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We study direct numerical simulations of turbulence arising from the interaction of an
initial background shear, a linear background stratification and an external body force.
In each simulation the turbulence produced is spatially intermittent, with dissipation
rates varying over orders of magnitude in the vertical. We focus analysis on the
statistically quasi-steady states achieved by applying large-scale body forcing to the
domain, and compare flows forced by internal gravity waves with those forced by
vertically uniform vortical modes. By considering the turbulent energy budgets for
each simulation, we find that the injection of potential energy from the wave forcing
permits a reversal in the sign of the mean buoyancy flux. This change in the sign of
the buoyancy flux is associated with large, convective density overturnings, which in
turn lead to more efficient mixing in the wave-forced simulations. The inhomogeneous
dissipation in each simulation allows us to investigate localised correlations between
the kinetic and potential energy dissipation rates. These correlations lead us to
the conclusion that an appropriate definition of an instantaneous mixing efficiency,
η(t) := χ/(χ + ε) (where ε and χ are the volume-averaged turbulent viscous
dissipation rate and fluctuation density variance destruction rate respectively) in the
wave-forced cases is independent of an appropriately defined local turbulent Froude
number, consistent with scalings proposed for low Froude number stratified turbulence.

Key words: stratified turbulence, turbulent mixing, stratified flows

1. Introduction

Irreversible turbulent mixing has an important influence on many physical processes
in the ocean. In the deep ocean this mixing is needed to close the meridional
overturning circulation and it helps to set the abyssal stratification (e.g. Ferrari
2014; Cessi 2019). Waterhouse et al. (2014) also highlight strong regional variability
in mixing rates inferred from observations, both in abyssal regions and in the

† Email address for correspondence: c.p.caulfield@bpi.cam.ac.uk

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

38
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-3686-9253
https://orcid.org/0000-0002-1292-3756
https://orcid.org/0000-0002-3170-9480
mailto:c.p.caulfield@bpi.cam.ac.uk
https://doi.org/10.1017/jfm.2020.383


898 A7-2 C. J. Howland, J. R. Taylor and C. P. Caulfield

thermocline. The spatial inhomogeneity of turbulent mixing in the ocean therefore
presents a key challenge in locally quantifying the vertical transport of important
tracers such as heat, carbon and nutrients.

The vast majority of energy input to the ocean comes from the tides and large-
scale surface forcing by winds (Wunsch & Ferrari 2004). The closure of the global
ocean energy budget, however, requires dissipation by viscosity at millimetre scales. A
significant fraction of the energy input to the ocean is dissipated in turbulent boundary
layers near the top and bottom of the ocean. Energy that is not dissipated close to
these boundaries typically propagates away into the interior of the ocean as internal
gravity waves. For example Waterhouse et al. (2014) estimate that 69 % of the energy
input into the internal wave field is not dissipated locally but is instead dissipated
in the interior of the ocean. Away from the boundaries the empirical Garrett–Munk
(GM) spectrum (Munk 1981) describes the distribution of energy in internal waves
well in a surprisingly wide range of oceanic environments. Energy transfer within the
large-scale part of the GM spectrum is explained by Müller et al. (1986) as weakly
nonlinear resonant wave–wave interactions.

At high wavenumbers energy in the GM spectrum scales as E∼m−2 with vertical
wavenumber m. This scaling is observed up to a ‘cutoff wavenumber’, beyond
which a vertical energy spectrum of m−3 is measured (Gargett et al. 1981). At yet
smaller scales an inertial range scaling as m−5/3 associated with isotropic turbulence
can be observed with sufficiently high resolution measurements. The intermediate
range of scales for which E ∼ m−3 is sometimes associated with the breaking of
internal waves; in particular that of high-frequency (in the sense of having frequency
close to the buoyancy frequency N) internal gravity waves (see e.g. Eckermann
1999). Although the fundamental breaking mechanisms of internal gravity waves by
shear and convective instabilities can be described as in Thorpe (2018), the strongly
nonlinear interactions that transfer energy to and between these small-scale waves are
less well understood. The m−3 scaling is readily obtained from dimensional analysis if
one assumes that N−1 is the dominant time scale, leading to E(m)∼ L3T−2

∼ N2m−3,
where L and T are the relevant length and time scales respectively. This suggests that
buoyancy does indeed have a dominant effect on the dynamics at these scales.

The strongly nonlinear motions at small scales can also be considered as a state of
‘stratified turbulence’, although there is by no means consensus in the oceanographic
and fluid dynamical literature as to what precisely is meant by this term. Often (see
for example Gregg et al. 2018) ‘stratified turbulence’ in an oceanographic context is
used to describe any turbulent flow affected by stratification. In a fluid dynamical
context on the other hand, Riley & Lindborg (2008) use it to describe the particular
distinguished limit of Frh=Uh/NLh� 1, Reh=UhLh/ν� 1 and RehFr2

h� 1 (where Uh
and Lh are horizontal velocity and length scales and ν is the kinematic viscosity of
the fluid). This particular regime is also referred to as ‘strongly stratified turbulence’
(Brethouwer et al. 2007; Maffioli 2017; Zhou & Diamessis 2019) or alternatively
‘layered anisotropic stratified turbulence’ (Falder, White & Caulfield 2016).

Furthermore turbulence in the stratified ocean interior is strongly intermittent in
both space and time. Baker & Gibson (1987) show that turbulent dissipation rates are
often log-normally distributed, which leads to regions of high stratification such as
the thermocline exhibiting the highest intermittency. This presents a great challenge
in sampling the ocean to determine the nature of turbulent flows relevant to mixing
in the stratified ocean.

If turbulence is generated in a stratified fluid without a source of sustaining energy,
the energetics of its decay inevitably become affected by the stratification at leading
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order. The energy cost associated with raising dense fluid up leads to an anisotropic
decay of the vertical velocity (Riley & Lelong 2000). Billant & Chomaz (2001)
exploit such inevitable anisotropy in the flow velocity to identify a self-similar
inviscid regime in the strongly stratified limit of Frh =Uh/NLh→ 0. This self-similar
scaling suggests that vertical scales adjust so that Lv ∼ Uh/N and the flow becomes
dominated by horizontal motion that varies vertically on this scale. Increasingly high
resolution numerical simulations have been used to study the decay of an initially
isotropic and homogeneous turbulent state subject to a background stratification
(Maffioli & Davidson 2016; de Bruyn Kops & Riley 2019). After approximately one
buoyancy period these flows do indeed become anisotropic and adjust to this vertical
length scale predicted by Billant & Chomaz (2001). Although the E∼N2m−3 vertical
spectrum is consistent with the self-similar regime, the numerical studies of decaying
stratified turbulence have thus far been unable to replicate it clearly.

