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1Departamento de Matemática, Universidade de São Paulo, Rua do Matão 1010,
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Abstract Let G be a group of odd order that contains a non-central element x whose order is either
a prime p � 5 or 3l, with l � 2. Then, in U(ZG), the group of units of ZG, we can find an alternating
unit u based on x, and another unit v, which can be either a bicyclic or an alternating unit, such that
for all sufficiently large integers m we have that 〈um, vm〉 = 〈um〉 ∗ 〈vm〉 ∼= Z ∗ Z.
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1. Introduction

Let ZG be the integral group ring of the finite group G over the ring of integers Z,
and let U(ZG) be its group of units. It is well known [10] that unless G is either an
abelian or a Hamiltonian 2-group, U(ZG) always contains free (non-cyclic) subgroups.
The shortcoming of this proof is that it is existential, and does not explicitly present the
units of ZG that generate the free subgroup. More recently, this gap was filled by using
bicyclic units [12] and by using Bass cyclic units [2]. Other instances of construction
of free subgroups of U(ZG), using either Bass cyclic units or bicyclic units, can be seen
in [1,3,5,6,8,11].

Following this trend, we ask if it is possible to find free products in U(ZG), where one
of the factors is an alternating unit.

This is the question that we will pursue in this paper, but let us start by recalling the
relevant definitions.

Let C = 〈x | xn = 1〉 be a cyclic group of order n > 1, let ZC be its integral
group ring and let ε be a complex primitive root of unity of order n. The isomorphism
QC �

⊕
d|n Q(εd), when restricted to ZC, gives the embedding ZC ↪→

⊕
d|n Z[εd], of
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ZC into the maximal order
⊕

d|n Z[εd] of QC. So, an element u of ZC is a unit if each
component of its image is a unit in Z[εd].

In Z[εd] the most common way to produce a unit is the following. If i ∈ N, 1 < i < n,
(i, n) = 1, then

(εi − 1)
(ε − 1)

= 1 + ε + · · · + εi−1

is a cyclotomic unit in Z[ε] with inverse

(ε − 1)
(εi − 1)

=
(εik − 1)
(εi − 1)

= 1 + εi + · · · + εi(k−1),

where ik ≡ 1 (mod n).
But, if we try to mimic the definition above in ZG, by setting v = 1+x+· · ·+xi−1 ∈ ZC,

with i ∈ N, 1 < i < n, (i, n) = 1, we do not obtain a unit, since the augmentation of v is
i > 1. So, we need to make a small change in v in order to produce an alternating unit.

Let c > 0 be an odd integer. Define the polynomial fc(Y ) ∈ Z[Y ] as

fc(Y ) :=
Y c + 1
Y + 1

= 1 − Y + Y 2 − · · · + (−1)c−1Y c−1 =
c−1∑
i=0

(−Y )i.

Now, in the finite group G, let x ∈ G be an element of odd order n, and let c ∈ N,
1 � c � n be such that (c, n) = 1. If c is odd, then, according to [13, Lemma 10.6], the
element

uc(x) := fc(x)

is a unit in ZG. If c is even, then, replacing c by n+ c (which is an odd number), we still
have a unit uc(x) as before:

uc(x) := fn+c(x).

We call this unit the alternating unit based on the element x and depending on the
parameter c. Notice that, if n = |〈x〉| < 5, then the only existing alternating units are
trivial units.

Now let g be an element of G of order n > 1, and suppose that h /∈ NG(〈g〉), the
normalizer of 〈g〉 in G. Set ĝ =

∑n−1
i=0 gi ∈ ZG. Then τ = (1 − g)hĝ ∈ ZG has square 0,

but τ �= 0. The element v = 1 + τ is called a bicyclic unit.
Our main goal is to prove the following.

Theorem 1.1. Let G be a group of odd order. Suppose that there exists a non-central
element x ∈ G such that the order of x is either a prime p � 5 or of the form 3l, with
l � 2. Then there exist an alternating unit u, based on the element x and dependent on
the parameter c, and a unit v, being either a bicyclic unit or an alternating unit, such
that for all sufficiently large integers m we have that 〈um, vm〉 = 〈um〉 ∗ 〈vm〉 ∼= Z ∗ Z.
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2. Some lemmas

This section is quite technical, and provides the tools that will be used in § 3.
Our strategy is to prove Theorem 1.1 by induction on |G|. The key groups to be

considered are groups of minimal order subject to the conditions of the theorem, and
they are classified in the lemma below.

We say that G is a p-critical group if G has a non-central element of order p and, for
all proper subgroups H of G, the elements of H of order p are central in H [5].

We start with the following lemma.

