ + (Fxh)(Y, Z)ζ + h{FxY, Z)ζ + h(Y, VxZ)ζ

and a similar equation where X and Y are interchanged. Also

DίX,Y1Z = Fίx,Y1Z + h[(X, Y]9 Z)ζ .
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From these equations we obtain

0 = R(X, Y)Z + [(Fxh)(Y, Z) - (FYh)(X, Z)]ζ .

Therefore

(3.1) R(X, Y)Z = 0

(3.2) (Fxh)(Y,Z) = (FYh)(X,Z).

We have also the conjugates of these equations. Now we have, by using

(Ib) and (lib)

DXD7Z = DX(FTZ) = FXFTZ + h(X, F7Z),

DVDXZ = DΫ(FXZ + h(X, Z)ζ)

= FγFxZ + {(F7h)(X, Z) + h(FyX, Z) + h(X, F7Z)}ζ +

-h(X,Z)S(Ϋ) + τ(Ϋ)ζ,

and

D[X,T,Z = FίXί71Z + h([X, Ϋ), Z)ζ .

From these equations we obtain

0 = R(X, Ϋ)Z + h(X, Z)S(Y) +

- {(FΫh)(X, Z) + h(FyX, Z) + h([X, Ϋ], Z) - h(X, Z)τ(Ύ)}ζ ,

where

h(FTX, Z) + h([X, F], Z) = h(FxY, Z) = 0

by (Ic), because FXΫ is of type (0, 1). Thus we get

(3.3) R(X, Ϋ)Z = - h(X, Z)S(Y),

(3.4) (Frh)(X, Z) + τ(Y)h(X, Z) = 0.

The conjugate equations read:

(3.5) R(X, Y)Z = h(Y, Z)S(X),

(3.6) (Fxh)(Y, Z) + t(X)h(Y, Z) = 0 .

Next we have

DXDYZ = Dx(PyZ) = VXVYZ + h(X, VγZ)ζ = VXVYZ,

since h(X, V'XZ) = 0 by (Ic). Moreover

https://doi.org/10.1017/S0027763000003342 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000003342


212 KATSUMI NOMIZϋ, ULRICH PINKALL AND FABIO PODESTA

DYDXZ = DY(FXZ) = FYFXZ

again using the fact that [X, Y] e X ( M ) and Z e X((U). From these equations

we get

(3.6) R(X, Y)Z = 0 .

The conjugate equation reads

(3.7) i?(X, F)Z = 0.

For our complex hypersurface we summarize

Equations of Gauss and Codazzi

(Ilia) i?(X, Y) = 0 for X, YeX ( M ) as well as for X, YeX(<U)

(IΠb) R(X, Ϋ)Z = - A(X, Z)S(Ϋ) for X, 7, Z e X ( M ) and its conjugate,

namely,

R(X, Ϋ)Z = h(Ϋ, Z)S(X) for X, Y, Ze X ( M ) .

(IVa) (ΓZΛ)(Y, Z) = (ΓFA)(X, Z) for X, Y, Z e X ( M ) and its conjugate,

namely

(IVb) (Frh)(X, Z) = r(F)Λ(Z, Z) for X, Y, Z e X(0>1) and its conjugate,

namely

(ΓTA)(F,Z)= -τ(X)h(?,Z)

for X, Y,ZeX ( M ) .

Remark. (Ilia) reflects the same kind of property as the curvature

tensor of a kahlerian connection, namely, the equation (18), p. 157 in

[K-N], vol II.

We shall have to derive some further basic equations.

We have from (lib) and (Πc)

= -VX(S(Ϋ)) - h(X, S(Ϋ))ζ + (Fxτ)(Ϋ)ζ

DrDxζ = 0

and

A*.r]C = -S([X, Ϋ))ζ + f([X, Y]).

Since [X, Ϋ] = FXY - FTX, where F x ΫeX ( ( U ) and FFXeXα ' 0 )

? we have
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S(FZΫ) = S([X, Y]), τ(FxΫ) = τ([X, ? ] ) .