To investigate the properties of stratified turbulence in a statistically steady state,
it seems sensible to apply body forcing to the governing equations with the aim of
removing the transient dynamics of turbulent decay. It also seems natural to force
flows at the large scale and then hope to rely on the net downscale cascade to
transfer energy to small dissipative scales such that the total dissipation matches
the energy input from the forcing. Stochastic forcing of large-scale vortical modes
has often been implemented to study anisotropic stratified turbulence dominated by
horizontal motion (e.g. Waite & Bartello 2004; Brethouwer et al. 2007; Maffioli,
Brethouwer & Lindborg 2016). This approach has the advantage of not imposing
a vertical length scale on the flow, allowing the predicted length scale Uh/N to
emerge spontaneously. Furthermore, a recent study implementing this forcing by
Maffioli (2017) replicates the predicted N2m−3 energy spectrum by considering only
large horizontal scales of the flow. The forcing does not force vertical shear directly
but is thought to enhance small existing vertical gradients through the so called
‘zigzag’ instability, first identified by Billant & Chomaz (2000a,b). It is unclear
how relevant these vortically dominated flows are for small-scale mixing in the
ocean. In particular, the lack of significant vertical motion is inconsistent with the
breaking of high-frequency internal gravity waves. A recent study by Kunze (2018),
however, suggests a new interpretation of oceanic spectra, where strongly anisotropic
patches of stratified turbulence may be generated from fine-scale near-inertial waves.
It is therefore of interest to compare flows forced by vortical modes with flows
forced by internal gravity waves. Waite & Bartello (2006) implement such forcing in
hyperdiffusive simulations at moderate numerical resolution, but do not reach their aim
of reproducing the N2m−3 energy spectrum. It is important to recognise that although
the forcing of vortical modes or internal waves is applied at the large scale in these
turbulence studies, the forced scale is in fact very small in the context of a geophysical
energy spectrum.

For determining mean transport of relevant oceanic tracers we are primarily
concerned with irreversible mixing, related to changes in background potential energy
by Winters et al. (1995) and Peltier & Caulfield (2003). Investigating such irreversible
mixing in stratified turbulence requires accurate resolution of dissipation scales
through direct numerical simulation (DNS). Many of the forced studies mentioned
above rely on large eddy simulation or hyperdiffusion to prevent energy building up
at small scales, and it is only recent studies that have used DNS to investigate these
flows (e.g. Almalkie & de Bruyn Kops 2012; Maffioli et al. 2016; Portwood et al.
2016; Maffioli 2017).

The small-scale nature of irreversible turbulent mixing inevitably requires the
development and use of relatively simple parameterisation models to estimate mixing
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from both observations and large-scale circulation models. As outlined in Gregg et al.
(2018) an appropriate definition of a mixing efficiency η is required for inferring and
parameterising mixing in such scenarios, but there is disagreement between numerical
studies, laboratory experiments and observational estimates regarding both the precise
definition of η and also its functional dependence on other flow parameters. In
shear-driven flows susceptible to Kelvin–Helmholtz instability, a mixing efficiency
defined in terms of volume-averaged irreversible rates of increase of potential energy
and turbulent viscous dissipation rate ε has been shown to depend non-monotonically
on the gradient Richardson number Rig = N2/S2, the ratio of the local buoyancy
frequency N to the local vertical shear S, defined formally below (Mashayek, Caulfield
& Peltier 2013). However, a recent study by Portwood, de Bruyn Kops & Caulfield
(2019) shows that homogeneously sheared stratified turbulence equilibrates to a
constant value of Rig, with the mixing efficiency also appearing to be independent
of the buoyancy Reynolds number Reb = ε/νN2, where ν is the kinematic viscosity
of the fluid. In the absence of a dominant mean shear, Maffioli et al. (2016) and
Garanaik & Venayagamoorthy (2019) instead construct theoretical scalings for the
mixing efficiency in terms of a turbulent Froude number Fr = ε/(NEK), where EK
is the turbulent kinetic energy (density). Indeed, the equilibrated flows considered
by Portwood et al. (2019) converged to a constant value of Fr, and it is still an
open question why flows forced in this manner tune to constant values of Rig, Fr
and Γ . This plethora of potential dimensionless parameters highlights the challenge
in parameterising mixing and the need to test how generically these parameterisations
apply in different flows.

In this study we aim to determine the effects on irreversible mixing (quantified by
an appropriately defined efficiency) of changing the large-scale forcing applied to a
stratified fluid. We are particularly interested in how the ‘breaking’ of internal gravity
waves modulates mixing in stratified turbulence compared to the mixing occurring
in flows forced by vortical modes. We investigate the mechanisms by which mixing
occurs through probing the energetics of our numerical simulations. We then relate
the differences in these mechanisms to changes in the ‘mixing efficiency’ defined
both locally and globally through appropriate averaging in space and time. The rest
of this paper is organised as follows. In § 2 the energetics of the governing equations
are discussed in the context of mixing and its parameterisation. Section 3 outlines
our numerical model and the set-up of our simulations, providing details of the
initial condition and body forcing used. Section 4 presents analysis of the simulation
results, focusing on key properties of the statistically quasi-steady states that arise in
each case. Finally, we conclude and discuss the implications of our results for the
parameterisation of irreversible mixing in the ocean in § 5.

2. Theory and background
We consider an incompressible fluid with a velocity field u(x, t) and a density field

determined by a perturbation ρ(x, t) to a constant background linear stratification. We
apply the Boussinesq approximation that density changes are negligible compared to
the mean density and furthermore assume that the density field has a linear equation
of state and hence satisfies an advection–diffusion equation. The flow is thus governed
by the Navier–Stokes equations in the form

∇ · u= 0, (2.1)
∂u
∂t
+ (u · ∇)u=−∇p+

1
Re
∇

2u− Ri0ρ ẑ+Fu, (2.2)
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∂ρ

∂t
+ (u · ∇)ρ =

1
RePr
∇

2ρ +w+ Fρ, (2.3)

where we have non-dimensionalised the equations using length and velocity scales L0
and U0, and ẑ is the unit vector in the vertical direction. The density perturbation
has also been non-dimensionalised by 1ρ. External forcing acting on the velocity and
density fields are denoted by Fu and Fρ , the precise forms of which are detailed in
the next section. The three dimensionless parameters in the equations are the Reynolds
number, Prandtl number and bulk Richardson number

Re=
L0U0

ν
, Pr=

ν

κ
, Ri0 =

g1ρL0

ρ0U0
2 =

N0
2L0

2

U0
2 , (2.4a−c)

where ν is the kinematic viscosity, κ is the density diffusivity and ρ0 is the mean
density. The constant background density gradient is −1ρ/L0, which can be used
to define N0 =

√
g1ρ/ρ0L0 as a background buoyancy frequency. Since 1ρ also

acts as the dimensional scale for the density perturbation ρ(x, t), the Boussinesq
approximation requires that 1ρ � ρ0. For clarity, the full dimensional density field
will be written as ρ∗ = ρ0 +1ρ[−z+ ρ(x, t)] in this formalism, where z= z∗/L0 and
z∗ are respectively the dimensionless and dimensional vertical coordinates.

