*R*₁, PAIRWISE COMPACT, AND PAIRWISE COMPLETE SPACES

BY

G. D. RICHARDSON

1. The R_1 axiom was first introduced by Davis in [1]. It is strictly weaker than the T_2 axiom. Murdeshwar and Naimpally, in [4], have weakened the T_2 hypothesis to R_1 in some well-known theorems. We show that in many topological spaces the R_1 axiom and regularity are equivalent. Also, the definition of local compactness given in [4] can be weakened to the usual definition and still get the same results.

The notion of a bitopological space was first introduced by Kelley in [3]. Fletcher, Hoyle, and Patty discuss pairwise compactness for bitopological spaces in [2]. One of our main results is that a bitopological space (X, P, Q) is pairwise compact if and only if each ultrafilter ν on X, containing a proper P closed set and a proper Q closed set, has a common P and Q limit.

Finally, we discuss biquasi uniform spaces. Some results on these spaces are given by Murdeshwar and Naimpally in [5]. We define pairwise completeness and give some conditions under which pairwise compactness implies pairwise completeness. It is also shown that if (X, Q_1, Q_2) is a pairwise complete, pairwise Hausdorff space, then Q_1 and Q_2 induce the same topology on X.

2. The following definitions and theorems will be needed

DEFINITIONS. The topological space (X, τ) is R_1 if $\bar{x} \neq \bar{y}$ implies that x and y have disjoint neighborhoods [4]. It is *locally compact* if every point has a closed compact neighborhood [4]. The collection of sets Q is a *quasi-uniformity* for X if it is a uniformity less the symmetry axiom [5].

If τ_1 , τ_2 are two topologies on X, then (X, τ_1, τ_2) is a bitopological space [3]. The space is called *pairwise Hausdorff* if $x \neq y$ implies there is a τ_1 open set and a τ_2 open set containing $\{x\}$ and $\{y\}$ respectively, which are disjoint [3]. It is *pairwise regular* if A is τ_i closed with $x \notin A$ implies that there are τ_j , τ_i disjoint open sets containing A and $\{x\}$ respectively, $i \neq j$ [3]. It is called *pairwise compact* if each cover of X consisting of both nonempty τ_1 and τ_2 open sets has a finite subcover [2]. If Q_1 , Q_2 are quasi-uniformities for X, then (X, Q_1, Q_2) is called a biquasi-uniform space [5]. A filter f on X is Q_1 -Cauchy if for each $\nu \in Q_1$ implies that there is an $x \in X$ with $\nu(x) \in f$ [5]. The space (X, Q_1, Q_2) is called *pairwise complete* if every Q_i -Cauchy filter on X has a Q_j cluster point, $i \neq j$.

Received by the editors November 1, 1969 and, in revised form, November 13, 1970. The author wishes to thank the referee for helpful suggestions.

[March

THEOREMS. The one point compactification of X is R_1 iff X is R_1 and locally compact [4]. A locally compact R_1 space is completely regular [4]. An R_1 paracompact space is regular and hence normal [4]. Thus a compact R_1 space is normal. If X is R_1 and $A \subseteq X$ is compact with $\overline{\{x\}} \cap A = \emptyset$, then $\{x\}$ and A have disjoint neighborhoods [4]. The R_1 axiom is hereditary [4]. In an R_1 space (X, τ) , $\overline{x} \subseteq O$ for each $x \in O \in \tau$ [4]. If A is a τ_1 -closed proper set in (X, τ_1, τ_2) , then A is τ_2 -compact if X is pairwise compact [2].

3. LEMMA. A locally compact (i.e. each point has a compact neighborhood) R_1 space (X, τ) has a neighborhood base at each point consisting of closed compact neighborhoods.

