BULL. AUSTRAL. MATH. SOC. VOL. 6 (1972), 13**3-144.**

Schauder decompositions in non-separable Banach spaces

J.J.M. Chadwick

It is shown that Schauder decompositions exist in non-separable weakly compactly generated spaces and in certain non-separable conjugate spaces. Some results are obtained concerning shrinking and boundedly complete Schauder decompositions in non-separable spaces.

Introduction

A sequence (P_n) of (continuous) projections in a Banach space X is called a Schauder decomposition of X if

(i) no P_n is the identity I in X,

- (ii) $P_n P_m = P_m P_n = P_n \quad (n \le m)$, (iii) $||P_n x - x|| \to 0 \quad \forall x \in X$.
- In this note we shall be concerned mainly with the existence of Schauder decompositions in non-separable spaces. Section 1 deals with

weakly-compactly generated spaces, while in Section 2 we demonstrate the existence of Schauder decompositions for certain conjugate spaces.

In Section 3, we are concerned with specific types of decompositions (the "shrinking" and "boundedly complete" decompositions of Sanders [8] and Ruckle [7]), and some examples are given.

Received 28 September 1971. Communicated by R.W. Cross.

J.J.M. Chadwick

Weakly compactly generated spaces

A Banach space X is called *weakly compactly generated* if there exists a weakly compact set K in X such that X is the closed subspace generated by K. Our main result of this section is the following:

THEOREM 1.1. Let X be a non-separable weakly compactly generated space. Then X has a Schauder decomposition.

The proof of Theorem 1.1 is based on the following result of Amir and Lindenstrauss [1].

LEMMA 1.2. Let X be a linear space with two norms $\|\|\cdot\|\|$, $\|\|\cdot\|\|$, such that the unit ball in $(X, \|\|\cdot\|\|)$ is $\|\|\cdot\|\|$ -weakly compact. Let μ be the first ordinal of cardinality the density character of $(X, \|\|\cdot\|)$ and let ω be the first countable ordinal. If $\{x_{\alpha} : \alpha < \mu\}$ is a dense subset of X then there exists a family $\{P_{\alpha} : \omega \leq \alpha < \mu\}$ of projections in X such that

- 1. $||P_{\alpha}|| = ||P_{\alpha}|| = 1$,
- 2. $x_{\alpha} \in P_{\alpha+1}X$,
- 3. the density character of $(P_{\alpha}X, \|\cdot\|)$ is less than or equal to $card(\alpha)$,
- 4. $P_{\alpha}P_{\beta} = P_{\beta}P_{\alpha} = P_{\beta} \quad \omega \le \beta \le \alpha < \mu$.

Proof of Theorem 1.1. Let K be a weakly compact set which generates X. Then, [4, p. 434], the closed convex hull U of $K \cup (-K)$ is also weakly compact. If Y is the linear span of U, we can define a new norm on Y by

$$[||x||] = \inf\{\lambda > 0 : x \in \lambda U\}$$

It is easily seen that $||| \cdot |||$ satisfies the conditions of Lemma 1.2 in Y, so that the family $\{P_{\alpha} : \omega \leq \alpha < \mu\}$ of projections with Properties 1-4 exists in Y. Since $\bigcup P_{\alpha}X$ is dense in X, Property 3 implies that we $\alpha < \mu$ can select an increasing sequence (α_i) of ordinals, $\omega \leq \alpha_i < \mu$, such that the P_{α_i} are distinct. Let T_{α_i} denote the restriction of P_{α_i} to U. Since U is $\|\cdot\|$ -weakly compact, Tychonoff's Theorem shows that U^U is compact in the product topology and so there exists a mapping $T: U \neq U$ and a subnet $(T_{\lambda}: \Lambda)$ of (T_{α_i}) such that $T_{\lambda}x \neq Tx$ weakly for every x in U. We may extend T to obtain an operator P on Y defined by Px = |||x||| T(x/||x|||).