Stably stratified flows are commonly anisotropic, with horizontal length scales much
larger than vertical length scales. When analysing these flows, it is therefore natural
to consider the decomposition of the velocity and density fields into horizontally
averaged mean quantities and perturbations from them. We will use the following
notation, denoting mean quantities with an overbar and perturbations with a prime,
i.e.

f (x, t)= f (z, t)+ f ′(x, t), f (z, t)=
1

LxLy

∫ Lx

0

∫ Ly

0
f (x, t) dx dy. (2.5)

Taking a horizontal mean of the incompressibility condition (2.1) implies that ∂w/∂z
= 0, and if w= 0 initially then it remains zero for all time. From now on, we will
assume that this is the case and hence that the mean velocity u(z, t) = (u, v, 0) is
purely horizontal.

In this paper we consider flow in a triply periodic domain, which allows us
to construct simple equations for the energy of the system from (2.2) and (2.3).
Implementing the decomposition (2.5) yields four energy quantities of interest: the
kinetic and potential energies (per unit mass) associated with both the mean and
perturbation fields, namely

EK =
1
2 〈|u|

2
〉, EK =

1
2 〈|u

′
|
2
〉, (2.6a,b)

EP =
Ri0

2
〈ρ2
〉, EP =

Ri0

2
〈ρ ′2〉, (2.7a,b)

where 〈·〉 denotes a volume average. This positive semi-definite form of potential
energy is valid since ρ is a departure from a linear background profile. Motivated
by the ‘pancake vortices’ description of stratified turbulence, we refer to EK as the
turbulent kinetic energy and to EP as the turbulent potential energy. Since w= 0 and
〈u〉 = 0, the mean kinetic energy EK is often associated with what are conventionally
referred to as ‘shear modes’, and there is a body of literature investigating its
development in stratified turbulence (e.g. Smith & Waleffe 2002; Augier, Billant &
Chomaz 2015).
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FIGURE 1. Schematic detailing the energy pathways.

Multiplying (2.2) and (2.3) by the velocity and density fields respectively leads to
the following evolution equations for the energy:

dEK

dt
=−Sp − ε,

dEK

dt
= Sp − ε+ Jb + PK, (2.8a,b)

dEP

dt
=−Np − χ,

dEP

dt
=Np − χ − Jb + PP. (2.9a,b)

The terms on the right-hand side of these equations act as inputs, exchanges and
outputs of energy for the system as sketched in figure 1 and detailed below.

The rate at which energy is dissipated by the flow is quantified by the expressions

ε=
1

Re

〈∣∣∣∣∂u
∂z

∣∣∣∣2
〉
, ε=

1
Re

〈
∂ui
′

∂xj

∂ui
′

∂xj

〉
, (2.10a,b)

χ =
Ri0

RePr

〈∣∣∣∣∂ρ∂z

∣∣∣∣2
〉
, χ =

Ri0

RePr

〈
∂ρ ′

∂xj

∂ρ ′

∂xj

〉
, (2.11a,b)

where ε is commonly known as the turbulent kinetic energy (TKE) dissipation rate.
It is important to appreciate that these various rates are defined in terms of volume
averages over the whole computational domain.

Energy can be exchanged between kinetic and potential energy through the
buoyancy flux Jb. Since we have assumed that the mean flow is purely horizontal,
this exchange can only take place between the turbulent energies EK and EP. The
small-scale turbulence instead interacts with the mean flow via the turbulent shear
production Sp, and by an analogous term that appears in the potential energy equations
which we refer to as buoyancy production Np. The three energy exchange terms are
defined

Jb =−Ri0〈w′ρ ′〉, Sp =−

〈
w′u′ ·

∂u
∂z

〉
, Np =−Ri0

〈
w′ρ ′

∂ρ

∂z

〉
. (2.12a−c)
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The energy input provided by the forcing is prescribed to not act directly on the mean
flow, so the energy input rates only appear in the perturbation energy equations and
are defined as

PK = 〈u′ ·Fu〉, PP = Ri0〈ρ
′Fρ〉. (2.13a,b)

This is consistent with the forcing terms used in our numerical simulations.
In the formulation, we have chosen to retain flexibility to force both the velocity

and density fields. In particular, whether or not the density field has explicit forcing
has important implications for the energy budget of a quasi-steady turbulent state when
dEP/dt≈ 0. It is worth noting that in the flows considered by this study the buoyancy
production Np is typically much smaller than the other terms on the right-hand side
of (2.9), so if there is no density forcing then the turbulent potential energy budget
reads

0≈−χ − Jb, (2.14)

in a steady state. Since χ is positive semi-definite this implies that Jb 6 0 and so
the buoyancy flux acts to transfer energy from kinetic to potential. When Fρ 6= 0 this
restriction is not enforced, and we will investigate the effect of introducing density
forcing on the energy pathways later on. This flexibility is also physically motivated
since nonlinear interactions between internal gravity waves can transfer kinetic and
potential energy across spatial scales.

As noted in the introduction, we are interested in defining an appropriate measure
of the ‘efficiency’ of mixing. We would wish to define an instantaneous mixing
efficiency η as the proportion of energy lost by turbulence that leads to irreversible
mixing. In our triply periodic domain it is unfortunately technically impossible to
unambiguously define a background potential energy quantity as is used to quantify
irreversible mixing in, for example, Peltier & Caulfield (2003). We therefore treat EP
as a proxy for available potential energy and use χ (as defined in (2.11)) to quantify
the irreversible loss of EP that leads to mixing, yielding

η :=
χ

χ + ε
, (2.15)

as the expression for mixing efficiency. The denominator χ + ε represents the total
instantaneous energy lost due to turbulence, and specifically excludes any laminar
diffusion of the mean flow through χ or ε. We focus on mixing by turbulence because
geophysical flows will typically occur at much larger Reynolds numbers than we can
accurately simulate, leading to negligible laminar diffusion. Even at our modest Re
the results are qualitatively unchanged by including the dissipation of the mean flow,
with the average mixing efficiency only decreasing by between 4 % and 8 % across
the simulations.