Lemma 2.1. Let G be a finite group of odd order, possessing an element a ∈ G\Z(G)
such that the order of a is either a prime number p � 5 or 3r � 9, and that, for every
proper subgroup or proper homomorphic image H of G, the elements of H of order p � 5
or 3r � 9 are central in H. Then one of the following statements holds.

(1) G is the semidirect product G = B � A of the abelian group B by the cyclic group
A = 〈a〉 of order p � 5. Furthermore, either B = 〈b〉 is cyclic of order pn+1 � p2

with ba = b1+pn

, or B = 〈b〉 × 〈z〉, with z central of order p and ba = bz.

(2) G is the semidirect product G = P � Q of the elementary abelian p-group P , with
p � 5, by the cyclic group Q of prime order q �= p, and Q acts irreducibly on P as
a group of order q.

(3) G is the semidirect product G = Q � P of the q-group Q, q a prime, by the cyclic
group P of order p �= q, p � 5; P acts faithfully and irreducibly on the Frattini
quotient Q/Φ(Q) and P centralizes Φ(Q).

(4) G is one of the following 3-groups:

(i) G = 〈a, b | a3r

= b3 = 1, b−1ab = a1+3r−1〉, r � 2;

(ii) G = 〈a, b | a3r

= b3s

= c3 = 1, c = (a, b), (a, c) = (b, c) = 1〉.

Proof. Among all groups G satisfying the hypotheses of the lemma, take one with
minimal order, with a ∈ G being the non-central element. There exists b ∈ G such
that (a, b) = a−1b−1ab �= 1. By hypothesis, 〈a, b〉 cannot be a proper subgroup of G, so
G = 〈a, b〉. We have the following possibilities.

(a) |〈a〉| = p � 5, p a prime number: in this case, G is a p-critical group and, thus,
according to [5, Proposition 2.3], G is either (1), (2) or (3).

(b) |〈a〉| = 3r � 9: if |〈b〉| = p is a prime number not equal to 3, then G is again
p-critical (G is either (1), (2) or (3)).

So, we can assume that |〈b〉| = 3s. If G is not a 3-group, then take w ∈ G such that
|〈w〉| = p is a prime number not equal to 3. If w �∈ Z(G), then we are again in the
p-critical case, and G is either of type (1), (2) or (3).

Therefore, we can assume that W = 〈w〉 is central.
We claim that G/W is abelian.
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Otherwise, denoting by : G → G/W the canonical epimorphism, we have, by hypoth-
esis, that |〈ā〉| = |〈b̄〉| = 3, and a3 ∈ W . Since the order of w is p, the possibilities for
the order of a are either 3 or 3p, which go against the hypothesis that the order of a is
3r � 9.

So G/W is abelian, and (a, b) = w. Therefore, |〈a〉| is the least common multiple
between the orders of b−1 and w, which is 3sp: a contradiction again.

The conclusion is that if G is not p-critical for p � 5, then G is a 3-group. So, from
now on we assume that G is a 3-group.

It may be the case that G contains a cyclic subgroup of index 3. Then by [9, Theorem
12.5.1], G is of type (a).

Thus, we can assume that G has no maximal cyclic subgroup.
Let a ∈ G be a non-central element of order 3r � 9 and let b ∈ G be an element of order

3s such that (a, b) �= 1. Then G = 〈a, b〉, and 〈a〉 is contained in a maximal subgroup H

of G, such that H � G and [G : H] = 3. This implies that H contains all conjugates
of a, and in particular C = 〈ag | g ∈ G〉 is a normal abelian subgroup of G, and since
G = 〈a, b〉, it follows that G = 〈C, b〉. Since G is non-abelian, b cannot centralize C, but
b ∈ NG(C).

Set c := (a, b) = a−1ab. Then c ∈ C, and c is a commutator of G of order 3l � 3r.
We have two possibilities.

(I) 〈a−1〉 ∩ 〈ab〉 = {1}: in this case the order of c is equal the order of a, which is
3r � 9.

We claim that c is central in G.

Indeed, let g ∈ G and let L be a maximal subgroup of G containing g. Then L � G

and, since G/L is cyclic of order 3, it follows that c ∈ G′ ⊆ L. Notice that, by
hypothesis, c is central in L; thus, we conclude that cg = gc, and 〈c〉 = Z is central
in G.

Let : G → G/C denote the canonical epimorphism, and let 3m be the order
of b̄. If m > 1, set b̃ := b3m−1

. Then, since c is central, we have c̃ := c3m−1
=

(a, b̃) = (a, b3m−1
) �= 1, and c̃3 = 1. So, if we substitute b by b̃, we have the new

relations a3r

= b̃3s′
= 1, (a, b̃) = c̃, c̃3 = 1, as in (i).

