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1. Introduction
In his recent book on ordinary differential equations Hille (3) devotes a

chapter to complex oscillation theory. Drawing upon his own work in this area
and the work of Nehari, Schwarz, Taam, and others, he gives a variety of oscil-
lation and nonoscillation theorems for solutions of the differential equation

W(z)+p(z)W(z) = 0, (1.1)

where z is a complex variable and p is regular in some appropriate domain.
There are a number of results for (1.1) with an arbitrary coefficient/? and some
discussions for special cases of classical interest, such as the Bessel and Mathieu
equations. There is a bibliography at the end of the chapter. For other recent
work in this area attention is directed to papers by Herold (1, 2) Kim (4, 5) and
Lavie (6) where other references are given.

I thank the referee for a number of comments which have improved and
clarified this paper.

Here attention is limited to nonoscillation theorems with results first obtained
for solutions of (1.1). A generalisation to the case in which (1.1) is a matrix
equation, as well as the case of a coupled system of matrix equations, then follows
from the techniques used. The word " nonoscillation " is defined precisely in
the theorems below. We begin by considering equation (1.1).

2. The scalar case
Consider equation (1.1). Let D denote a domain of the z plane in which the

solutions of (1.1) are regular (we assume p is regular in D). First we prove a
theorem appraising a function involving some solutions of (1.1).

Theorem 2.1. Suppose y is a solution of (I.I) and a is a point of D. Define
w(z) = —y'(z)/y(z) and suppose | w(a)|<oo. Let T be a smooth Jordan arc
contained in D, starting at a. Let <t> be regular function in D such that

| <f>(q)\, and such that

| <Kz)\-\ <j>(a)\ 1 f* {| KOI + I ^2(0l}l dt | (2.1)
for zeT. Then, for z e T,

|«Kz)|>|w(z)|. (2.2)
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Proof. Suppose not. The desired result holds initially since | <f>{a)\ > | w(a)\,
so if (2.2) does not hold for all z € F there exists a first point z* on F such that
| <f>(z*)\ = | w(z*)\, while

| <Kz)\ £ | w(z)\ (2.3)

holds for z e F, z " between " a and z*, with equality only at z = z*. We can
write, therefore,

l^(z*)|-|

Jar

> r
Jai

| w'(t)\\ dt |. (2.4)
Jar

The last inequality comes from recalling w = —y'/y so w' = p+w2, as a
straightforward calculation shows. Thus

= \w(z*)-w(a)\

^ | w(z*)| - 1 w(a)| (2.5)
which implies

| <Kz*)\ -1 w(z*)\ > I <t>{a)\ -1 w(a)\ > 0 , (2.6)

a contradiction to the definition of z*. This proves the theorem.
We now prove a nonoscillation theorem for some solutions of (1.1).

Theorem 2.2. Let the notation and hypotheses of Theorem 2.1 hold. Then
the solution y of (1.1) mentioned there is such that y(z) ¥= Ofor z e F; that is,
y is a nonoscillatory solution on T.

Proof. Suppose not. Then there exists a first point z,, say, on T such that
yizj) = 0. As z-*zl, z e F, | w(z)\ = | — y'(z)/y(z)\-+oo because the zeros of non-
trivial solutions of (1.1) are simple. But Theorem (2.1) tells us | w(z)|<| <£(z)|
for z 6 F. Thus as z-*z1, \ w \ -> oo while | 4> | remains bounded. This contradic-
tion proves the result.

These results can be generalised.

Theorem 2.3. Suppose y is a solution of (I.I) and a and b are points of D.
Define w(z) by

g(z) g{z)

= -y'{z)ly{z) (2.7)
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and suppose \ w(a)\ < oo (here g is a regular function in D such that g(z) # Ofor
z e F, r 0 , A, with F, Fo , A Jordan arcs in D, A = F u F 0 , F O a fixed Jordan arc
in D joining b to a). Let <f> be a regular function in D such that | <Ka)l> I w(<*)l.

r I 9(t)\
(2.8)

for zeT. Then, for zeT,

Proof. The reasonings are parallel to those in Theorem 2.1, and are there-
fore abbreviated. One need only note that,

| ftz)|-| <Ka)\ ̂  f* - ! - {I <t> \ + \ig' + h I}21 dt I

-{w+ig'
9

dt\

J aj
w'(OI I A I.

since the substitution (2.7) transforms (1.1) into the Riccati equation

w' = i (
9

(2.9)

(2.10)

The desired conclusion follows as before.
This theorem leads at once to a nonoscillation theorem, whose proof is

obvious, and which is stated below.