We have therefore

0 = [Dz, Dr]ζ - Dιx,7Ίζ = -(FXS)(Y) - h(X, S(Ϋ))ζ + (Fxr)(F)ζ

and hence for X, Ye X ( M )

(3.8) (FXS)(Y) = 0

and its conjugate

(3.9) (PγS)(X) = 0 .

We have also

(3.10) h(X, S(Ϋ)) = (Fxτ)(Ϋ)

and its conjugate

(3.11) h(S(X), Ϋ) = (V7t)(X).

The same kind of computation for [Dx, Dr]ζ — Z) [X,r]ζ leads to

(3.12) (FXS)(Y) - t(X)S(Y) = (FrS)(X) ~ t(Y)S(X)

and its conjugate as well as (noting equation (Ib))

(Fxΐ)(Y) - (Fγτ)(X) = 0 ,

that is.

(3.13) (dt)(X, Y) = 0

for X, YeX(1>0) and its conjugate.

We now consider the transversal (or normal) connection FL and its

curvature tensor RL. First of all, from (Πa) we have Fxζ = 0 for Xe X(1 0)

and hence for X, YeX α w

(3.14) RL{X, Y)ζ = 0

and its conjugate equation. From (lib), (Πa) we have

Fγζ = r(Y)ζ

Dx(FTζ) = X(r(Ϋ)) = {(Fxτ)(Ϋ) + τ(FxY)}ζ

FK = 0, F7(FXQ = 0
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again because [X, Ϋ] = VXY - F?X, where Γ P I e X ( U ) and V^γXζ = 0.

From these we get (X, YeX ( M ))

(3.15) Λ^X, F)ζ = (Fxr)(F)C = 2(dr)(Z, F)ζ .

Here the last equality comes from the fact that

2dτ(X, Ϋ) = X(τ(Y)) - Ϋ(τ(X)) - τ([X, ?

= X(τ(Y))-τ(FxY-FτX) _
= X(τ(Ϋ)) - τ(PxΫ) = (Vxτ){Ϋ)

because τ(X) = 0 and τ{F7X) = 0. By taking the conjugate we get

(3.16) R^X, Y)ζ = -(FytKX)ζ = 2(dt)(X, F)ζ .

By a similar computation using equation (3.13) we get

(3.17) R^X, Y)ζ = 0

and its conjugate. We might also list

(3.18) dτ(X, Y) = 0

corresponding to equation (3.14). Also the conjugate equation holds.

Summing up, we have

Codazzi equations and Ricci equations

(Va) (VXS)(Ϋ) = 0 for X, FeX(1-0> and its conjugate.

(Vb) (FXS)(Y) - f(X)S(Y) = (FyS)(X) - τ(Y)S(X) for X, YeX™

and its conjugate.

(Vc) h(X, S(Ϋ)) = (F*r)(F) = 2(dτ)(X, Ϋ) for X, YeX(h0) and its

conjugate.

(Via) R^X, Y)ζ = 0 for X, YeX ( 1 0) and its conjugate.

dτ(X, Y) = 0 for X, YeX ( M ) and its conjugate.

(VIb) RL(X, Y)ζ = 0 for X, Ye XC1 O) and its conjugate.

dt(X, Y) = 0 for Z, YeX ( I 0) and its conjugate.

(Vic) Rλ(X, Y)ζ = 2dτ(X, Ϋ)ζ for X, Ye X ( M ) and its conjugate.

RHX, Y)ζ = 2(dt)(X, Y)ζ.

Thus d(X, Y) is a non-trivial term that appears in (Vc) and (Vic) in

relation to h and R1.