The mixing efficiency η is closely related to Γ , the turbulent flux coefficient
commonly used in oceanography to infer measures of mixing from observations.
The original definition of Osborn (1980) postulates a linear relationship between
the buoyancy flux and the turbulent dissipation rate in a quasi-steady state of fully
developed turbulent flow, with Γ as the constant of proportionality. However, since we
are considering flows where the buoyancy flux may well have a significant reversible
component associated with internal waves, we believe it is more appropriate to define
Γ in terms of the ratio between χ and ε, so that

Γ :=
χ

ε
=

η

1− η
. (2.16)
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Recent stratified turbulence studies by Maffioli et al. (2016) and Garanaik &
Venayagamoorthy (2019) have derived scalings for such a defined Γ in terms of
the turbulent Froude number

Fr :=
ε

Ri0
1/2EK

. (2.17)

In the strongly stratified regime associated with Fr�O(1) the scalings and associated
simulations suggest that Γ is independent of Fr. Although this might be thought to
provide some justification for the use of a constant Γ to infer mixing in geophysical
flows, there is most definitely no consensus in the fluid dynamical community as to
what value Γ takes in this regime, the region of validity of the regime or indeed the
variability of Γ outside of this regime.

In particular, there is an alternative approach to parameterisation based around the
argument that the appropriate parameter to use is the buoyancy Reynolds number

Reb :=
εRe
Ri0

(2.18)

(see for example Monismith, Koseff & White 2018), which can be considered to
quantify how ‘energetic’ the turbulence is. Monismith et al. (2018) present data from
numerical simulations and energetic near-shore flow observations that suggest the
mixing efficiency scales as η ∼ Re−1/2

b when the flow is ‘energetic’, which may also
loosely be thought of as being weakly stratified, defined as Reb >O(100).

Monismith et al. (2018) still support the hypothesis that Γ is constant in strongly
stratified flows with Reb < O(100), taking an approximate value of 0.2, although we
caution associating smaller values of Reb with ‘strong’ stratification, as smaller values
of Reb should really be considered to be associated with flows which are viscously
dominated, or at least viscously affected. Gregg et al. (2018) also argue in favour of
using the estimate Γ ' 0.2 which dates back to the early parameterisation of Osborn
(1980). They, however, caution the use of Reb as a sole parameter for the functional
dependence of Γ , and note that the turbulence produced by internal waves typically
has Reb . 200, where Γ is thought to be constant. Indeed, it is not at all clear at
the moment whether the independence of Γ with respect to Fr when Fr� 1 is in
any way associated with the classic empirically useful estimate that Γ ' 0.2, not least
because it is exceptionally computationally challenging to consider flows with Fr� 1
and larger values of Reb.

Since we are primarily concerned with internal wave-driven mixing in the open
ocean, we choose to focus on ‘strongly stratified’ flows associated with Fr� O(1),
rather than classifying flows in terms of Reb. Even in this regime, there are still
discrepancies in the value of Γ between observations and numerical simulations.
Maffioli et al. (2016) find a trend towards the constant value of Γ = 0.33 from
their simulations of forced stratified turbulence, and simulations of decaying stratified
turbulence by de Bruyn Kops & Riley (2019) have shown sustained values of Γ as
large as 0.54. Understanding how these discrepancies may arise is vital if we hope
to relate these numerical studies to observed mixing in the ocean.

One issue in comparing observations with these scaling arguments is that Fr
is rarely recorded and requires simultaneous measurement of multiple turbulent
quantities. Observationally it is easier to obtain the fundamental length scales named
after Ellison and Ozmidov, defined as

LE :=
ρ∗rms

|∂ρ∗/∂z|
, LO :=

( ε
N3

)1/2
. (2.19a,b)
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Re Ri0 Pr Lx, Ly, Lz Nx, Ny, Nz PK + PP

104 1 1 2π 1024 10−3

TABLE 1. Input parameters for the numerical simulations.

For example, Ivey, Bluteau & Jones (2018) use a mixing length model to infer
diapycnal diffusivity from LE and the mean shear measured by moorings. They
find good agreement with microstructure measurements, but it is unclear whether
this estimate would work well in regions where the background state is dominated
by the internal wave spectrum rather than a mean shear. Ivey & Imberger (1991)
use LE/LO more generally to infer Fr, and therefore determine whether a flow
is strongly turbulent or significantly affected by stratification. Many observational
studies, however, assume that these length scales are approximately equal, as originally
postulated by Dillon (1982), based on limited experimental data and due to restrictions
in measurement equipment. A detailed comparison of these length scales in the
thermocline can be found in Moum (1996).

3. Numerical simulations
We use the DIABLO software (Taylor 2008) to perform three-dimensional numerical

simulations of (2.1)–(2.3). The software implements pseudo-spectral methods to
calculate spatial derivatives and a third-order Runge–Kutta scheme for time stepping.
The equations are solved in a cubic domain of length 2π represented by a uniformly
spaced grid of 10243 points. A 2/3 rule is applied for dealiasing the calculation of
nonlinear terms. Periodic boundary conditions are applied in every direction to the
velocity and density fields u and ρ. Recall that ρ represents the density perturbation so
periodicity in the vertical does not contradict our use of a stable background density
gradient. Table 1 summarises the input parameters used across all simulations.

Motivated by the existence of a background internal wave field in the ocean,
we construct the initial condition for the simulations as follows. Computational
constraints mean that we cannot resolve the range of scales required to represent a
full Garrett–Munk spectrum in our domain. We therefore take an approach similar to
that of Furue (2003) to construct an initial state where the large scales of the flow
field are representative of the small-scale portion of the GM spectrum as defined by
Munk (1981). To obtain the desired vertical energy spectrum of E∼m−2 we need to
account for waves with horizontal wavelengths larger than the domain. Furue (2003)
achieves this by integrating the GM spectrum over small horizontal wavenumbers to
obtain a shear flow containing all of the ‘missed’ energy. We simply define the initial
shear as a sum of shear modes u0 ∼ (A/m)eimz that give an energy spectrum of m−2.
The shear modes are large scale in the domain and are thus limited to m 6 mc = 7.
Each shear mode is randomly phased, and the total energy in this component is
normalised such that the mean gradient Richardson number Rig = Ri0/〈S2

〉 is equal
to Ri0. Here S2

= (∂u/∂z)2 + (∂v/∂z)2 is the dimensionless squared shear, and 〈·〉
denotes a volume average (simply equivalent to a vertical average in this case). The
shear component is complemented by a collection of randomly phased internal waves
that satisfy the three-dimensional GM energy spectrum E(k) defined in Furue (2003).
These waves contribute 10 % of the initial energy and are non-zero for |k|6 7.