Theorem 2.4. Let the notation and hypotheses of Theorem 2.3 hold. Then the
solution y o / ( l . l ) mentioned there is nonoscillatory on T.

By simple changes in the preceding calculations another nonoscillation
theorem can be obtained. A preliminary lemma will be useful.

Lemma 2.5. Suppose <j> and w are regular functions ofz in a domain D. Let
the line segment T = {z:z = a+pe1*,® g p ^ p o , p o > 0 , 0 g $ <2n] also belong
to D. If

| O | cos (^+arg <D)>| W\ cos (<A + arg W) (2.11)

where O = 0, /0o , W = wjwo, <t>, = <£(0(a), w, = w(0(a), with | ^01 = I w01 # 0,
then for 2 e F, z # a few/ sufficiently close to a,

|*(2)|>|M<Z)|. (2.12)
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Proof. For z on F and sufficiently close to a we have

_ l * o
I w0

= / 1+ 2 I O [ p cos (i/>4-argO)+1 Op | 2+ 0(p2) V
\ l + 2 | W | pcosO/f+arg W) + \ Wp |2 + O(p2)/

W)} + O(p2)

using (2.11), if p be sufficiently small. This proves the result.

The desired theorem will come easily from the next theorem below.

Theorem 2.6. Suppose y is a solution of (I.I) and suppose a and b are points
of D. Define w(z) as in (2.7) and suppose \ w(a)\<co. Suppose <f> is a regular
function in D such that | 0(a)| = | w(a)\,

{|0
ar I 9 I

and such that (2.11) holds. Then, for zeT,

(2.13)

Proof. The proof is almost identical with the proof of Theorem 2.3, except
Lemma 2.5 is used to ensure that | <j>(2)\ > | w(z)| initially on F. Then one has,
if z* is the first point on F where | <j>(z)\ = | w(z)\,

so
I w(z*)| - 1 <Kz*)| > I w(a)\ -1 <Ka)\ = 0,

a contradiction. The result follows.
It is now obvious we can prove a nonoscillation theorem similar to Theorem

2.4. We have the following theorem:

Theorem 2.7. Let the notation and hypotheses of Theorem 2.6 hold. Then the
solution y mentioned there is nonoscillatory on F.

Proof. The proof is obvious.

The techniques used above can be easily modified to apply to a system of
differential equations. Consider the system

u'(t) = e(t)v

v'(0 = - / ( ' ) " (2.14)
where t is a complex variable and e and/are assumed to be regular in a domain
D of the / plane where solutions of (2.14) are also regular. Except for certain
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changes in the calculations the reasonings in the present context are analogous
to reasonings of previous theorems so we merely state a nonoscillation theorem
pertaining to system (2.14).

Theorem 2.8. Let (u, v) be a solution vector to system (2.14). Suppose T and
A are smooth Jordan arcs in the domain D of the t plane mentioned above, and
let a and be D. Assume e ^ 0 onT and A. Define w(t) by

Pv(0+| {g(s)f(s)-i ^f^}ds
- = - D ( 0 / " ( 0 (2.15)

git) git)

and assume | w(a)\ < oo. Suppose there exists a function 4>, regular in D, such that
w(a)\ and

e

Ja
(2.16)

9
for z on F. Here g is a regular function in D which is # 0 on T, To, A as in
Theorem 2.3. Then the first component of the solution vector (w, v) given above
is nonoscillatory on F.

It may be noted it would be no harder to prove a nonoscillation theorem for
the second component v of the solution vector. Furthermore, except for the
extra notation, one could consider the full linear system

u' = a(t)u + eit)v (2ll*

v' = -f(t)u + b(t)v

just as easily. Finally, if one makes the initial substitution

^ = -v(t)lu(t) (2.18)
git)

(with g as above) the Riccati equation associated with (2.14) is
2

w' = — +ig'lg)w+gf,
g

so if there exists a regular function <p such that | <j>ia)\ > | w(a)\ and

<7/|} | d s | (2.19)
g

a nonoscillation theorem follows without the hypothesis e & 0 on F and A.
We shall apply these theorems in a later section.