For later use we now want to list these basic equations using the

real representation; since the computation is quite similar to the previous

one, we omit the detail. Starting from equation (1.1) and (1.5) and using
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the fact that for affine Kahler immersions AJ = — JA and v = μ°J, we

get the equations of Gauss, Codazzi and Ricci (X, Y, Z are here real vector

fields on M):

(Vila) R(X, Y)Z = h(Y, Z)AX - h(X, Z)AY + h(JY, Z)AJX

- h{JX, Z)AJY

(VΠb) (Vxh){Y, Z) + μ(X)h(Y, Z) + μ(JX)h(JY, Z)

= (Fγh)(X, Z) + μ(Y)h(Xf Z) + μ(JY)h(JX, Z)

(VΠc) {VXA)(Y) - μ(X)AY- μ(JX)JAY

= (VYA)(X) - μ(Y)AX - μ(JY)JAX

(VΠd) h(X, AY)- h(Y, AX) = 2dμ(X, Y)

(Vile) h(AX, JY) - h(AY, JX) = 2dv(X, Y)

§ 4. The fundamental theorem for affine Kahler immersions

We now want to prove the fundamental theorem for affine Kahler

immersions; throughout this section we shall use the real formalism,

regarding the complex manifold Mn as a 2ra-dimensional real analytic

manifold endowed with a complex structure J.

THEOREM 4.1. Let Mn be an n-dimensional complex manifold with a

complex structure J together with an affine Kahler connection V. Let A

be a real tensor field of type (1, 1) on Mn together with a real symmetric

tensor field h of type (0, 2) and a 1-form μ. We suppose that the following

equations are satisfied (X, Y, Z are real vector fields on Mn):

a) AJ"= -JA

b) h(X, JY) = h(JX, Y)

c) R{X, Y)Z = h(Y, Z)AX - h(X, Z)AY + h{JY, Z)AJX

- h(JX, Z)AJY

d) (Pxh)(Y, Z) + μ(X)h(Y, Z) + μ(JX)h(JY, Z)

= (Frh)(X, Z) + μ(Y)h(X, Z) + μ(JY)h(JX, Z)

e) (VXA)(Y) - μ(X)AY- μ(JX)JAY

= (FXA)(X) - μ(Y)AX- μ(JY)JAX

f) h(X9 AY)- h(Y, AX) = 2dμ(X, Y)

g) h(AX, JY) - h(AY, JX) = 2dv(X, Y), with v(X) = μ(JX)

where R is the curvature tensor of V. Then there exists locally a holomor-

phίc immersion f: Mn —> Cn + 1 and an antiholomorphic (1, O)-transversal

vector field ζ along f so that f: (M, V) —> Cn + 1 is an affine Kahler immersion.

Such an immersion is unique up to a holomorphic affine transformation of
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Cn+1. // Mnis assumed to be simply connected, all the results above hold

in a global setting.

Remark. We note that equations c), d), e), f), g) are precisely the

Gauss, Codazzi and Ricci equations for an affine Kahler immersion accord-

ing to formulas (Vila, b, c, d, e) of § 3, so that they are necessary for the

existence of such an immersion.

Proof. We consider the trivial bundle N = Mn X R2 over Mn, where

R2 is endowed with the standard complex structure Jo. We define a con

nection F 1 on N in the following way: we choose a nowhere vanishing

section ξ of N and put for X e X

Fxξ = μ(X)ξ + μ{JX)Joξ

We can now define a connection £)* in the bundle E — TMn φ N as follows

DXY^FXY + h(X, Y)ξ - h(JX, Y)Joξ

DWoξ= -JAX+J0Fxξ.

By using equations a)-f) it is easy to verify that the curvature operator

of Z3# vanishes identically; hence, by a standard result in the theory of

connections in vector bundles (see [K-N], vol. I, Cor. 9.2, p. 92), we can

find locally a C°° bundle-isomorphism Φ

Φ: E->Mn X R ( n + 1 ),

which maps the connection D# into the standard flat connection D in the

trivial bundle Mn X R2(π+1>. We note that I = J® Jo is a complex structure

along the fibres of E and that D# leaves I parallel; since Φ is connection

preserving, it follows that the complex structure J = Φ^I along the fibres

of Mn X R2(n+1) is parallel with respect to the connection D, so that we

can speak of the complex structure J induced on R2(n+1> without ambiguity.