We numerically integrate the system for approximately 20 time units without body
forcing to allow the initial transient dynamics to dissipate, and for the associated
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dissipation rate to reach its maximum value. From this state we perform three
simulations, each with a different form of body forcing applied. All three types of
forcing can be expressed as

Fu =
∑

2.56|k|63.5
κ 6=0

F̃u(k)eik·x, Fρ =
∑

2.56|k|63.5
κ 6=0

F̃ρ(k)eik·x, (3.1a,b)

where k= (k, l,m) is the wave vector and κ =
√

k2 + l2 is the horizontal wavenumber.
The first type of forcing we consider is that used by Maffioli (2017). We refer to

this forcing as case H since the forcing acts purely on the horizontal components of
velocity and therefore Fw = Fρ = 0. Forcing H is representative of vertically uniform
‘vortical modes’ with (F̃u, F̃v) ∝ (l, −k) and the modes being non-zero only when
m= 0. Each mode is randomly phased at every time step.

The other two types of forcing are intended to be representative of flows induced
by internal gravity waves, with the forcing components satisfying the internal wave
polarisation relations

(F̃u, F̃v)=A
(k, l)m
κ|k|

, F̃w =−A
κ

|k|
, F̃ρ =A

i
Ri0

1/2 . (3.2a−c)

We denote one variant of this forcing as case R where the phase of the complex
amplitude A for each mode is chosen randomly at every time step. The final type
of forcing represents energy input from a propagating wave field and we refer to
it as case P. In this case the phase of each A is shifted at time t by −ωt where
the frequency ω is determined by the linear internal gravity wave dispersion relation,
which in our non-dimensionalisation is given by

ω=
Ri1/2

0 κ

|k|
. (3.3)

To ensure that the dissipation rates are comparable across the simulations, we
enforce the total energy input rate PK+PP to be constant. We normalise the amplitude
of the forcing at each time step to achieve the constant energy input rate shown in
table 1. We also use the ‘constant power minimal forcing’ method from Maffioli
(2017) to avoid large artificial energy inputs arising from discrete time stepping. Each
simulation is run for a total of 150 time units.

4. Results
4.1. Flow structure

After the initial transient dynamics and a further adjustment period in each case that
lasts until t ≈ 50, the turbulence characterised by EK and EP reaches a quasi-steady
state. Table 2 details turbulent quantities calculated for these quasi-steady regimes. The
values highlight a key difference between the horizontally forced simulation (case H)
and the wave-forced simulations (case R and case P). The turbulent potential energy
EP is much larger in the wave-forced cases than in case H, and this coincides with
a reduction in the TKE dissipation rate ε. The value of χ is remarkably consistent
across the simulations, resulting in a larger value of Γ that is associated with more
efficient mixing in cases R and P. All simulations exhibit values of the turbulent
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FIGURE 2. Snapshots in the x–z plane at the midpoint of the computational domain of
the total density field (ρ∗− ρ0)/1ρ at t= 150 for flows forced by: (a) horizontal motions
(case H); (b) internal waves with random phases (case R); (c) propagating internal waves
(case P).

Simulation EK EP ε χ Γ Fr

H (vortical) 1.17× 10−2 2.11× 10−3 7.48× 10−4 2.77× 10−4 0.370 6.40× 10−2

R (waves) 1.45× 10−2 1.02× 10−2 4.64× 10−4 2.40× 10−4 0.518 3.19× 10−2

P (waves) 1.18× 10−2 7.56× 10−3 5.14× 10−4 2.55× 10−4 0.496 4.36× 10−2

TABLE 2. Volume-averaged quantities as defined in § 2 further averaged in time for t> 50
for each numerical simulation. Note that the volume-averaged buoyancy Reynolds number
is given by Reb = ε× 104 when using the chosen non-dimensionalisation.

Froude number Fr that suggest the flow is in a stratification-dominated regime, i.e.
Fr� 1.

Figure 2 shows contours of the density field in the vertical plane y= 0 at the final
time of each simulation. These provide visual evidence of the qualitative difference
between the wave-forced and horizontally forced flows. In case H we observe mostly
flat isopycnals except where there are small-scale overturns in the centre of the domain
suggestive of localised shear-driven mixing. This contrasts with the wave-forced
cases where we observe large vertical displacement of the isopycnals throughout the
domain. Regions of statically unstable stratification typically occur through larger-scale
overturnings than in case H, suggesting (perhaps unsurprisingly) that convective
mechanisms may be more important for mixing in the wave-forced regime.

4.2. Volume-averaged quantities
Figure 3 shows time series of the turbulent energy quantities EK and EP from
each simulation. The energy time series for cases R and P (green and blue lines)
exhibit prominent oscillations that are absent in case H (red lines). These oscillations
can be attributed to internal waves exchanging energy between the kinetic and
potential reservoirs. Since this oscillating buoyancy flux dominates the turbulent
energy budgets (2.8) and (2.9), we consider the cumulative effect of each term
in the energy budget rather than their instantaneous values. Figure 4 plots these
cumulative (i.e. time-integrated) contributions over the period t > 20, when forcing
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FIGURE 3. Evolution with time of the volume-averaged kinetic energy EK (solid line)
and potential energy EP (dashed line) for the simulations with: case H forcing (red lines);
case R forcing (green lines); and case P forcing (blue lines).
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FIGURE 4. Variation with time (after t = 20 when the forcing is switched on) of
cumulative (time-integrated) budget terms from the kinetic energy budget (a–c) and the
potential energy budget (d–f ) as defined in (2.10)–(2.13) for the simulations associated
with: (a,d) case H; (b,e) case R; and (c, f ) case P.
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FIGURE 5. Variation with time of: (a) the turbulent dissipation rates ε (solid lines) and
χ (dashed lines); (b) instantaneous mixing coefficient Γ = χ/ε for: case H (red lines);
case R (green lines); case P (blue lines).

is active in each simulation. This figure reveals another key difference between
case H and the wave-forced cases R and P. The buoyancy flux Jb in case H is
negative and acts to transfer energy from kinetic energy to potential energy. This is
in some sense inevitable as the buoyancy flux must balance the dissipation χ in the
potential energy budget. In contrast, cases R and P have a positive mean buoyancy
flux acting to transfer energy from the potential energy to the kinetic energy. This
different energy pathway is consistent with the significant influence of the convective
overturning apparent in figures 2(b) and 2(c). Locally these large overturns contain
excess potential energy that is transferred to kinetic energy as the locally unstable
density gradient drives a flow.