Proof. Let $O \in \tau$ and $x \in O$. Then there is a compact neighborhood N of x with $x \in O_N \subseteq N$ and $O_N \in \tau$. Hence $\bar{x} \subseteq O \cap O_N$. If $N - (O \cap O_N) \neq \emptyset$, then \bar{x} and $N - (O \cap O_N)$ are nonempty disjoint N-closed sets. Since N is normal, then there exist disjoint N-open sets O_1 , O_2 such that $\bar{x} \subseteq O_1$, and $N - (O \cap O_N) \subseteq O_2$. Thus $\bar{O}_1^{(N)} \subseteq N - O_2 \subseteq O \cap O_N$. But $O_1 \subseteq O_N$ implies that O_1 is τ -open. We claim that $\bar{D}_1^{(N)} = \bar{O}_1^{(X)}$. Let $y \in X - N$. Then $y \in X - O_N$ and hence $\bar{y} \subseteq X - O_N$. Thus $\bar{y} \cap \bar{O}_1^{(N)} = \emptyset$. Since $\bar{O}_1^{(N)}$ is compact, then $\{y\}$ and $\bar{O}_1^{(N)}$ have disjoint neighborhoods. Hence our claim follows and thus $x \in \bar{O}_1^{(N)} = \bar{O}_1^{(X)} \subseteq O$. If $N - (O \cap O_N) = \emptyset$, then $O_N = N$ $\subseteq O$. If $y \notin N$, then $\bar{y} \cap N = \emptyset$ and hence N is a closed, compact, neighborhood of x.

REMARK 1. From the above lemma, we see that the usual definition of local compactness could have been used in the above theorems of §2.

THEOREM 1. Let (X, τ) be locally compact (usual definition). Then the following are equivalent:

- (1) τ is R_1
- (2) τ is regular
- (3) the closed compact neighborhoods of each point is a neighborhood base.

Proof. This follows from the lemma and the fact that regularity implies R_1 , which is easily established.

REMARK 2. From the results of §2, we easily see that R_1 and regularity are equivalent in both paracompact and normal spaces.

One might conjecture that a complete R_1 quasi uniform space is regular. The following example shows that even a T_2 complete quasi uniform space is not necessarily regular.

Let X= reals, Q= rationals, I= irrationals, and

$$B = \{O_{x,\epsilon} = [(x-\epsilon, x+\epsilon) \cap Q] \cup \{x\} \mid \epsilon > 0\}.$$

Clearly *B* is a base for a topology τ on *X*, which is T_2 . Let $x \in Q$. Then $\{x\}$ and *I* are disjoint closed sets and are not contained in disjoint open sets. Hence τ is not regular. Let *T* be the quasi uniformity whose base is $\{V_{\epsilon} = \bigcup_{x \in X} (\{x\} \times O_{x, \epsilon}) | \epsilon > 0\}$.

a

110

Then *T* is easily seen to be a quasi uniformity which induces τ . Let \mathfrak{f} be a *T*-Cauchy filter on *X*. That is, for each $V \in T$ there exists an $x \in X$ such that $V(x) \in \mathfrak{f}$. We must show that \mathfrak{f} has a cluster point. There is an $x_n \in X$ such that $V_{2-n}(x_n)$ $= O_{x_{n,2}-n} \in \mathfrak{f}$ for each natural number *n*. Now $x_n \to x$ in the usual sense. We claim that *x* is a cluster point of \mathfrak{f} . If not, then there is an $O_{x,\epsilon} \in B$ and $F \in \mathfrak{f}$ such that $O_{x,\epsilon} \cap F = \emptyset$. There is a natural number *m* such that $O_{x_{n,2}-n} \subset O_{x,\epsilon} \cup \{x_n\}$ for each $n \ge m$. Hence $O_{x,\epsilon} \cup \{x_n\} \in \mathfrak{f}$. Since $O_{x,\epsilon} \cap F = \emptyset$, then $F \cap (O_{x,\epsilon} \cup \{x_n\})$ $= \{x_n\} \in \mathfrak{f}$ for each $n \ge m$, which is a contradiction. Hence (X, T) is complete.

4. The emphasis here will be on pairwise complete spaces

THEOREM 2. If (X, Q_1, Q_2) is pairwise compact such that for each Q_i -Cauchy filter f on $X, \overline{f}(Q_i) \neq \{X\}(i=1, 2)$, then it is pairwise complete.

Proof. Let f be a Q_1 -Cauchy filter on X. Then there is an $F \in \mathfrak{f}$ with $\overline{F}^{(Q_1)} \neq X$. Hence $\overline{F}^{(Q_1)}$ is Q_2 -compact. If there does not exist a Q_2 -cluster point x of \mathfrak{f} , then for each $x \in \overline{F}^{(Q_1)}$ there is a $V_x \in Q_2$ and $F_x \in \mathfrak{f}$ such that $V_x(x) \cap F_x = \emptyset$. Thus there exists V_{x_1}, \ldots, V_{x_n} such that $\bigcup_{i=1}^n V_{x_i}(x_i) \supset \overline{F}^{(Q_1)}$ and we have $F \cap (\bigcap_{i=1}^n F_{x_i}) = \emptyset$. This contradicts \mathfrak{f} being a filter. Hence \mathfrak{f} has a Q_2 -cluster point and the theorem follows.