3. The matrix case
We begin by considering the equation

Y"(z)+P(z)Y(z) = 0, (3.1)

where P and Y are (n x n) matrices and the entries in P are regular functions of

- I«(«)I^ P || l
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z in a common domain D. It is assumed D is such that the components 7,/z) of
Y are also regular in D. The following lemma will be useful in obtaining non-
oscillation theorems.

Lemma 3.1. Let O(z) be an (n x n) scalar matrix <5>(z) = <f>(z)I over the
complex field. Let x be an (n x 1) complex column vector of unit length,

|| x || = 1 (where (x, y) = £ xtyt, || x ||2 = (x, x)\ Then if W(z) is a (nxn)

matrix over the complex field such that

x,x)l 0.2)

for all x such that || x || = 1 then

\(®2(z)x,x)\>\(W2(z)x,x)\.

Proof. Let |(O(z)x, x)\ = | 4>{z)\ = RQ; let max \(W(z)x, x)\ =/?, .
II * II = i

Then by hypothesis
RO>J2R1. (3.3)

Since i?, ^ |(W(z)x, JC)|, || x \\ = 1 we conclude

-Rl g Xt g (F(z)x, JC) ^ 4, ^ /?, (3.4)
and

-Rx <, //, ^ (^(z)^ JC) ^ /*,. ^ Je,, (3.5)
where

^(z)sAr(z)+/A:(z)> (3.6)
with

and H and AT are hermitian matrices with eigenvalues At ^ ... ^ An and
/it £ ... £ Ha respectively. We now write

W2 = H2-K2 + i(HK+KH) (3.7)
so

\(W2(z)x, x)\2 = {(H2x, x)}-(K2xs x)}2+{(HKx, x) + (KHx, x)}2. (3.8)

Expanding the right side of (3.8) gives

(Hzx, x)2 -2(H2x, x)(K2x, x)+(K2x, x)2 + {2 Re(Kx, Hx)}2, (3.9)

since H and K are hermitian matrices and {HKx, x) = (Kx, H*x) = (Kx, Hx)
while (A^c, x) = (Hx, Kx) = (Kx, Hx). But

4 Re2
 (AJC, HX) g 4 |(AJC, /^X)|2 g 4 J AJC ||2 || ^ X | | 2 = 4(/fr, ^x)(Ax, ATx)

= 4(/f2x, x)(K2x, x), (3.10)
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so (3.8) becomes

\(W2(z)x, x)\2 g (H2x, x)2+2(H2x, x)(K2x, x) + (K2x, xf

^ (max Xf + max fi2)2

\ l 2 = 4Rt. (3.11)
Hence

\(W\z)x, x)\ ̂  2R2; (3.12)
by (3.3) we get

| W2(z)x, x) | ̂  2R\<R2
0 = | <t>(z)\2 = |(3>2(z)x, x) | ,

the desired result.

We next prove a comparison theorem for some of the solutions of (3.1).

Theorem 3.2. Suppose F is a smooth Jordan arc in D starting at a. Suppose
O(z) is a scalar matrix, <E(z) = <t>(z)I such that, for any unit column vector x,

— ^ fZ {\(®\t)x, x)| + \(P(t)x, x)|}| dt I (3.13)
Jar

lv^'X)l>l(t/(a)x,x)| (3.14)
v 2

where U(z) = — Y'(z)Y~1(z) and Yis a solution o/(3.1) initially invertible on F.
Here we assume also <j> is regular in D. Then

V2 V2
and

V2

Here the scalar product is the same as in Lemma 3.1, and the appraisals in (3.13)
(3.14) are uniform in x.

Proof. Suppose the assertion is false. Then there exists a first point, z*,
say, on F and a unit vector x0 such that

( 3 ] 6 )

We have, from (3.13),

0,x0)\ + \(P(t)x0,x0)\}\dt\

(since the appraisal (3.15) holds for all z on T " between " a and z* and we can
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use Lemma 3.1 to replace the O2 term with U2)

^ I r (tf'(o*o,
(since the substitution U — — Y'Y 1 transforms (3.1) into the matrix Riccati
equation U' = U2+P)

Z \(U(z*)x0 xo)\-\(U(a)xo, xo)\.