Figure 5(a) shows time series for the dissipation rates of kinetic energy (i.e. ε) and
potential energy (i.e. χ ) for the various simulations. As noted before, the late-time
value of χ is similar for all three simulations, whereas the value of ε is lower in the
wave-forced cases R and P than in the horizontally forced case H. This leads to a
higher mixing efficiency η and mixing coefficient Γ in the simulations R and P, as
shown by the time series in figure 5(b).

We recall that the total energy input rate due to the forcing is set to PK +PP= 10−3,
and so in a steady state we expect the total turbulent dissipation ε+ χ to equal this
value as well. The differing values of ε between the wave-forced cases and case H
actually mean that the total dissipation is greater than the total energy input for
simulation H, whereas the opposite is true for simulations R and P. This difference
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FIGURE 6. (a) Snapshot in the x–z plane at the midpoint of the computational domain
at final time t= 150 of the local TKE dissipation rate εL(x, t). (b) Time variation of the
horizontally averaged εH(z, t) for simulation P. (c) Vertical variation of εH(z, t) at final
time t= 150 for the simulations associated with: case H (dashed red line); case R (dotted
green line); and case P (solid blue line).

is related to how the waves and turbulence interact with the horizontally averaged
mean flow. By inspecting the time series of the cumulative shear production Sp in
figures 4(a)–4(c), we find that energy is extracted from the mean flow in case H.
Conversely in the wave-forced flows, the mean flow extracts energy from the
perturbation fields. Therefore, despite the turbulence characterised by EK and EP
being in a quasi-steady state, the mean flow is not. The kinetic energy of the mean
flow EK changes by approximately 10 % in each simulation, but remains at least 5
times greater than the energy in the perturbation field.

4.3. Spatial variation
Thus far we have relied on volume-averaged quantities to describe the flows that
develop in our simulations. To investigate how localised processes may lead to the
different pathways in the energy budget, we now consider how mixing properties vary
throughout our domain. We can define local and horizontally averaged measures of the
TKE dissipation rate as

εL(x, t)=
1

Re
∂ui
′

∂xj

∂ui
′

∂xj
, εH(z, t)= εL =

1
LxLy

∫ Lx

0

∫ Ly

0
εL dx dy. (4.1a,b)

The dissipation rate ε as defined in (2.10) is simply the volume average of εL.
Figure 6(a) shows a vertical plane snapshot of the local dissipation rate εL for the
flow with case P forcing at t≈ 150. Throughout the domain εL varies by three orders
of magnitude, with strongest variation in the vertical direction. Highly turbulent
layers with significant small-scale structure lie between more quiescent regions
where εL drops below 10−4. Figure 6(b) shows the spatio-temporal evolution of the
horizontally averaged dissipation rate εH(z, t) and shows that these turbulent layers
persist throughout the quasi-steady forced regime. The vertical profiles of εH(z, t)
also differ significantly between the simulations with different forcings as shown by
figure 6(c). This highlights how important the particular type of large-scale forcing is
in modifying how turbulence arises and is sustained in the flow.

The large range of εH allows us to investigate correlations between quantities
related to mixing across several orders of magnitude. We are particularly interested in
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FIGURE 7. Two-dimensional p.d.f. of horizontally averaged dissipation rates εH and χH
calculated at each output time for t> 50. The two dotted lines on each panel mark values
of Γ = 0.1 and Γ = 1, and the blue dashed lines show the volume-averaged value of
Γ for each simulation from table 2. Panel (a) shows data from the case H simulation,
panel (b) shows data from the case R simulation and panel (c) shows data from the case P
simulation.

spatio-temporal correlations between the dissipation rates of kinetic energy and density
variance, and how these correlations may explain the high volume-averaged efficiency
observed in the wave-forced simulations. Figure 7 shows the two-dimensional
probability density function (p.d.f.) of εH(z, t) and the analogous term χH(z, t),
the horizontally averaged potential energy dissipation rate, for the quasi-steady states
of each simulation. Each p.d.f. is constructed from a two-dimensional (2-D) histogram
of log10 εH and log10 χH with bins of size 1/64. Strikingly, these plots show that Γ
calculated from volume averages accurately describes the relationship between εH and
χH over at least two orders of magnitude. All three simulations in fact have a Pearson
correlation coefficient greater than r = 0.9 for εH and χH . Although the dissipation
rates in more turbulent regions (in the sense of being associated with larger values
of εH) are the dominant contribution to Γ , these results show that the difference in Γ
across the simulations is not solely due to changes in these (more turbulent) regions.
The p.d.f.s in figure 7 instead show that the wave-forced cases also exhibit a higher
value of ΓH := χH/εH in the less energetic (and hence lower local dissipation rate)
regions of the flow.

Figure 8 further highlights this distinction by showing the analogous 2-D p.d.f.
of the turbulent Froude number and appropriately horizontally averaged flux coefficient
ΓH . Since we are considering horizontally averaged quantities, the definition of the
Froude number is modified from (2.17) to account for the (in practice) small changes
in the mean density profile to yield

FrH(z, t)=
2εH

Ri0
1/2

(
1−

∂ρ

∂z

)1/2

u′ · u′
. (4.2)

Figure 8 shows that all three flows can be considered as low Fr at all heights in
the domain, with each simulation having a maximum FrH of approximately 0.1. We
therefore expect no dependence of ΓH on FrH based on the scaling arguments of
Maffioli et al. (2016). Figures 8(b) and 8(c) show this behaviour clearly for the
two wave-forced cases R and P, where the p.d.f. spreads evenly around the mean
value. The limited range of FrH in case H makes it difficult to draw conclusions
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FIGURE 8. Two-dimensional p.d.f. of FrH and ΓH calculated from horizontally averaged
quantities for t > 50. Panel (a) shows data from the case H simulation, panel (b) shows
data from the case R simulation and panel (c) shows data from the case P simulation.
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FIGURE 9. Two-dimensional p.d.f. of χL and εL calculated locally at every grid point of a
final-time t= 150 snapshot for each simulation: (a) case H; (b) case R, (c) case P. Dotted
lines highlight values of Γ = 0.1 and Γ = 1, and blue dashed lines show the mean value
of Γ as in figure 7.

about Γ –Fr scaling from figure 8(a). The tilted, intense cluster of points near
Fr= 10−1 is, however, suggestive of a negative correlation between Γ and FrH in the
more turbulent parts of the domain.