In the following we shall identify (R2(n+1), J) with Cn+1.

We denote by c the inclusion c: TMn ̂ —>E and consider the map

F^Φot: TMn-+MχCn+1.

If X is any section of TMn, i.e. any vector field on Mn, we can write
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xeM"

where θ is a Cn+^valued 1-form on Mn. We first prove that θ is closed,

i.e. dθ = 0. Indeed if X and Y are vector fields on Mn

(4.1) Dx(cY) - D*γ(tX) = c([X, Y])

since F is torsion-free and h is symmetric. If we apply Φ to both members

of (4.1) and use the fact that Φ is connection-preserving, we get

XΘ(Y) - YΘ(X) = 0([X, Y])

which means d# = 0. Moreover we note that Θ(JX) = i#(Jf) because Φ

maps the complex structure I into the complex structure of Cn + 1 given

by the multiplication by i.

Therefore we can write θ as (θ\ -,θn+ί) where each θι is a C-valued

1-form of type (1, 0) with dθ1 = 0; hence each θι may be expressed locally

as β1 — dfι for some holomorphic function fι: indeed θι = dfι + dfι and

from the fact that θι is of type (1, 0), we get that dfι = 0, i.e. /* is holo-

morphic. We put / = (f\ - ,/Λ+1) where /: Mn -> Cn + 1 is a holomorphic

immersion: if dfx(X) = 0 for some x e Mn and Xe TMn

x, then F(X) = (x, 0)

and c(X) = φ-^O) = 0, hence X = 0.

We need only to define the (1, 0)-transversal vector field ζ by setting

ζ = Φ(ξ) - i

The condition of antiholomorphicity for ζ is actually equivalent to

DxΦ(ξ) = JDJXΦ(ξ),

and, since Φ is connection preserving, it is enough to check that

Dxξ = JD*Jxξ

But

μ(JX)ξ - μ(X)Joξ)

+ μ(X)ξ

and this proves the first part of the theorem.

We now prove that such an immersion is unique up to a hlomorphic

affine transformation of C(7l+1); the proof goes on as in the case of a

kahlerian hypersurface (see [K-N], vol Π, p. 45).
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We suppose we have two (local) affine Kahler immersions /, /': Mn ->

Cn + 1 with antiholomorphic (1, O)-transversal vector fields ζ = ξ — iJξ and

ζ' = ξ' — ίJξ' inducing on Mn the same connection F, shape operator A,

fundamental form h and normal connection form μ. We fix a point

x0 e Mn and choose a coordinate chart U, with real analytic coordinates

(x\ , x2n), on which both / and /' are defined. We put e, = fjd/dx*)

and e't — f'^idjdx1) (i = 1, • , 2ή) and define an affine transformation B of

Cn + 1 in the following way

B(f(x0)) = /'(*.)

) + βl(xβ)) = /'(*.) + βί(*β)

(*.) + f) = /'(*.) + f
(«„) + Jf) = f\x0) + Jf .

Since / and /' are holomorphic, B turns out to be holomorphic. Hence by

changing / into B°f, we can suppose that f(x0) =/'(*„), e4(x0) = eί(x0) and

f(jc0) = ξ'(x0). If we denote by Γ)k the local Christoffel symbols of F and

by <x\ the local matrix expression for A, we have that

^ ϊjβk + h{djdx\ 3/9x0$ - ΛO/Sx4, Jd!dxs)Jξ
dx1

and the same for (β{, •, e'3n, fO Since (e1? , e2n, ξ) and (ei, , e£n, ί')

satisfy both the same system of set of differential equations and since

their initial conditions coincide, the uniqueness of the solution for the

Cauchy problem implies that et = e^ on [7, hence that / = /' on U.

If Mn is assumed to be simply connected, then the mapping Φ is

defined on the whole E and also the function / is globally defined on Mn;

moreover if / and /' are two such Kahler immersions, then by the previous

argument we can find a holomorphic affine transformation of Cn + ί so that

foB and /' coincide locally, hence on the whole Mn because of the holo-

morphicity. q.e.d.