(II) 〈a−1〉∩〈ab〉 �= {1}: the inequality of the intersection above means that b normalizes
〈a〉. So, substituting, if necessary, b by one of its powers, we can assume that b

normalizes 〈a〉 and b3 centralizes a. Therefore, ab = a1+3r−1
, c = a−1a1+3r−1

and
c3 = 1. But we cannot guarantee that b3 = 1. If this is not so, certainly b3 = a3s,
and the element we are looking for is b′ = a−sb. This is case (b).

�

We must prove Theorem 1.1 for each group type in Lemma 2.1 and the technique we
use is as follows. Consider a suitable representation of CG and regard the units in U(CG)
as non-singular linear operators in a complex vector space. We obtain free groups for the
powers of the operators involved after the following setting is established.
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Let F be a locally compact field with a real absolute value | · | and let V be a finite-
dimensional F -vector space. If T is a non-singular, diagonalizable operator on V , we
say that V = X+ ⊕ X0 ⊕ X− is a T -decomposition of V if there exist real numbers
r > s > 0 with X+ �= 0 (the subspace spanned by the eigenvectors of T corresponding
to the eigenvalues of absolute value greater than or equal to r), X− �= 0 (the subspace
spanned by the eigenvectors of T corresponding to the eigenvalues of absolute value less
than or equal to s) and with X0 the span of the remaining eigenvectors. We use 1Z to
denote the set of integral multiples of 1 in F . So, if CharF = p > 0, then |1Z\0| = 1; and
if CharF = 0, then 1Z = Z. The hypothesis |1Z \ 0| � 1 in the theorem below excludes
the case of p-adic fields.

Now, we can state the following result.

Theorem 2.2 (Gonçalves and Passman [6, Theorem 2.7]). Let V be a finite-
dimensional F -vector space and let S, T : V → V be two non-singular operators. Suppose
S is diagonalizable with an S-decomposition given by V = X+ ⊕X0 ⊕X−. Furthermore,
suppose T = 1 + aτ is a generalized transvection, where a ∈ F , τ : V → V is a non-
zero operator of square zero with I = τ(V ) = Im τ and K = ker τ . Assume also that
|1Z \ 0| � 1. If the four intersections X± ∩ K and I ∩ (X± ⊕ X0) are trivial, then, for
all sufficiently large integers n and all a ∈ F of sufficiently large absolute value, we have
〈Sn, T 〉 = 〈Sn〉 ∗ 〈T 〉.

Theorem 2.3 (Gonçalves and Passman [6, Corollary 4.1]). Let V be a finite-
dimensional F -vector space and let S, T : V → V be two non-singular operators on V .
Suppose that S and T are both diagonalizable with V = X+⊕X0⊕X− and V = Y+⊕Y0⊕
Y− being S- and T -decompositions of V , respectively. Assume that dim X+ = dimX− =
r = dimY+ = dimY+ and consider the four projections σ+ : V → X+, σ− : V → X−,
τ+ : V → Y+ and τ− : V → Y−. If the idempotent conditions rankσiτj = r = τjσi hold
for all i, j ∈ {+,−}, then 〈Sm, Tm〉 = 〈Sm〉 ∗ 〈Tm〉, for all sufficiently large positive
integers m.

Looking into the conditions of Theorems 2.2 and 2.3, we see that we must know
precisely what the absolute values of the eigenvalues of an alternating unit are. This is
our next task.

Lemma 2.4. Let n be an odd integer, n � 5, and let ε = exp(2πi/n) be a primitive
complex nth root of unity. Let c be an integer 1 < c < n coprime to n and let a be any
integer. If uc(x) is the alternating unit based on x with parameter c, then

(i) |uc(εa)| =
∣∣∣∣cos(πca/n)

cos(πa/n)

∣∣∣∣ =
∣∣∣∣ε

ac/2 + ε−ac/2

εa/2 + ε−a/2

∣∣∣∣,

(ii) the largest absolute value of |uc(εa)| occurs when 2a ≡ ±1 (mod n).

(iii) the smallest absolute value of |uc(εa)| occurs when 2a ≡ ±c−1 (mod n).
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Proof. (i), (ii) Our goal is to find the integer a that maximizes |uc(εa)|; clearly, we
may assume that 0 � a < n. Since |εa| = 1, it is easy to see that

|uc(εa)| =
∣∣∣∣ε

ca + 1
εa + 1

∣∣∣∣ =
∣∣∣∣ε

ac/2 + ε−ac/2

εa/2 + ε−a/2

∣∣∣∣ =
∣∣∣∣cos(πca/n)

cos(πa/n)

∣∣∣∣.
From the above expression, we see that we may replace c by n + c if necessary, and thus
assume that c is odd. Furthermore, we may replace a by n − a if necessary, and thus
assume that 1