It is easily verified that P is a linear projection and that $P_{\lambda}x \neq Px$ weakly. Since the norm $\|\cdot\|$ is weakly lower semicontinuous we have $\|P\| = 1$. Since Y is dense in X we may extend P_{α} and P uniquely to obtain projections \hat{P}_{α} and \hat{P} on X. Let $f \in X^* = Y^*$ and $\varepsilon > 0$. If $x \in X$ and $y \in Y$ is such that $\|x-y\| < \varepsilon$, then

$$|f(\hat{P}_{\lambda}x-\hat{P}x)| \leq |f(\hat{P}_{\lambda}x-\hat{P}_{\lambda}y)| + |f(P_{\lambda}y-\hat{P}y)| + |f(\hat{P}x-\hat{P}y)|$$

< $\|f\|$.3 ε for sufficiently large λ .

Thus $\hat{P}_{\lambda}x \neq \hat{P}x$ weakly for all x in X. Since $U\hat{P}_{\lambda}X = U\hat{P}_{\alpha_i}X$ and norm-closed subspaces are weakly closed, we see that $\hat{P}X \subset U\hat{P}_{\alpha_i}X$. Conversely, if $x \in U\hat{P}_{\alpha_i}X$, we may select $y \in U\hat{P}_{\alpha_i}X$ such that $||x-y|| < \varepsilon$. Then if $y \in \hat{P}_{\alpha_j}X$, and i > j

$$\left\| \hat{P}_{\alpha_i} x - x \right\| \leq \left\| \hat{P}_{\alpha_i} x - \hat{P}_{\alpha_i} y \right\| + \left\| \hat{P}_{\alpha_i} y - y \right\| + \left\| y - x \right\|$$

$$< 2\varepsilon .$$

Hence $\hat{P}x = x$, $\hat{P}X = \overline{\bigcup \hat{P}_{\alpha_i} X}$ and $\left\| \hat{P}_{\alpha_i} x - \hat{P}x \right\| \neq 0$ for every x in X. If we now take

$$Q_n x = \hat{P}_{\alpha} \hat{P} x + (I - \hat{P}) x$$
,

then (Q_n) is a Schauder decomposition of X.

COROLLARY 1.3. If X is a non-separable reflexive Banach space, then X has a Schauder decomposition. We observe that if (Q_n) is the Schauder decomposition constructed in Theorem 1.1, then $Q_n X$ is also weakly compactly generated. In fact $Q_n K$ is a weakly compact subset of $Q_n X$ which generates $Q_n X$. We have the following partial converse of Theorem 1.1.

THEOREM 1.4. If X has a Schauder decomposition (P_n) such that P_nX is weakly compactly generated for each n, then X is weakly compactly generated.

Proof. Let K_n be a weakly compact subset of $P_n X$ which generates $P_n X$. Then K_n is weakly compact in X and is norm bounded. If $||x|| \leq M_n \quad \forall x \in K_n$, let $B_n = K_n / nM_n$, and $K = \cup B_n \cup \{0\}$. It is clear that K generates X. To show that K is weakly compact, let (x_n) be a sequence in K. If $x_n = 0$ for infinitely many n or if for some m, $x_n \in B_m$ for infinitely many n, then (x_n) has a weakly convergent subsequence and we are finished. Otherwise there exists a subsequence $\left(x_{n_k}\right)$ of (x_n) and a sequence (m_k) of integers such that $m_k \neq \infty$ and $x_{n_k} \in B_{m_k}$. Then $||x_{n_k}|| \leq 1/m_k \neq 0$ so that (x_{n_k}) is weakly convergent. This completes the proof.

COROLLARY 1.5. If X has a Schauder decomposition (P_n) such that each P_nX is reflexive, then X is weakly compactly generated.