THEOREM 3. Let Q_1 , Q_2 be uniformities on X with either $Q_1 \neq (X \times X)$ and $Q_2 \neq \{X \times X\}$, or $Q_1 = Q_2 = \{X \times X\}$. If (X, Q_1, Q_2) is pairwise compact, then it is pairwise complete.

Proof. Clearly the latter part follows. Let $Q_1 \neq \{X \times X\}$, $Q_2 \neq \{X \times X\}$ and f a Q_1 -Cauchy filter. Hence $f \times f \ge Q_1$. Let $V \in Q_1$ with $V \neq X \times X$ and such that V is Q_1 -closed. There is an $F \in f$ with $F \times F \subseteq V$. Hence $\overline{F}^{(Q_1)} \times \overline{F}^{(Q_1)} \subseteq V$. That is, $\overline{F}^{(Q_1)} \neq X$. Hence by Theorem 2, the result follows.

If (X, Q_1, Q_2) is pairwise compact and $Q_1 = \{X \times X\}$, $Q_2 \neq \{X \times X\}$ or vice-versa, then (X, Q_1, Q_2) may not be pairwise complete. Let X be a nonfinite set, $Q_1 = \{X \times X\}$, $Q_2 = \{V \subseteq X \times X \mid V \supset \Delta\}$. Clearly (X, Q_1, Q_2) is pairwise compact. Let f be a filter on X with $\bigcap_{F \in f} F = \emptyset$. Hence $\bigcap_{F \in f} \overline{F}^{(Q_2)} = \emptyset$. Since every filter on X is Q_1 -Cauchy, then (X, Q_1, Q_2) is not pairwise complete.

THEOREM 4. If (X, Q_1, Q_2) is pairwise Hausdorff and pairwise complete, then $\tau_{Q_1} = \tau_{Q_2}$. That is, the induced topologies are equal.

Proof. Let $O_1 \in \tau_{Q_1}$, $x \in O_1$. If for each $O_2 \in \tau_{Q_2}$ with $x \in O_2$ implies that $O_2 \cap (X - O_1) \neq \emptyset$, then $B = \{O_2 \cap (X - O_1) \mid x \in O_2 \in \tau_{Q_2}\}$ is a base for a filter f on X. Clearly f is Q_2 -Cauchy. Hence f has a Q_1 -cluster point, say x_1 . Also $x_1 \neq x$. Hence there is a $G_1 \in \tau_{Q_1}$, $G_2 \in \tau_{Q_2}$ such that $x_1 \in G_1$, $x \in G_2$ and $G_1 \cap G_2 = \emptyset$. This contradicts $x_1 \in \overline{G_2 \cap (X - O_1)}^{(Q_1)}$ and the theorem follows.

Pairwise Hausdorff cannot be dropped from the hypothesis of the above theorem. One can easily show that the following would be a counter-example. Let X be the closed interval [0, 1], $Q_1 = \{X \times X\}$ and let Q_2 be the usual uniformity on X. 5. THEOREM 5. The bitopological space (X, P, Q) is pairwise compact iff each ultrafilter v on X, with at least one proper P-closed subset and at least one proper Q-closed subset, P and Q converges to a common point.

Proof. Let (X, P, Q) be pairwise compact. If there is an ultrafilter ν on X such that ν has no P and Q common limit, then for each $x \in X$ there is an O_x , either in P or Q, such that $O_x \notin \nu$. Hence $X - O_x \in \nu$. Let $C = \{O_x \mid x \in X\}$. If there are elements of C in both P and Q, then $\bigcup_{i=1}^n O_{x_i} = X$ for some finite set. Hence $\bigcap_{i=1}^n (X - O_{x_i}) \in \nu$, which implies that $\phi \in \nu$ and we have a contradiction. Next, assume all elements of C are in one topology, say P. Let $A \in \nu$ such that A is a proper Q-closed subset of X. Hence A is P-compact and we have that $\bigcup_{i=1}^n O_{x_i} \supset A$ for some finite set. This implies that

$$X - \bigcup_{i=1}^{n} O_{x_i} \subseteq X - A, \quad \text{with} \quad X - \bigcup_{i=1}^{n} O_{x_i} = \bigcap_{i=1}^{n} (X - O_{x_i}) \in v$$

which is a contradiction since $A \in v$. Hence the necessity follows.