2 (n + 1) � a < n.
Set z := a/n. Since c is odd, we have that

|uc(εa)| =
∣∣∣∣cos(πcz)

cos(πz)

∣∣∣∣ =
∣∣∣∣ sin(πc(z − 1

2 ))
sin(π(z − 1

2 ))

∣∣∣∣ =
∣∣∣∣ sin(πcx)

sin(πx)

∣∣∣∣,
where x := z − 1

2 .
Now, (n + 1)/2 � a < n; so 1/2 + 1/2n � z < 1 and r := 1/2n � x < 1/2. Since

1 < c < n, we have that 0 < r < 1/2c, and [6, Lemma 3.3] implies that the largest value
of |uc(εa)| occurs when x = r = 1/2n or, equivalently, when a = (n + 1)/2. Another
possibility for a is obtained by replacing a by n − a = (n − 1)/2.

(iii) |uc(εa)| has a minimum, as a function of a, precisely when |uc(εa)−1| has a maxi-
mum.

If bc ≡ 1 (mod n) and xn = 1, then

uc(x)−1 =
x + 1
xc + 1

=
yb + 1
y + 1

= ub(y) = ub(xc),

where y = xc.
Now set x := εa. Then uc(εa)−1 = ub(εac), which has a maximum when 2ac ≡ ±1

(mod n). So, the solution for the minimum problem is 2a ≡ ±c−1 ≡ b (mod n), as
claimed. �

Lemma 2.5. Let p � 5 be a prime. Consider n := pd and ε = exp(2πi/n) a primitive
complex nth root of unity. Assume c is a positive integer with c �≡ 0,±1 (mod n). Then
we have that

(i) |uc(εa)| = |uc(εb)| if and only if a ≡ ±b (mod n),

(ii) uc(εa) = uc(εb) if and only if a ≡ b (mod n).

Proof. (i) Since p is odd, each primitive root of unity of order n is a square. So we
may replace a and b by 2a and 2b, respectively.

From the hypothesis, we have that

|uc(ε2a)| =
∣∣∣∣ε

ca + ε−ca

εa + ε−a

∣∣∣∣ =
∣∣∣∣ε

cb + ε−cb

εb + ε−b

∣∣∣∣ = |uc(ε2b)|.

Since

uc(ε2a) =
cos(πc2a/n)
cos(π2a/n)
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is a real number, we have that

εca + ε−ca

εa + ε−a
= κ

εcb + ε−cb

εb + ε−b
, where κ = ±1.

We have two cases.

Case 1 (κ = 1).

εca+b + ε−ca−b + εca−b + ε−ca+b = εcb+a + ε−cb−a + εcb−a + ε−cb+a

From [6, Lemma 3.5 (i)], we have that

• ca + b ≡ ±(cb + a) or

• ca + b ≡ ±(cb − a).

In the first case, then, either (c − 1)a ≡ (c − 1)b (and a ≡ b), or (c + 1)a ≡ (c + 1)(−b)
(and then a ≡ −b).

In the latter case, we also have that ca − b ≡ ±(cb + a) (mod n). So,

ca + b ≡ ±(cb − a) (mod n),

ca − b ≡ ±(cb + a) (mod n).

If the two ± signs in the equations above disagree, then, adding them, we have 2ca ≡ 2a,
which is absurd. Therefore, the ± signs must agree, and we have 2ca ≡ 2cb, which implies
a ≡ b (mod n).

Case 2 (κ = −1).

εca+b + ε−ca−b + εca−b + ε−ca+b + εcb+a + ε−cb−a + εcb−a + ε−cb+a = 0. (2.1)

Let Φp(X) denote the pth cyclotomic polynomial over Q.
Notice that, if p � 11, then the degree of Φp(X) is p − 1, which is greater than 9; so

the equation above is not possible.
Now we may suppose p < 11. Let f(X) denote the polynomial in Q[X] obtained by

replacing ε by X in (2.1). Then Φ(X) should divide f(X) and the left-hand side of (2.1)
would have n terms, where n is a multiple of 5 (if p = 5) or 7 (if p = 7): a contradiction.

(ii) If uc(εa) = uc(εb), then, in particular, we have that |uc(εa)| = |uc(εb)|, which, by
part (i), implies that a ≡ ±b (mod n).

As in (i), we replace a and b by 2a and 2b, respectively. Then we have, from the
definition of an alternating unit and the hypothesis, that

uc(ε2a) =
ε2ca + 1
ε2a + 1

=
εca(εca + ε−ca)
εa(εa + ε−a)
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= ε(c−1)a
(

εca + ε−ca

εa + ε−a

)

= ε(c−1)b
(

εcb + ε−cb

εb + ε−b

)

= uc(ε2b).