Combining the extremes of this chain of inequalities yields

% )x0, Xo)\> »Wfl>y' *«>>l _|(l/(a)Xo, Xo)|>0; ( 3 . ,7)
V2 v 2

by use of (3.14), a contradiction to the definition of z*.
We can now prove a nonosciUation theorem for some solutions of (3.1).

Theorem 3.3. Let the notation and hypotheses of Theorem 3.2 hold. Then
determinant Y(z) = det Y(z) # 0 for z e F, which we express by saying Y is a
nonoscillatory solution of (3.1) on F.

Proof. Our hypotheses say Y(z) is initially invertible for z on F. Suppose
there were a first point zx e F such that det Y{z^) = 0. This implies

lim sup \{-Y\z)Y-\z)x, x)\ = lim sup \(U(z)x, x)\ = oo (3.18)
I E T Z-»ZI 2 6 T z->zi

for at least one unit vector x = x0, say. Suppose not. Then there exists a
constant M such that

lim sup|(C7(z)x, x)\<M (3.19)
zer z-»zi

for all unit vectors x. In particular, choosing x = (1,0,..., 0), x = (0,1,0, . . . , 0),
and so on, we see that lim sup | uu(z)\<M if U(z) = («y(z)), i,j=\,2,...,n,

z-»r z->zi
Thus | trace C/(z)| is bounded as z-*zx on F and

det Y(z) = det
is bounded away from zero as z - ^ since det F(a) ^ 0. But det F(z!) = 0,
which is a contradiction, and the result follows. Now we use Theorem (3.2) to
conclude

xo, xo)J
V2

for z-+zu z e F an impossibility since the term on the left in (3.20) is bounded,
the term on the right unbounded. This proves the theorem.

The next theorem generalises Theorem 3.2. The main ideas are fundamentally
the same so the proof is abbreviated.
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Theorem 3.4. Consider the matrix system

Y'(z) = E(z)Z(z)

Z'(z) = -F(z)Y(z). (3.21)

Suppose D is a domain in the z plane where the coefficient matrices E, F and the
solution matrices are all regular. Let T be a smooth Jordan arc in D, starting at
a, say. Suppose there exists a scalar matrix ®(z) = <j>(z)I (4> regular in D) such
that the following appraisals hold, for zeT, {uniformly in x, || x || = 1)

m dt, ( 3 i 2 2 )

(3.23)

(where ME(z) = (a(z) + )5(z)), a(z) = max | o,(z)|, )3(z) = max | /J,(z)|, a,, /3f the
i I

(real) eigenvalues O / E ( Z ) + £ * ( Z ) a/2rf £ ( z )~£*( z ) W/7A £ such that M /z) # 0 0 / ,
2 2J

T, and J7(z) = -Z(z)7" 1 (z ) , Z and Y a solution pair o/(3.21) with Y assumed
invertible initially for z e F). Then

f^>l(C/(z)x)x)| (3.24)

for z e F, anrf any x JMCA /Aar || x || = 1.

Proof. Suppose the assertion is false. Then there exists a first point, z* say,
on F and a unit vector x0, such that

mZ**<>' Xo) l = \(U(z*)x0, xo) | (3.25)

but for any other z e T " between " a and z*, (3.24) holds. Let

|(O(z)x, x)| = | <t>(z)\ = Ro

(z is fixed now in the following discussion). Let Rt = max \(U(z)x, x)|.

Then we have

R0>2iR1. (3.26)

Since Rt ^ \(U(z)x, x)|, || x || = 1 we conclude

-Rt £ A, g (//(z)x, x)^kn^ R, (3.27)
and

-if, g /*, ^ (K(z)x, x)^nn^ R, (3.28)
where

U(z) = H(z)+iK(z) (3.29)
with

H(Z) = IM±£!(£), K(Z)=UU-U*V
2 1\
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and the Af and fi, are the eigenvalues, respectively of H and K. Now write

UEU = (H+ iK)(A + iB)(H+ iK) (3.30)