§ 5. Flat normal connection and Ricci-flatness

Unlike the classical theory for non-degenerate hypersurfaces in Rn+1

(see [N-Pi]-1), it is not generally possible to choose for a complex hyper-

surface in Cw + 1 an antiholomorphic (1, 0)-transversal vector field such that

https://doi.org/10.1017/S0027763000003342 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000003342


ON THE GEOMETRY OF AFFINE KAHLER IMMERSIONS 219

τ and t are identically zero. In the Kahler case, it is known that a
complex hypersurface Mn in a Kahler manifold Mn+1 of constant sectional
curvature c has flat normal connection only if c = 0 and Mn is totally
geodesic (see Theorem 7 in [N-S]). In the affine Kahler case we have

PROPOSITION. Let Mn be a complex hypersurface in Cn + 1 and ζ an
antίholomorphίc (1, O)-transversal vector field.

1) The Rίcci tensor of Mn vanishes identically if and only if the
normal connection is flat, i.e. RL — 0.

2) Suppose the normal connection is flat. Then we may find locally
an antiholomorphίc function φ such that for the antiholomorphic transversal
vector field φζ, the normal connection form vanishes identically.

Proof. Note that the Ricci tensor is defined for Y, Z eXc by

Ric(Y, Z) = tr{Xe Tc *-* R(X, Y)ZeXc}.

For an affine Kahler connection, we know that R(X, Y) == 0 for X, Ye X(10);
this implies that Ric(F, Z) = Ric(F, Z) = 0 for X, Ye X(M). So for Y, Z
e X(M) we have

Ric(F, Z) - tr {Xe X(M) ^ R(X, Y)Ze X(M)},

which is equal to —h(S(Y),Z) by equation (IΠb). By equation (Vc), we
see that Ric(F, Z) = 0 if and only if dr(Y, Z) = 0. This proves 1) by
equations (VΊa)-(VΊc).

To prove 2), we first remark that if φ is an antiholomorphic function,
then d = φζ is antiholomorphic. The normal connection form τt can be
found as follows. On the one hand, we have

D& = (Zφ)ζ + φφ-zQ = (Zφ + φτ(Z))ζ - φU(S(Z)).

On the other hand

D& = -USάZ)) + τ1(Z)ζ1 - -

Hence we get

(5.1) Tl(Z) = τ(Z) + (Zφ)lφ .

for every ZeX(1'0). Now we start with the assumption that R1 = 0. By
the equations (Via, b, c) we see that dτ = 0. Since r is a 1-form of type
(0, 1) that is zero on (1, 0)-vectors, we can locally write τ — 2]2-i ψhdzk

hence
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dτ = Σ M = I (dψkldzm)dzm A dzk + Σ*,n-i (dψkldzm)dzm Λ dzk = 0 .

Evaluating dτ on (d/dzm, d/dzk) as well as on (d/dzm, d/dzk), we get that

d<fk/dzm = 0 and dψkldzm = 0 so that each ψfc is a constant function, say,

equal to ak. We have that τ — ΣΛ=I akdzk — dψ, where ψ is the holomor-

phic function ψ = ^l^akzk. Let φ = exp(—ψ) which is an antiholomor-

phic function. Then we have

τ(d/dzk) + (dφldzk)lφ = ak - df/dzk = αfc - α* = 0 .

By (5.1) this means that τ1 = 0 and this proves 2). q.e.d.

We now prove

THEOREM 5.1. Let Mn be a complex hypersurface in Cn+1 with an

antίholomorphic (1, Oytransversal vector field ζ. Suppose the second fun-

damental form h is non-degenerate (which condition is independent of the

choice of any transversal (1, 0)-vector field, holomorphic or antiholomorphic

or whatever). Then the following conditions are equivalent to each other:

1) The Rίccί tensor of Mn vanishies identically;

2) the normal connection of Mn is flat;

3) ζ is parallel in Cn + 1 and thus Mn is equivalent to the graph of a

certain holomorphic function F(z\ , zn) over a domain D in Cn with

non-degenerate Hessian.