Suppose that a ≡ −b (mod n), with a �≡ 0 (mod n). Thus, εa(c−1) = εb(c−1),
i.e. ε(a−b)(c−1) = 1, or ε2a(c−1) = 1, which implies that n|a: a contradiction. �

Lemma 2.6. Let d � 2 be an integer. Consider n := 3d, ε = exp(2πi/n) a primitive
complex nth root of unity, and t := 1+3d−1. Assume c is a positive integer with (c, 3) = 1.
If the equality

εc+t + εc−t + ε−c+t + ε−c−t = εct+1 + ε−ct+1 + εct−1 + ε−ct−1

holds, then each term on the left-hand side equals exactly one term on the right-hand
side.

Proof. Denote by tr the Galois trace in the field extension Q(ε)|Q divided by 3d−1.
We have that tr 1 = 2, tr ε3d−1

= −1 and tr ε3i

= 0 for 0 � i � d − 2.
We show first that there is a term on the right-hand side that is equal to εc+t. We

multiply both sides of the equality by ε−c−t, obtaining

1 + ε−2t + ε−2c + ε−2(c−t) = εct+1−c−t + ε−ct+1−c−t + εct−1−c−t + ε−ct−1−c−t.

We may assume, without loss of generality, that c is odd (by replacing c by c + n if
necessary). Computing the trace on both sides of the equality we obtain tr 1 = 2, tr ε−2t =
tr ε−2c = 0 for (2c, 3) = (2t, 3) = 1. Notice that tr ε−2(c−t) = −1 in the worst situation.
In any situation, the trace is positive on the left-hand side of the equation; thus, there
must exist some εi on the right-hand side of the equation with tr εi > 0, which implies
tr εi = 1.

We cancel out the equal terms on both sides of the equation and repeat the process,
getting the result. �

Lemma 2.7. Let d � 2 be an integer. Consider n := 3d, ε = exp(2πi/n) a primitive
complex nth root of unity, and t := 1+3d−1. Assume c is a positive integer with (c, 3) = 1.
The equality

εc+t + εc−t + ε−c+t + ε−c−t + εct+1 + ε−ct+1 + εct−1 + ε−ct−1 = 0

is impossible.

Proof. The cyclotomic polynomial of ε over Q is Φ3d = X2·3d−1
+ X3d−1

+ 1. Set

f(X) = X3b

(Xc+t + Xc−t + X−c+t + X−c−t + Xct+1 + X−ct+1 + Xct−1 + X−ct−1),

with b chosen so that f(X) ∈ Z[X].
Since f(ε) = 0, it follows that f(X) = Φ3d(X)g(X), for some g(X) ∈ Z[X]. But then

we would have f(1) = Φ3d(1)g(1), i.e. 8 = 3 · k, with k ∈ Z: a contradiction. �
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Lemma 2.8. Let d � 2 be an integer. Consider n := 3d, ε = exp(2πi/n) a primitive
complex nth root of unity, and t := 1 + 3d−1. Assume c is a positive integer with c �≡ 0
(mod n). Then |uc(ε)|, |uc(εt)| and |uc(εt2)| are all distinct.

Proof. Since n is odd, each primitive root of unity of order n is a square. So, we may
replace a and b by 2a and 2b, respectively.

Suppose, by contradiction, that |uc(ε)| = |uc(εt)|. Notice that this implies that
|uc(εt)| = |uc(εt2)| and that |uc(εt2)| = |uc(ε)|. Then we would have

|uc(ε)| =
∣∣∣∣ε

c + ε−c

ε + ε−1

∣∣∣∣ =
∣∣∣∣ε

ct + ε−ct

εt + ε−t

∣∣∣∣ = |uc(εt)|.

Since

uc(ε2a) =
cos(πc2a/n)
cos(π2a/n)

is a real number, we have that

εc + ε−c

ε + ε−1 = κ
εct + ε−ct

εt + ε−t
, where κ = ±1.

We have two cases.

Case 1 (κ = −1).

εc+t + ε−c−t + εc−t + ε−c+t + εct+1 + ε−ct−1 + εct−1 + ε−ct+1 = 0,

which, by Lemma 2.7, is impossible; so this case is excluded.

Case 2 (κ = 1).

εc+t + ε−c−t + εc−t + ε−c+t = εct+1 + ε−ct−1 + εct−1 + ε−ct+1.

From Lemma 2.6, it follows that

• c + t ≡ ±(ct + 1) or

• c + t ≡ ±(ct − 1).