We can extend our approach of investigating localised correlations in the domain
by considering relationships between quantities calculated locally at each grid point.
A single-time snapshot provides more than 109 data points for each variable in this
approach, so we use the full 3-D flow fields at the final time t= 150 as an example
to investigate local correlations in each simulation. Figure 9 shows the 2-D p.d.f. of
εL (as defined in (4.1)) and the analogous term χL calculated from the final-time
snapshots associated with each simulation. The p.d.f. is constructed by the same
method as for figure 7, using a histogram of the logarithms of each quantity. The
positive correlation between εL and χL is still evident in these plots, although all
three cases have larger departures from the volume average than in figure 7. In the
horizontally forced (case H) simulation, with data plotted in figure 9(a), there is a
relatively uniform spread in the p.d.f. along lines of constant Γ . When compared
to figure 7(a) where the p.d.f. clusters at higher values of εH and χH , this indicates
that the horizontally averaged quantities are dominated by contributions from highly
turbulent locations (associated with larger values of εL and χL) within each horizontal
plane. The wave-forced cases R and P also exhibit this behaviour, with figures 9(b)
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FIGURE 10. Two-dimensional p.d.f. of ΓL and FrL calculated locally from the same final-
time t= 150 snapshots as figure 9 for each simulation: (a) case H; (b) case R, (c) case P.
Blue dashed lines are as in figure 8, and the black dotted lines show the scaling Γ ∼Fr−1.

and 9(c) highlighting a peak at low dissipation rates that is absent from the horizontal
averages.

We also investigate how local correlations between Γ and Fr lead to the scalings
observed in figure 8. Since the turbulent Froude number is not well defined in the
case of statically unstable stratification, we choose to keep the mean density gradient
in our local definition of a turbulent Froude number

FrL(x, t)=
2εL

Ri0
1/2

(
1−

∂ρ

∂z

)1/2

u′ · u′
. (4.3)

This is also appropriate on physical grounds, when the Froude number is interpreted
as a ratio of time scales associated with the turbulence, which can conceivably vary
substantially locally, and the time scale associated with the density stratification, which
should be determined by a global measure of the ‘background’ buoyancy frequency.
Figure 10 plots the 2-D p.d.f. of FrL defined in this way and the local value of the
mixing coefficient ΓL := χL/εL for each simulation, once again at the final time t =
150. The difference compared to figure 8 is striking, with a much larger spread in
values of Γ . Specifically, in every simulation there is no indication that the scaling
argument Γ ∼Fr0 holds locally. All three panels of figure 10 are in fact suggestive of
an inverse correlation between Γ and Fr, similar to the scalings suggested by Maffioli
et al. (2016) and Garanaik & Venayagamoorthy (2019) for high or at least moderate
Fr. The statistical nature of the scaling theories involving Fr means that the lack of a
clear correlation is not too surprising. Even if the local value of Γ was related to some
local measure of the Froude number, our use of the mean stratification in the definition
of FrL hinders our ability to capture local correlations in regions with variable density
gradients.

4.4. Energy spectra
Even though figures 7 and 8 suggest that intermittency in each simulation does not
affect the mixing efficiency, at least to leading order, the spatially inhomogeneous
dissipation causes issues when considering energy spectra. In all of the simulations,
the existence of relatively quiescent layers (as is particularly apparent in figure 6a)
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leads to an (at best) moderate volume-averaged buoyancy Reynolds number, in that
when using volume-averaged dissipation rate ε, Reb < 10 for all three cases. The
buoyancy Reynolds number may be interpreted as a measure of the size of the
inertial range expected between the Ozmidov wavenumber mO := (N3/ε)1/2 and the
Kolmogorov wavenumber mK := (ε/ν

3)1/4, since Reb ≡ (mK/mO)
4/3. This leads to a

lack of information in the vertical wavenumber energy spectrum. For example, energy
associated with a particular wavenumber may represent energy at dissipation scales
in one part of the domain, but energy in turbulent eddies elsewhere. Figures 11(a)
and 11(b) plot the compensated energy spectra of every simulation for horizontal
wavenumber κ and vertical wavenumber m respectively. Both energy spectra show a
roll-off above wavenumber 50 consistent with the ‘small-scale spectra’ classified in
Maffioli (2017). Before this roll-off, the horizontal spectrum in figure 11(a) shows
a E ∼ κ−5/3 scaling for every energy component of each simulation, consistent with,
for example, Brethouwer et al. (2007). As expected there is a local energy peak
at the forcing wavenumber κ = 3 in every component except the vertical velocity
and density components in case H. The vertical wavenumber spectra in figure 11(b)
are compensated with m2, although the agreement with this scaling is not clear. In
particular the modest value of Reb (and corresponding small dynamic range of scales)
combined with significant variability at low wavenumbers make it hard to draw
definitive conclusions about the nature of the energy distribution.

We implement continuous wavelet transforms to overcome this challenge, in an
attempt to capture the spectral properties of the actively turbulent ‘patches’ within
such spatio-temporally intermittent flows. Following Torrence & Compo (1998), we
use the Morlet wavelet to construct an energy spectrum E(m, z) of both vertical
wavenumber and vertical position. A single ‘high dissipation’ spectrum is obtained
by averaging the energy spectrum over heights z for which Reb,H(z) > 10, where

Reb,H =
εHRe

Ri0

(
1−

∂ρ

∂z

) , (4.4)

is the buoyancy Reynolds number computed from horizontal averages in an analogous
fashion to FrH in (4.2). A corresponding ‘low dissipation’ spectrum is obtained by
averaging over heights where Reb,H < 1. Figures 11(c) and 11(d) plot these spectra
for each energy component and each simulation. The high Reb spectra show a
scaling similar to m−5/3 in the wavenumber range of O(10). Combined with the
horizontal wavenumber spectrum in figure 11(a), this result is at least consistent
with the existence of a local inertial subrange. In every simulation, the energy spectra
associated with Reb< 1 are noticeably steeper than those from regions where Reb> 10.
The steeper ‘low dissipation’ spectra for each simulation all exhibit an approximate
m−3 scaling in the same O(10) wavenumber range. This scaling is dimensionally
consistent with buoyancy-dominated motion where N−1 is the dominant time scale.