E + E* E — E*
where E = A + iB, A — , B = , Thus, computing, we have

2 2i

\(UEUx, x)|2 = {((HAHx, x)-(KAKx, x))-((KBHx, x) + (HBKx, x))}2

+ {((HBHx, x)-(KBKx, x))+((KAHx, x)+(HAKx, x))}2

= {((HAHx, x)-(KAKx, x))-2Re(KBHx, x)}2

+ {((HBHx, x)-(KBKx, x))+2Re(KAHx, x)}2

^ {\(HAHx, x)\ + \(KAKx, x)\ + 2 \(KBHx, x)\}2

+ {\(HBHx, x)\ + \(KBKx, x)\+2 \(KAHx, x)\}2

^ {a(z) • max X2 + <x(z) max fif+2p(z) max | kj \ • max | pt |}2

J i J i

+ {P(z) • max X)+P(z) max fif + 2a(z) max | X, \ • max | ^ \}2

y ' j •>

g {2a(z)R2 + 2fi(z)R2}2 + {2fS(z)R2+2z(z)R2}2

)2i?f. (3.3 L)(
Hence

\(UEUx, x)\ g 2*/?2M£(z)</?2ME(z) = ME(z)\(<3>2(z)x, x)\ (3.32)

from (3.26). The desired theorem now follows readily from (3.32). We have

|((D(z*)x0, xo)| l(<E(a)x0, xo)|
2* 2*

(by use of (3.32))
If*'

o. xo)dt

^ I {|(O2(0x0,x0)|ME(0+|(F(0x0,

> f* {\(U(t)E(t)U(t)xo,xo)\ + \(F(t)xo,xo)\}\dt\ (3.33)
Jor

^ I r
(since the substitution C/ = —ZF x leads to the Riccati matrix equation

U' = UEU+F)^\(U(z*)xo,xo)-(U(a)xo,xo)\

^ \U(z*)xo,xo)\-\(U(a)xo,Xo)\.
Thus

Z*%0 Xo)l )xo, xo)|> I M ^ E o l l _ | ( [ / ( a ) X o ) X o ) I > O (3.34)

a contradiction to (3.25). This proves the result.
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We now have a lemma which is necessary to obtain a nonoscillation theorem.

Lemma 3.5. Let Y, Z be a pair of matrix solutions of(3.21) for z eT,T as in
Theorem 3.4. Let Y be invertible for z eT, z " between " a and zl say (zt # a),
with Y singular first at zx. Let E be a symmetric matrix. Then there exists at
least one unit vector x = x0, say, such that

lim sup |(C/(z)xo> xo)| = oo,

where U= -ZY~K Z£T^1

Proof. Suppose not. Then there exists a constant M such that

lim sup \(U(z)x, x)\<M (3.35)
zeT z-»zi

for all unit vectors x. Taking x = (1,0,0, .... 0), x = (0,1, 0,..., 0), and so on,
we see

lim sup | «fi(z)| <M (3.36)
zeT z-»zi

if U(z) = (Uij(z)) i, j = 1, ..., n. Moreover, taking x = (1/^/2, 1/V2» 0. •••)
x = (1/V2,0,1/72, 0,. . . , 0) and so on, we have

lim sup I Mj/z)+«J.j(z)|<4M. (3.37)
XT • zeTz-z,
Now we can write

Y'Y~l = EZY'1 = -EU (3.38)
so

det Y(z) = det Y(a)eT where / = | -trace (E(s)U(s))ds

for z on r . The indicated trace is easily computed and we have

trace EU = f i t e y t i J . (3.39)
i = 1 U = 1 J

The terms on the right of (3.39) can be broken up into two types, those terms in
which i = j , and those terms in which 1 # j . The latter occur in the form
eijUji+ejiUij, with ei} = eiv Hence

I trace EU | ̂  f | eu \-M+ £ \en |{| U,J+UJ, |}
i = 1 >",J = l , i * J

= M t I « H I + 4 M t I «/«|. (3.40)
1 = 1 1,7 = 1, J * 7

Since E is assumed to be regular in D, and hence on F we have

I trace E(s)U(s)\ < M, < oo, say, (3.41)

for s on r between a and zt. From (3.38) we conclude det Y(z) is bounded away
from zero as z-*zu z e F . This is in contradiction to the assumption
det y(zj) = 0 and the desired result follows.

Our desired nonoscillation theorem now follows.
E.M.S.—M

https://doi.org/10.1017/S0013091500009901 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500009901


184 H. C. HOWARD

Theorem 3.6. Suppose the notation and conventions of Theorem 3.4 hold.
Suppose E is a symmetric matrix on F. Suppose there exists a matrix O as in
Theorem 3.4 such that the appraisals (3.22) and (3.23) hold. Then Y(z) is non-
oscillatory on F in the sense det Y(z) ^ 0.