In the first case, either c − 1 ≡ (c − 1)t (mod n) (and 1 ≡ t (mod n), which does not
happen as t = 1 + 3d−1) or c + 1 ≡ (c + 1)(−t) (mod n) (and then 1 ≡ −t (mod n),
which does not happen either).

In the latter case, we also have that c − t ≡ ±(ct + 1) (mod n). So,

c + t ≡ ±(ct − 1) (mod n),

c − t ≡ ±(ct + 1) (mod n).

If the two ± signs in the equations above disagree, then, adding them, we have 2c ≡ 2,
which is absurd. And if the ± signs agree, we have 2c ≡ 2ct, which implies t ≡ 1 (mod n),
which is not possible either.

We conclude that |uc(ε)| �= |uc(εt)|, which implies that |uc(εt)| �= |uc(εt2)| and that
|uc(εt2)| �= |uc(ε)|, as desired. �
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3. Bicyclic and alternating units

As we declared initially, we intend to prove Theorem 1.1 by induction on |G|. Therefore,
we need to know how to lift alternating units from homomorphic images of ZG back to
ZG. The next proposition deals with this.

Proposition 3.1. Let : ZG → ZH be the group ring homomorphism obtained by
extending linearly the group epimorphism : G → H. If uc(ȳ) is an alternating unit
of ZH, then there exist an element x in G such that the order of x and the order of
ȳ have the same prime factors, and there exists an alternating unit uc(x) such that
uc(x) = uc(x̄) = uc(ȳ).

Proof. Let N be the kernel of : G → H, so G/N � H. Suppose ȳ has order m in
H, with m = pk1

1 · · · pkr
r , where p1, . . . , pr are r distinct primes. Then m is the smallest

integer such that ym ∈ N , with y ∈ G a pre-image of ȳ. Let a be the smallest integer
such that yma = 1. If a = 1 or if a is a product of powers of the pi, then we are done
(take x = y). Otherwise, we may suppose that (a, m) = 1 (in fact, if (a, m) �= 1, write
a = a′µ, where pi|µ if pi|a, and a′ is not divisible by any of the pi. Define m′ := mµ.
Now, (a′, m′) = 1, and we may replace a by a′ and m by m′). There exist d, e ∈ Z such
that ad + me = 1. Take x := yad; so, the pi are the only prime factors of the order of
x, and ȳ = ȳad+me = ȳadȳme = ȳad = x̄, since yme ∈ N . Thus, uc(x̄) = uc(ȳ), as we
wanted. �

Below we state and prove the lemma that will be used in proving case (3) of Lemma 2.1.

Lemma 3.2. Let P = 〈x〉 be a cyclic group of prime order p that acts faithfully and
irreducibly on an elementary abelian q-group Q, with q �= p a prime. Consider the group
G = Q � P . If p � 5 and q � 3, then for any 1 �= y ∈ Q there exist suitable alternating
units u = uc(x) and v = uc(xy) in U(ZG), such that for all sufficiently large integers m

we have that 〈um, vm〉 is a free group of U(ZG).

Proof. Take y ∈ Q \ {1}. By [7, Lemma 2.6], the elements y1+x, y1+x2
, . . . , y1+xp−1

cannot be all P -conjugates to y1+x. In other words, there exist t ∈ {1, 2, . . . , p − 1} with
y1+x not P -conjugate to y1+xt

. Since (y1+x)x−1
= y1+x−1

, it is clear that t �= 1, p − 1.
Thus, 2 � t � p − 2, and we take c ∈ Z a positive integer such that

c ≡ t − 1
t + 1

(mod p).

Of course, c �≡ 0 (mod p) and, since t ≡ (1 − c)/(1 + c) (mod p), we have that c �≡ ±1
(mod p). Therefore, we may assume that 2 � c � p − 2.

We now consider the alternating units u = uc(x), v = uc(y−1xy) = y−1uc(x)y, and
argue exactly as in [6, Lemma 4.6]. �

Now, we prove the claim of Theorem 1.1 for each group type in Lemma 2.1. In fact,
the proofs of cases (1)–(3) are given in [3, § 6], so here we will only give a brief sketch of
them.
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Proposition 3.3. Let G be a finite group of odd order, possessing an element x ∈
G \ Z(G) such that the order of x is either a prime number p � 5 or 3r � 9 and that,
for every proper subgroup or proper homomorphic image H of G, the elements of H of
order p � 5 or 3r � 9 are central in H. Then there exist an alternating unit u based
on the element x and depending on a parameter c and a unit v, being either a bicyclic
unit or an alternating unit, such that for all sufficiently large integers m we have that
〈um, vm〉 = 〈um〉 ∗ 〈vm〉 = Z ∗ Z.

Proof. We know that G is one of the group types of Lemma 2.1.
As before, cases (1)–(3) refer to G being a p-critical group, whereas in case (4) G

belongs to the families described in Lemma 2.1 (a) and (b).