2. The conjugate of a smooth space

A Banach space X is called *smooth* if for every $x \in X$, there exists a unique functional f_x in X^{*} such that $||f_x|| = ||x||$ and $f_x(x) = ||f_x|| ||x||$. It is known [3, p. 300] that if $x_n + x$ in the norm topology and X is smooth, then $f_{x_n} + f_x$ in the weak star topology. Following Tacon [9, p. 416], we say that a smooth space X has property A if, whenever $x_n + x$ in the norm topology, we have $f_{x_n} + f_x$, weakly. As in [9], if Y is a subspace of X, we denote by $D_{\chi^*}(Y)$ the set of all functionals in X* which attain their norms on the unit sphere of Y.

Tacon has established the following result [9, p. 421]:

LEMMA 2.1. Let X be a smooth space with property A. Let μ be the first ordinal of cardinality the density character of X and let ω be the first countable ordinal. For every α , $\omega \leq \alpha < \mu$, there is a subspace X_{α} of X of density character less than or equal to the cardinality of α , together with a linear operator $T_{\alpha}: X_{\alpha}^{*} \rightarrow X^{*}$, such that P_{α} (defined by $P_{\alpha}f = T_{\alpha}f_{\alpha}$ where f_{α} is the restriction of f to X_{α}) is a bounded linear projection on X^{*} satisfying:

1.
$$||P_{\alpha}|| = 1$$
,

2.
$$P_{\alpha}X^* = \overline{D_{X^*}(X_{\alpha})}$$
, and is isometric to X_{α}^* ,

3.
$$P_{\alpha}P_{\beta} = P_{\beta}P_{\alpha} = P_{\beta}$$
, $\omega \leq \beta \leq \alpha < \mu$,

4. U $P_{\alpha}X^*$ is dense in X^* , $\alpha < \mu$

5.
$$P_{\alpha}^* x = x$$
, $(x \in X_{\alpha})$.

We observe that if X is non-separable then for every $\alpha < \mu$, the density character of X_{α} is less than that of X so that by 2 and [9, Lemma 6, p. 420], no P_{α} is the identity.

Lemma 2.1 will be used to establish the following:

THEOREM 2.2. Let X be a non-separable smooth space with property A. Then X* has a Schauder decomposition.

Proof. By Lemma 2.1 and the above observation, we can select an increasing sequence $\binom{\alpha}{n}$ of ordinals such that the projections P_{α} of Lemma 2.1 are distinct. Let $Y = \overline{UX}_{\alpha}$ and for each n, define T'_{α} : $Y^* \neq X^*$ by

$$T'_{\alpha_n}g = T_{\alpha_n}g_{\alpha_n} \quad (g \in Y^*),$$

where g_{α_n} is the restriction of g to X_{α_n} . The unit ball of X^* is w^* -compact so that, following the method of Theorem 1.1, we may select a linear operator $T' : Y^* \to X^*$ and a subnet $(T'_{\lambda} : \Lambda)$ of (T'_{α_n}) such that for every $g \in Y^*$, $T'_{\lambda}g \to T'g$ (w^*). For every $f \in X^*$, define $Pf \in X^*$ by $Pf = T'f_Y$, where f_Y is the restriction of f to Y. It is not difficult to show that P is a projection of norm 1 and that $P_{\alpha_n}f \to Pf$ (w^*) for every $f \in X^*$.

If
$$x \in X_{\alpha}$$
, then we have, for any $f \in X^*$,

$$Pf(x) = \lim P_{\lambda}f(x) = \lim f\left(P_{\lambda}^{\star}\hat{x}\right) = f\left(P_{\alpha}^{\star}\hat{x}\right) = f(x)$$

Consequently, $P^*\hat{x} = \hat{x}$ for every $x \in Y$. Let $f \in D_{X^*}(Y)$ and let $x \in Y$ be such that ||x|| = 1 and f(x) = ||f||. Then $||Pf|| \le ||f||$ and we have $Pf(x) = P^*\hat{x}(f) = f(x)$. Since X is smooth, this implies that Pf = f. Conversely, let Pf = f. We know [2] that the set of functionals which attain their norms on the unit sphere of Y is dense in Y^* . Thus we may find sequences (g_n) in Y^* and (x_n) in Y such that $||x_n|| = 1$, $g_n(x_n) = ||g_n||$ and $||g_n - f_Y|| \neq 0$, where f_Y is the restriction of f to Y. Since X is smooth, g_n has a unique extension f_n to X such that $||g_n|| = ||f_n||$. Then

$$||f_n - f|| = ||Pf_n - Pf|| = ||T'g_n - T'f_Y|| \to 0$$
.