Proof. Suppose not. Our hypotheses state Y is initially invertible on F.
Thus we are assuming there exists a first point zx, say, on F such that
det y(zj) = 0. From Theorem 3.4 we have

l(0>(z)x, x)| >KU(z)x>x)l ( 3 4 2 )

z e F. By Lemma 3.5 there exists at least one unit vector, call it x0) such that

lim sup \(U(z)x0, xo)| = oo.
z e T z-»zi

This clearly contradicts (3.42) since O is regular on F, and (3.42) holds for any
unit vector, in particular x0. This proves the theorem.

4. Applications
We .investigate the nonoscillatory behaviour of solutions of the equation

W"(z)+p(z)W(z) = 0, (4.1)
where we assume:

p is singular only at zero and a finite number of other points in the finite
z plane, (4.2)

() p (4.3)

for z near zero, with e(z) regular at zero, e(0) = 1 and 0<B< 1/4,

^ B | z | (4.4)i:
for z e D, with D a domain of the z plane in which the solutions of (4.1) are
regular, and A a straight line contour between 0 and z contained in D. A
nontrivial example is afforded byp(z) = Biz2, D = {z:z = x+iy, x$(—oo, 0]}.

We first try to use Theorem 2.4. We take as D,

r = {z:z = a+pei'i', I I / ' I ^ T C , 0 g p ^ p0 ^ oo}.

The case p0<oo can occur if F tends toward a branch cut, say, used in the con-
struction of D. We set

g(z) = z2, <Kz) = i(z-a) (4.5)

and check if inequality (2.8) holds, with

Kt)= f {gp-Wfl9}ds. (4.6)
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One wants

-0^ -L-h\t-a\+ t+ \ s2p(s)ds- ds [ \dt\. (4.7)
Jar I ' I L JOA JOA J

But s2p(s)ds

stringent inequality

If a = a + ifi we have

P

^ J3 | f | by (4.4) so it is sufficient to verify the more

(4-8)
a + pe'*

a \2 + 2 | a | p cos OA-

where tan <f> = /?/a. If cos (t/r- $) ^ 0 we have

Jo

a + pe
^ 1 so (4.8) is true if

"" |""

(4.9)

Since 1/4>B by assumption we conclude (4.7) holds if cos (ip — <p) ^ 0. Since
<j)(a) = 0 we must have w(a) = (—y'(a)/y(a))a2 — h(a) = 0 and to ensure
| <j)(z)\ > | w(z)\ for z on T and near a we demand | <j)'(a)\ > | w'(a)|. This requires

i>
which will hold if

(4.10)

But | a+h(a)\ <L B\a\ and we have taken B< 1/4 so (4.11) also holds. We have
the following theorem.

Theorem 4.1. Suppose the notation and assumptions of (4.1), (4.2) and (4.4)
(with 0<B< 1/4) hold. Then, associated with any point a e D there is a solution y
of (4.1) such that y(z) / Ofor zeT.

By letting \j/ vary (compare the definition of F) zero free regions for y can
be obtained. Roughly speaking, the zero free region for the solution mentioned
in Theorem 4.1 consists of a half plane P with boundary line perpendicular to
arg a (recall | t]/ — <j> | ^ n/2) minus the parts of D " shadowed " by the branch
cuts used in the construction of D, if a light source were placed at a. Compare
this result with Hille (3, Theorem 11.2.8).

We next show how, under certain circumstances, the zero free region can be
extended beyond the " half " plane P. For the sake of simplicity we assume
a e D is a positive real number. Consider

Jo I ( 4 1 2 )
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One has

* + (T
VJo

o

by the Minkowski inequality. Suppose we assume at this point the angle \p used
in the definition of T satisfies n/2 ^ | ^ | ^ 3n/4. From (4.13) we get, under
these circumstances,

V^V(1V-2p)+V(B2p) (4.14)
so

Then inequality (2.8) will hold if

or

If one takes $, g and initial conditions as in Theorem 4.1 (and uses Theorem 4.1
for | \j/ | ^ 7t/2) we get the following theorem.

Theorem 4.2. If hypotheses (4.1)-(4.4) AoW, except 0<B<\-\yj2, then
associated with any positive real number a e D there is a solution y o/(4.1) such
that y(z) ?s 0 o« T. The angle \j/ associated with the definition ofT is restricted
by | 4/ | g 3TT/4.