(1) G = B � A is as in case (1) of Lemma 2.1.
We consider further subcases depending on the group B.

• B = 〈b〉 is cyclic of order pn+1 � p2 with ba = b1+pn

. Let ε be a complex primitive
root of unity of order pn+1. Consider the map λ : CB → C given by λ(b) := ε,
which induces the representation θ := λG : CG → Mp(C). We have that θ(b) =
diag(ε, εt, . . . , εtp−1

), with t = 1 + pn, and

θ(a) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1

. . .
1

1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Let us also choose c ∈ N, with (c, p) = 1 and set u := uc(b), v := uc(a).

Now, arguing as in [6, Lemma 4.3], we find m0 ∈ N, such that for all integers
m > m0 we have 〈uc(a)m, uc(b)m〉 = 〈uc(a)m〉 ∗ 〈uc(b)m〉.
At this point, is important to mention that no power of the alternating unit uc(a)
can be a factor in a free product by a bicyclic unit in U(ZG). The same argument,
given in [4, Example 2.3], applies here.

• B = 〈b〉 × 〈z〉, with z central of order p and ba = bz.

Let ε be a complex primitive root of unity of order p. Consider the map λ : CB → C

given by λ(b) := ε, λ(z) := ε, which induces the representation θ := λG : CG →
Mp(C). We have that θ(b) = diag(ε, ε2, . . . , εp = 1) and

θ(a) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1

. . .
1

1

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Also, choose c ∈ N such that (c, p) = 1 and set u := uc(b), τ := (1 − a)bâ and
v := 1 + τ . Then S := θ(u) = diag(uc(ε), uc(ε2), . . . , 1) and

T := θ(v) = Ip +

⎛
⎜⎜⎜⎜⎝

ε − ε2 ε − ε2 · · · ε − ε2

ε2 − ε3 ε2 − ε3 · · · ε2 − ε3

...
...

. . .
...

1 − ε 1 − ε · · · 1 − ε

⎞
⎟⎟⎟⎟⎠ ,

where Ip denotes the p × p identity matrix.

We have that

I := Im τ =

⎛
⎜⎜⎜⎜⎝

ε − ε2

ε2 − ε3

...
1 − ε

⎞
⎟⎟⎟⎟⎠ ,

and K := ker τ = {(z0, z1, . . . , zq−1) | z0 + z1 + · · · + zq−1 = 0}.

Let B = {e0, e1, . . . , ep−1} be the canonical basis of Cp, and let r+ and r− be,
respectively, the maximum and the minimum of the absolute values of the eigen-
values of S. Let i± = {i | |uc(εi)| = r±} and let X+ be the span of the set
{ei | i ∈ i+}. Let X− be the span of the set {ei | i ∈ i−}, and let X0 be the span
of the remaining canonical vectors.

Notice that the dimensions of both X+ and X− are 2, while the dimension of K is
1, so Theorem 2.2 cannot be applied. We defer the proof until the next case.

(2) G = P �Q, with P an elementary abelian p-group and Q the cyclic group of order
q �= p, and Q acts irreducibly on P as a group of order q.

Take x ∈ P , with x of order p � 5 and not central in G, and y ∈ Q \ {1}.
By [3, § 6, Claim 2], there is a linear representation λ of P such that the induced

representation θ = λG is irreducible, θ((x, y)) �= 1, and either |P | = p or x ∈ ker(λ).
Fix a representation λ of P as above and let its induced representation be θ = λG.

Set εi := λ(xyi

). Notice that all the εi are pth roots of unity, not necessarily distinct.
As in [3, § 6, Claim 2], the set Z = {εi; i = 0, . . . , q − 1} contains at least two different
elements when |P | �= p. On the other hand, if |P | = p, then λ is injective and thus the εi

are pairwise distinct.
We have that θ(x) = diag(ε0, ε1, . . . , εq−1) and

θ(y) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1

. . .
1

1

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Now, choose c ∈ N such that (c, p) = 1 and set u := uc(x) and v := 1 + τ . Then
S := θ(u) = diag(uc(ε0), uc(ε1), . . . , uc(εq−1)) and

T := θ(v) = Iq +

⎛
⎜⎜⎜⎜⎝

ε0 − ε1 ε0 − ε1 · · · ε0 − ε1

ε1 − ε2 ε1 − ε2 · · · ε1 − ε2
...

...
. . .