Hence $f \in \overline{D_{X^*}(Y)}$ and consequently $PX^* = \overline{D_{X^*}(Y)}$.

Clearly $\overline{\bigcup_{X^*}(X_{\alpha_n})} \subset \overline{D_{X^*}(Y)}$. If $f \in D_{X^*}(Y)$ and $x \in Y$ is such that ||f|| = ||x|| and f(x) = ||f|| ||x||, then there is a sequence (x_n) in \bigcup_{α_n} such that $||x_n-x|| \neq 0$. Then $f_{x_n} \neq f$ weakly. Thus f belongs to

the weak closure and hence to the norm closure of $\overline{UD_{X^*}(X_{\alpha_n})}$. It follows that $\overline{UD_{X^*}(X_{\alpha_n})} = \overline{D_{X^*}(Y)}$, that is we have $PX^* = \overline{UP_{\alpha_n}X^*}$. It is left to the reader to show that the sequence $\{Q_n\}$ is a Schauder decomposition of X^* , where

$$Q_n f = P_{\alpha_n} P f + (I - P) f$$
.

A Schauder decomposition (P_n) is called *shrinking* if for every $f \in X^*$, we have $||f||_n \neq 0$ where $||f||_n = \sup\{|f(x)|; P_n x = 0, ||x|| = 1\}$.

THEOREM 2.3. Let X be a smooth space with property A. If (P_n) is a Schauder decomposition of X such that $||P_n|| = 1$ for every n, then (P_n) is shrinking and (P_n^*) is a Schauder decomposition of X*.

Proof. Let $f \in X^*$ be such that f attains its norm on the unit sphere of X, and select x such that ||x|| = ||f|| and f(x) = ||f|| ||x||.

Let f_n be the unique linear functional in X^* such that $\|f_n\| = \|P_n x\|$ and $f_n(P_n x) = \|f_n\| \|P_n x\|$. Since X has property A, we see that $f_n \neq f$ weakly. Now $\|P_n^* f_n\| \leq \|f_n\|$ and also $P_n^* f_n(P_n x) = f_n(P_n x) = \|f_n\| \|P_n x\|$. Since X is smooth, $P_n^* f_n = f_n$ so that $f_n \in P_n^* X^*$. It follows that $f \in \overline{UP_n^* X^*}$, and so by the Bishop-Phelps Theorem [2] $\overline{UP_n^* X^*} = X^*$. If $f \in X^*$, then for some n, we may select $g \in P_n^* X^*$ such that $\|f-g\| \leq \varepsilon$. Then, for $m \geq n$,

$$\begin{split} \|P_m^*f - f\| &\leq \|P_m^*f - P_m^*g\| + \|P_m^*g - g\| + \|f - g\| \\ &= \|P_m^*f - P_m^*g\| + \|f - g\| < 2\varepsilon \end{split}.$$

Hence $||P_m^*f-f|| \neq 0$ and (P_m^*) is a Schauder decomposition of X^* .

If $f \in X^*$, select x_n such that $||x_n|| = 1$, $P_n x_n = 0$ and $f(x_n) > ||f||_n - 1/n$. Then

$$\|f\|_{n} < f(x_{n}) + 1/n = (f - P_{n}^{*}f)x_{n} + 1/n$$

$$\leq \|f - P_{n}^{*}f\| + 1/n \neq 0$$

so that (P_n) is shrinking.