Conversely, if (X, P, Q) is not pairwise compact then there is an open cover of X, say C, containing both nonempty P-open and Q-open sets that has no finite subcover. Let $\delta = \{X - O \mid O \in C\}$. Then $(X - O_1) \cap (X - O_2) = X - (O_1 \cup O_2) \neq \emptyset$. Thus δ is a subbase for a filter f. Let ν be an ultrafilter with $f \subset \nu$. Clearly ν has proper P and Q closed subsets. Hence by hypothesis νP and Q converges to some $x \in X$. Let $O \in C$ with $x \in O$. Hence $O \in \nu$; however, $X - O \in \nu$ and we have a contradiction. Hence (X, P, Q) is pairwise compact.

THEOREM 6. If the bitopological space (X, P, Q) is pairwise compact, then for each filter \mathfrak{f} on X there is an $x \in X$ with x being a P-cluster point of $\overline{\mathfrak{f}}^{(Q)}$ and a Q-cluster point of $\overline{\mathfrak{f}}^{(P)}$.

Proof. Let f be a filter on X. If $\overline{f}^{(Q)}$ does not have a P-cluster point, then there is an $F \in \mathfrak{f}$ with $\overline{F}^{(Q)} \neq X$. Hence $\overline{F}^{(Q)}$ is P-compact. For each $x \in \overline{F}^{(Q)}$ there is an $O_x \in P$, $F_x \in \mathfrak{f}$ with $O_x \cap F_x = \emptyset$. Let $\bigcup_{i=1}^n O_{x_i} \supset \overline{F}^{(Q)}$. Hence $F \cap (\bigcap_{i=1}^n F_{x_i}) = \emptyset$ which is a contradiction. Consequently, $\overline{\mathfrak{f}}^{(Q)}$ has a P-cluster point. Similarly $\overline{\mathfrak{f}}^{(P)}$ has a Q-cluster point. If \mathfrak{f} has a proper P-closed subset and a proper Q-closed subset, then we easily see that the desired result follows from Theorem 5. If \mathfrak{f} does not have a proper P-closed subset, then $\overline{F}^{(P)} = X$ for each $F \in \mathfrak{f}$. Hence every $x \in X$ is Q-cluster point of $\overline{\mathfrak{f}}^{(P)}$. Since $\overline{\mathfrak{f}}^{(Q)}$ has a P-cluster point, then the theorem follows.

The conclusion of Theorem 6 seems to be a reasonable, weaker definition of pairwise compactness. The converse of Theorem 6 is false as one sees from the following example. Let X=[0, 1] with P being the usual topology, Q the discrete topology. It is easily shown that (X, P, Q) is not pairwise compact but that the conclusion of Theorem 6 holds.

THEOREM 7. If (X, P) is compact, disconnected and (X, P, Q) is pairwise regular, then (X, Q) is disconnected.

[March

Proof. Let $X = O_1 \cup O_2$ with both O_1 , $O_2 \neq \emptyset$ and disjoint *P*-open subsets. Since (X, P, Q) is pairwise regular, then for each $y \in O_1$ there is an $O_y \in P$, $G_y \in Q$ with $y \in O_y$ and $O_2 \subset G_y$, where $O_y \cap G_y = \emptyset$. Now O_1 is *P*-compact. Hence $\bigcup_{i=1}^n O_{y_i} = O_1$ for some finite set and we have that $\bigcap_{i=1}^n G_{y_i} = O_2 \in Q$. Similarly $O_1 \in Q$ and the result follows. Hence we have the following theorem.

THEOREM 8. If (X, P), (X, Q) are compact, (X, P, Q) is pairwise regular, then (X, P) is connected iff (X, Q) is connected.

REFERENCES

1. A. S. Davis, Indexed systems of neighborhoods for general topological spaces, Amer. Math. Monthly 68 (1961), 886–893.

2. P. Fletcher, H. B. Hoyle, and C. W. Patty, *The comparison of topologies*, Duke Math. J. 36 (1969), 325-331.

3. J. C. Kelley, Bitopological spaces, Proc. London Math. Soc. 13 (1963), 71-89.

4. M. G. Murdeshwar and S. A. Naimpally, R_1 -topological spaces, Canad. Math. Bull. 9 (1966), 521-523.

5. ——, Quasi-uniform topological spaces, Noordhoff, Groningen, 1966.

EAST CAROLINA UNIVERSITY, GREENVILLE, NORTH CAROLINA