Proof. The equivalence of 1) and 2) has been already proved. Let

us assume 2). By the previous proposition we may rechoose ζ so that τ

is identically zero. We also know that h(S(Ϋ), Z) = 0 for all Y, ZeXM\

Since h is non-degenerate, this means that S — 0. Thus

that is, ζ is parallel in Cw + 1. It follows that Mn is the graph of a certain

holomorphic function F on a domain D in a hyperplane transversal to

the constant vector ζ in Cn + 1. In this case, h on X(1)0) X X(1'o) is expressed

by the Hessian matrix of F, which is non-degenerate. Thus 2) implies 3).

The converse, that is, 3) implies 1), follows from the fact that for a graph

immersion the shape operator S vanishes identically. q.e.d.

If Mn is assumed to be flat, that is, R = 0, then of course the Ricci

tensor is zero and we get Mn to be a graph. However we can prove this

result without assuming that h is non-degenerate.
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THEOREM 5.2. Let f: (Mn, F)->C n + 1 be an affine Kάhler immersion.

If Mn is flat, that is, R = 0, then f is totally geodesic or a graph immersion

with parallel (1, O)-transυersal vector field.

Proof. By equation (IΠb), R = 0 implies that h(Y, Z)S(Y) = 0 for all

X,Y,Ze XC1'O). Suppose S =̂ 0 at a point x e M \ Then by picking Ye X(1'0)

with S(Ϋ) Φ 0, we find that h vanishes identically on X (10) X X(1'0) at x,

hence on X c X X c at x. Suppose S is not identically zero. Then S Φ 0 at

a point x and hence in a neighborhood U of x. By the above argument,

we see that h = 0 on U. But h is real analytic and therefore it vanishes

on Mn. This means that Mn is totally geodesic. On the other hand, if

S is identically zero, then / is a graph immersion because we already

know that, due to R = 0 we may rechoose an antiholomorphic (1,0)-

transversal vector field with τ — τ = 0. q.e.d.

§ 6. An analogue of Berwald's theorem

Let /: (M, F) —> Cn + 1 be an affine Kahler immersion. Among the

covariant derivatives of h the non trivial ones are of the form (Vxh)(Y, Z),

(FΣh)(Y,Z) for X, Y, ZeX ( 1 ' 0 ) and their conjugate. For these we have

equations (IVa) and (IVb).

We prove an analogue of Berwald's Theorem (see [N-P]-2)

THEOREM 6.1. Let f: (M, V)-+Cn + ι be a non-degenerate affine Kahler

immersion. If (Fxh)(Y,Z) are zero for all complex vector fields X, Y, Z,

then f is equivalent to the graph of a quadratic polynomial

Γ \ z 9 5 z ) — Z-ιj,k=ι ajkz z

where det [ajk] Φ 0.

Proof. From equation (VIb), we obtain τ(Ϋ)h(X, Y) = 0 for all X, Y,

Ze X(1'o). Thus we get r = 0. From equation (Via) we get that h(X, S(Z))

= 0 and since h is non-degenerate, we conclude that S = 0. From the fact

that S and τ vanish identically, we may use the previous argument to

choose an antiholomorphic (1, 0)-transversal vector field which is parallel

in Cn + 1. We see that / is a graph immersion

/ : (z\ . . . , 2 ' ) 6 1 ) H (z\ •• ,z\ F(z\ • • -,z«))

where F is a holomorphic function defined on a domain D in C and

https://doi.org/10.1017/S0027763000003342 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000003342


222 KATSUMI NOMIZU, ULRICH PINKALL AND FABIO PODESTA

ζ = (0, . , 0, 1). From this we have

h(d/dzj, djdzk) = Fjk(=d2F/dzjdzk)

and

(Fd/dzmh)(dldz\ d/dzk) = dFjkldzm = 0 .

Hence each Fjk is a constant and

F=~ Σ?*=i ***** + Σi-i Kzm + c

for some constants bm and c. q.e.d.
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