3. Some further results

A Schauder decomposition (P_n) of X is called *boundedly complete* if, for every bounded sequence (x_n) in X satisfying $P_m x_n = x_m \cdot (m \le n)$, there exists $x \in X$ such that $||x_n - x|| \neq 0$. Ruckle [7, p. 553] and Sanders [8, p. 205] have shown that if (P_n) is a Schauder decomposition of X, then X is reflexive if and only if (P_n) is both shrinking and boundedly complete and each $P_n X$ is reflexive. In view of Corollary 1.3, we can improve on this result for non-separable spaces as follows:

THEOREM 3.1. Let X be non-separable. Then X is reflexive if and only if X has a Schauder decomposition (P_n) satisfying:

- (i) (P_n) is shrinking;
- (ii) (P_n) is boundedly complete;
- (iii) each $P_n X$ is reflexive.

Each of the conditions (i)-(iii) is essential in Theorem 3.1 as will be shown by examples following Lemma 3.2. In fact there are separable non-reflexive spaces with Schauder decompositions satisfying (i) and (ii).

LEMMA 3.2. Let X be any Banach space, Y a complemented subspace of X and P a projection of X onto Y. Let (Q_n) be a Schauder decomposition of Y and for $x \in X$, define

$$P_n x = Q_n P x + (I - P) x .$$

Then (P_n) is a Schauder decomposition of X and

(i) (P_n) is shrinking if and only if (Q_n) is,

(ii)
$$(P_n)$$
 is boundedly complete if and only if (Q_n) is

Proof. It is easily seen that (P_n) is a Schauder decomposition of X. Suppose that (P_n) is shrinking and let $f \in Y^*$. By the Hahn-Banach Theorem there exists $g \in X^*$ such that ||f|| = ||g|| and f(y) = g(y) $(y \in Y)$. We note that $P_n x = 0$ if and only $x \in Y$ and $Q_n x = 0$. Thus $\sup\{|f(y)| : ||y|| = 1, Q_n y = 0\} = \sup\{|g(x)|; ||x|| = 1, P_n x = 0\} \neq 0 \ (n \neq \infty)$, since (P_n) is shrinking. Conversely, if (Q_n) is shrinking let $f \in X^*$ and let g be the restriction of f to Y. Then as before,

$$\sup\{|f(x)| : ||x|| = 1, P_n x = 0\} = \sup\{|g(y)| : ||y|| = 1, Q_n y = 0\} \to 0,$$

since (Q_n) is shrinking. It follows that (P_n) is shrinking.

Next, suppose that $\binom{P_n}{n}$ is boundedly complete. Let $\binom{y_n}{n}$ be a bounded sequence in Y such that $Q_m y_n = y_m$ $(m \le n)$. Then for $m \le n$,

$$P_m y_n = Q_m P y_n + (I - P) y_n = Q_m y_n = y_m$$

Since (P_n) is boundedly complete, there exists $y \in X$ such that $\|y_n - y\| \to 0$. Since $y \in Y$, this means that (Q_n) is boundedly complete. Finally, assume that (Q_n) is boundedly complete. Let (x_n) be a bounded sequence in X such that $P_m x_n = x_m$ $(m \le n)$. Then

$$Q_m P x_n = P_m x_n - (I-P) x_n$$

= $P x_m + (I-P) (x_m - x_n)$.

Thus $Q_m P x_n = P x_m$ and $(I-P)(x_m - x_n) = 0$. (Q_m) is boundedly complete, so that for some $y \in Y$ we have $||P x_n - y|| \to 0$. Also for all n, $(I-P)x_n = (I-P)x_1$. Thus

$$x_n = (I-P)x_n + Px_n + (I-P)x_1 + y ,$$

and so (P_n) is boundedly complete.

EXAMPLE 3.3. Let Y be a non-separable reflexive Banach space and let X be the direct sum $l_1 \oplus Y$. Let P be the projection satisfying $PX = l_1$, (I-P)X = Y. Define a Schauder decomposition (Q_n) of l_1 by

$$Q_n x = (x_1 x_2 \dots x_n 0 0 \dots)$$
 where $x = (x_n) \in I_1$.

 (Q_n) is easily seen to be boundedly complete so that (P_n) defined as in Lemma 3.2 is a Schauder decomposition of the non-reflexive non-separable space X satisfying conditions (*ii*) and (*iii*) of Theorem 3.1.