At the expense of restricting the location of singularities ofp one can get an
even larger zero free region. Suppose the domain D is the z-plane cut along the
negative real axis. From (4.3) and an application of regular singular point
theory we know there exists a pair of linearly independent solutions of (4.1)
which in the neighbourhood of zero, behave like

z" and z*2 (4.16)
where

W ( p B ) W ^ n (4,7)

We consider that solution behaving like z"1. One has

y1(z) = z»(l + a1z + ...) (4.18)

= z"lS{z), say,

where S(z) is regular at zero. Computing we get
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Near z = 0, at z = a say, where | a | is small, we get

y\(a) = «i + (ni + - )
y,(a) a (1 + 0,0 + ...)

= ^i+o1 + 0(a). (4.20)
a

We have, applying Theorem 2.4

) (4.21)
so

| . | a | . (4.22)
We choose 0(z) = (i)z and get | <f>(a)\ = (\)\ a |. We want

Supposed = \-y2, Q<y<\. Then

Hence for any a such that | a | is sufficiently small we have

\w(a)\<\<Ka)\.
We need to verify also

I i(j,e^ + a)\-i I a \ ^ [-i-(i | t \+B | * |)2dp. (4.23)
J o i n

This will be true if arg a = \j/ since then

and the left side of (4.25) becomes \p, while the right side is (£+B)2p <\p. We
have the following theorem.

Theorem 4.3. If hypotheses (4.2) and (4.3) hold, if the domain D is the z plane
cut along the negative real axis, and if a = \ a \ e'* has a sufficiently small modulus,
then (4.1) possesses a solution y such that y{z) / 0 on

r = {z:z = (| a | + p)e'> 0 g p<oo, | </r |<TI}.

If I a I is sufficiently small we clearly have the same solution y as ty goes from
— n to n and the theorem allows us to conclude that there exists a solution zero
free in D, the cut plane.

As a final application we consider Theorem 3.6. As a sample of what results
can be obtained we take the fourth order equation

(R2(z)y"(z))" + (R^y'iz))' + R(z)y'(z)+R0(z)y(z) = 0 (4.24)
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and restrict attention to a domain D where the Rt as well as the solutions of
(4.24) are regular. Consider the two solutions yt and y2 of (4.24) such that, if
as D,

= l, y'lia) = 0, yfta) = 0
( 4 2 5 )

( 2 ( M ( ) ) i ai()y[() = 0
and

y2(a) = 0, y'2(a) = 1, y'i(a) = 0 ( 4 2 6 )

^y^a) = o.
Except for the " perturbation " Ry' equation (4.24) is of the type considered

earlier by a number of authors (7,8). In particular, by following the calculations
of (8, pp. 401-403) one finds the (2 x 2) matrices

(4.27)
i <-> i n y-iv^j yi\t) i

and
^\-{R2{z)y\{z)y-R^z)y\{z) -(

(4.28)

satisfy the system (3.21) with

and

Noting det Y(z) - 1 • det ^J ^? we conclude, if Theorem 3.6 holds, there
L^i 3'2j

exist double zero free solutions of (4.24) on T.

5. Remarks
(a) It is natural, in the context of this paper, to work with regular functions

(j> and g in the scalar nonoscillation theorems. It is clear, however, from an
inspection of the proofs, that a much broader class of functions could be used,
say C functions for <j> and C" functions for g.

(b) It is no harder to consider, in place of (3.21), the system

Y\z) = A(z)Y{z) 4- E(z)Z(z)
Z\z) = - F (z) 7(z) + B{z)Z{z)

and to obtain nonoscillation theorems involving a " g " function. Indeed one
would start with the substitution

U(z)G ' \z) = -Z(z) Y-\z) (5-2)

(where G(z) s g(z)I, g # 0 on I"), and proceed as above.
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(c) The last example of Section 4 can be generalised in an obvious manner to
higher order equations and one can conclude the existence of solutions of
equations of the form

n n - l

V (i?fc(z)>'(*)(z))('c) + Y Pk(z)y(k\z) — 0> (5-3)
k = 0 k = 0

which are nth order zero free in domains of the z plane.

(d) There are no restrictions on the symmetry of the P matrix in Theorem
3.3, nor any restrictions on the definiteness of the E and /"matrices in Theorem
3.6.
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