...
εq−1 − ε0 εq−1 − ε0 · · · εq−1 − ε0

⎞
⎟⎟⎟⎟⎠ ,

where Iq denotes the q × q identity matrix.
Finally, argue as in [3, § 6, Claims 3–5].
That reasoning applies to the present case and also to the former one, and so we

conclude that convenient homomorphic images S̄ and T̄ of the maps S and T satisfy the
hypothesis of Theorem 2.2. Thus, there exists m0 ∈ N such that, for all integers m > m0,
we have that 〈Tm, Sm〉 = 〈Tm〉 ∗ 〈Sm〉 ∼= Z ∗ Z and so 〈uc(x)m, vm〉 is a non-abelian free
subgroup of U(ZG) for sufficiently large m ∈ Z.

(3) G = Q � P , with Q a q-group and P a cyclic group of order p �= q, where P acts
faithfully and irreducibly on the Frattini quotient Q/Φ(Q) and P centralizes Φ(Q).

Since alternating units and bicyclic units can be lifted (by Proposition 3.1), we can
replace Q by Q̄ := Q/Φ(Q), and G by Ḡ := Q̄ � P , and so assume that Φ(Q) = 1, and
that 〈x〉 = P acts faithfully and irreducibly on the elementary abelian q-group Q. From
the fact that p � 5, by Lemma 3.2, there exist y ∈ Q and a pair of alternating units
u := uc(x) and v := uc(xy) in U(ZG) such that 〈um, vm〉 is a non-abelian free subgroup
of U(ZG) for sufficiently large m ∈ Z.

(4) We will only give the proof of case (a), for case (b) goes along the same lines.
Let G = 〈x, y | x3l

= 1 = y3 = 1, xy = x1+3l−1〉, let ε be a complex primitive root of
unity of order 3l, and set t := 1 + 3l−1.

Consider the map θ : CG → M3(C), with θ(x) = diag(ε, εt, εt2) and

θ(y) =

⎛
⎜⎝

0 1 0
0 0 1
1 0 0

⎞
⎟⎠ .

It is easy to check that θ(x) and θ(y) satisfy the same relations as x and y, so θ is indeed
a representation of CG.

Also, choose 1 < c ∈ N such that (c, 3l) = 1, and set u := uc(x), τ := (1 − y)xŷ and
v := 1 + τ . Then S := θ(u) = diag(uc(ε), uc(εt), uc(εt2)) and

T := θ(v) = I3 +

⎛
⎜⎝

ε − εt ε − εt ε − εt

εt − εt2 εt − εt2 εt − εt2

εt2 − ε εt2 − ε εt2 − ε

⎞
⎟⎠ ,

where I3 denotes the 3 × 3 identity matrix.
We have that the eigenvalues of S are all distinct (by Lemma 2.8). Let r+ and r− be

the maximum and the minimum of the absolute values of the eigenvalues of S, and let
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i+ and i− be defined as i± = {i | |uc(εti

)| = r±}. Let B = {e0, e1, e2} be the canonical
basis of V := C3. Let us denote by X+ �= 0 the span of ei+ , by X− �= 0 the span of ei− ,
and by X0 the span of the remaining canonical vector.

We have that

I := Im τ =

⎛
⎜⎝

ε − εt

εt − εt2

εt2 − ε

⎞
⎟⎠ ,

and K := ker τ = {(z0, z1, z2) | z0 + z1 + z2 = 0}.
We easily check that X± ∩ K = I ∩ (X± ⊕ X0) = 0. So, by Theorem 2.2, there exists

m0 ∈ N such that, for all integers m > m0 we have 〈Tm, Sm〉 = 〈Tm〉 ∗ 〈Sm〉 ∼= Z ∗ Z.
Therefore, 〈um, vm〉 ∼= Z ∗ Z also. �

We are ready to prove Theorem 1.1.

Proof of Theorem 1.1. The proof is by induction on |G|.
If G has a proper non-abelian subgroup H satisfying the hypothesis of the theorem,

then by induction ZH contains an alternating unit uc(x), based on an element x ∈ H

of order n, with (c, n) = 1, and a unit v, either alternating or bicyclic, such that for all
sufficiently large integers m we have that 〈uc(x)m, vm〉 is a free group. So the result is
proved in this situation, since these units are units of ZG.

Now, suppose that G has a proper non-abelian homomorphic image H satisfying the
hypothesis of the theorem. By induction, there exist in ZH an alternating unit uc(ȳ),
based on a non-central element ȳ ∈ H, and a unit v̄, either alternating or bicyclic, such
that for all sufficiently large integers m we have that 〈uc(ȳ)m, v̄m〉 is a free group. Since
alternating units can be lifted, by Proposition 3.1, and bicyclic units also, the result holds
for ZG. �

Remark 3.4. Alternating units behave similarly to Bass cyclic units. So, [6, Theorem
4.7] remains true if we substitute in its statement ‘Bass cyclic units’ by ‘alternating units’.
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