EXAMPLE 3.4. Let Y be as in Example 3.3 and let $X = c_0 \oplus Y$. The 'natural' Schauder decomposition (Q_n) of c_0 defined by

$$Q_n x = (x_1 x_2 \dots x_n \circ \circ \dots)$$
, $x = (x_n) \in c_0$

is shrinking so that (P_n) defined by $P_n = Q_n P + (I-P)$ is a Schauder decomposition of the non-reflexive space X satisfying conditions (*i*) and (*iii*) of Theorem 3.1.

EXAMPLE 3.5. Let $X = l_2 \oplus m$ and let P satisfy $PX = l_2$, (I-P)X = m. For $x = \{x_n\} \in l_2$ let $Q_n x = \{x_1 \dots x_n \ 0 \ 0 \ 0 \dots\}$. (Q_n) is a Schauder decomposition of l_2 and so is both shrinking and boundedly complete. Consequently (P_n) , where $P_n = Q_n P + I - P$, is a shrinking and boundedly complete Schauder decomposition of X such that no $P_n X$ is reflexive.

In fact X has no Schauder decomposition P_n such that each P_X is reflexive. Otherwise by Theorem 1.4, $l_2 \oplus m$ would be weakly compactly generated and hence [3, p. 38] isomorphic to a smooth space. But we know [4, p. 114] that m is not isomorphic to a smooth space.

THEOREM 3.6. Let X be a Banach space. Then the following are equivalent:

(i) X has a complemented non-separable reflexive subspace;

(ii) X has a Schauder decomposition (P_n) such that (P_n) is shrinking and boundedly complete and for some n, $(I-P_n)X$ is reflexive and non-separable.

Proof. The proof follows easily from Lemma 3.2.

Ruckle [7, p. 552] has shown that if X has a boundedly complete Schauder decomposition $\binom{P_n}{n}$ such that each $\frac{P_n X}{n}$ is reflexive, then X is isomorphic to a conjugate space. We conclude with the following example:

EXAMPLE 3.7. Let X = L(0, 1). Then [6, p. 215] X is not isomorphic to a conjugate space. However X has a boundedly complete Schauder decomposition. Define $P_{y}x$ by

$$P_n x(t) = \begin{cases} x(t) & 0 < t \le 1-1/n \\ \\ 0 & 1 > t > 1-1/n \end{cases}$$

We leave it to the reader to check that $\binom{P_n}{n}$ is a boundedly complete Schauder decomposition of L(0, 1)

References

- [1] D. Amir and J. Lindenstrauss, "The structure of weakly compact sets in Banach spaces", Ann. of Math. (2) 88 (1968), 35-46.
- [2] Errett Bishop and R.R. Phelps, "A proof that every Banach space is subreflexive", Bull. Amer. Math. Soc. 67 (1961), 97-98.
- [3] Dennis F. Cudia, "The geometry of Banach spaces. Smoothness", Trans. Amer. Math. Soc. 110 (1964), 284-314.
- [4] M.M. Day, Normed linear spaces (Springer-Verlag, Berlin, Göttingen, Heidelberg, 1958).
- [5] Nelson Dunford and Jacob T. Schwartz, Linear operators, Part I (Interscience [John Wiley & Sons], New York, London, 1958).
- [6] Haskell P. Rosenthal, "On injective Banach spaces and the spaces $L^{\infty}(\mu)$ for finite measures μ ", Acta Math. 124 (1970), 205-248.
- [7] William H. Ruckle, "The infinite sum of closed subspaces of an F-space", Duke Math. J. 31 (1964), 543-554.

- [8] B.L. Sanders, "Decompositions and reflexivity in Banach spaces", Proc. Amer. Math. Soc. 16 (1965), 204-208.
- [9] D.G. Tacon, "The conjugate of a smooth Banach space", Bull. Austral. Math. Soc. 2 (1970), 415-425.

Department of Mathematics, Institute of Advanced Studies, Australian National University, Canberra, ACT.