The different scalings associated with regions of high and low Reb,H suggest that
the stratified turbulence in our simulations may be thought of as spatio-temporally
intermittent regions or ‘patches’ of near-isotropic turbulence spaced throughout a
more quiescent flow whose dynamics is buoyancy-dominated, analogously to the
‘strongly stratified’ flow considered by Portwood et al. (2016). The appearance of
an m−3 scaling in the low Reb spectrum is consistent with the m−3 scaling obtained
by Maffioli (2017) when considering only large horizontal scales. Furthermore, high
values of Reb can naturally be associated with smaller-scale motion, as evident in the
snapshot of figure 6(a), so the two results appear closely related.
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FIGURE 11. One-dimensional compensated energy spectra of the final-time t = 150
snapshot of each simulation. Energy components associated with different components
are plotted with different line types: u (thick solid lines); v (thin solid lines); w (dotted
lines); ρ (dashed lines), while the data from different simulations are plotted with different
colours: case H (red); case R (green); case P (blue). Panel (a) shows the horizontal
wavenumber Fourier spectra and (b) the vertical wavenumber Fourier spectra for all
datasets. Panel (c) shows the vertical wavenumber ‘high dissipation’ wavelet spectra
averaged over heights where Reb,H(z)> 10 as defined in (4.4) and (d) shows the analogous
‘low dissipation’ spectra for Reb,H(z) < 1.

We must, however, be careful when interpreting these spectra, particularly at low
wavenumbers. The continuous wavelet transform discretises wavenumber space as

kj = 2j/4, j ∈N. (4.5)

Since we use a pseudospectral method in our simulations, the flow field we resolve
is composed entirely of modes at integer wavenumbers. This means that the
wavelet spectra are in some sense over-resolved at low wavenumbers, with multiple
wavenumbers between the integer values. The scalings at moderate wavenumbers
discussed above are in some sense also inconsistent with theoretical predictions.
Calculating the Ozmidov wavenumber associated with the (locally) high Reb,H regions
gives a value of mO≈ 20, and a corresponding Kolmogorov wavenumber is mK ≈ 200.
However, it is common in experiments of turbulence to observe roll-off associated
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with dissipation before the Kolmogorov scale (e.g. Pope 2000), and even in the
‘high Reb’ regions, we expect the limited range of dynamical scales to affect the
spectra.

5. Discussion and conclusions

We have performed direct numerical simulations of stratified turbulence sustained
by different forms of large-scale body forcing. The simulation of case H implements
the horizontal vortical mode forcing prescribed by Maffioli (2017) that injects
horizontal kinetic energy into randomly phased columnar vortex modes. The other
two simulations force a field of resonant internal gravity waves at large scales of
our computational domain as motivated by Furue (2003). The simulation of case R
randomly phases each wave at every time step, whereas the simulation of case P
shifts the phase of each wave according to the dispersion relation for linear internal
gravity waves. Each simulation is initialised with a flow dominated by vertically
sheared horizontal modes that is motivated by ambient internal waves with large
horizontal wavelengths. The forcing is activated after some initial transient behaviour,
and after a further adjustment time the turbulence characterised by the perturbations
from the horizontal mean reaches a statistically quasi-steady state.

We find that the quasi-steady states in the wave-forced simulations (cases R and P)
have significantly more potential energy than the state achieved by the vortical mode
forcing in the simulation of case H. This increased potential energy is provided by the
direct forcing of the density field in cases R and P. In the simulation of case H, the
irreversible mixing, quantified by the dissipation of the perturbation potential energy,
must come via a transfer of energy from the TKE to the potential energy through the
buoyancy flux. The density forcing in cases R and P allows this energy transfer to
reverse, with mixing made possible without a mean transfer from kinetic to potential
energy. This reversal in buoyancy flux can be associated with larger overturning, as
seen in figure 2, and thus more convective mixing. The wave-forced simulations also
exhibit a higher mixing efficiency than the horizontally forced simulation (case H),
which is consistent for flows where mixing occurs through convective mechanisms.
The vortical mode forcing used in the simulation of case H forces neither the vertical
velocity nor the density field, and therefore cannot produce such large-scale convective
overturns.

The qualitatively different energy pathways for mixing in each case also coincide
with a change in the interaction between the mean shear flow and the perturbations.
Whereas the turbulence extracts energy from the mean flow in the simulation for case
H, the wave-forced simulations (cases R and P) show a small transfer in energy from
the perturbations to the mean flow on average. This small change partially contributes
to the reduced value of the TKE dissipation rate ε in the wave-forced cases.

The kinetic energy associated with the mean shear is not constant in each case,
but varies slowly over time due to the exchange with the perturbation field. In our
simulations, the mean shear modes are intended to represent waves at horizontal scales
larger than our computational domain. Since the perturbation energy and dissipation
rates are statistically quasi-steady, we believe that the small-scale turbulence is
still representative of the geophysical flows which motivate us to conduct these
idealised simulations. Background shear modes appear in many studies of forced
stratified turbulence (Smith & Waleffe 2002; Lindborg 2006; Waite & Bartello
2006; Brethouwer et al. 2007) and are shown not to impact the turbulent dynamics
significantly. Furthermore, a recent study by Fitzgerald & Farrell (2018) shows that
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the emergence of vertically sheared horizontal flows also occurs in a forced 2-D
Boussinesq system. This result suggests that energy increase in the shear modes is
due to a wave–mean flow interaction, which may explain why we observe the energy
increase in the wave-forced cases but not from the horizontal vortical mode forcing
utilised in case H.

In every simulation, the turbulent dissipation organises into quasi-horizontal layers.
The vertical location of these layers varies depending on the forcing type, but it
is currently unclear what determines the change in vertical structure between the
simulations. Initial analysis shows that regions of high dissipation do not simply
correlate with local changes in the background shear and stratification, and thus
further research is needed to investigate the mechanisms by which these layers
form and are sustained. This predominantly vertical variation in the dissipation rate
allows us to investigate correlations between the turbulent dissipation rate and the
density variance destruction rate over orders of magnitude. Intriguingly, we find that
the ratio between the two, a local measure of the coefficient Γ , remains close to
the volume-averaged ratio in both regions of high and low dissipation. We deduce
that the local mixing efficiency is independent of turbulent intermittency below the
scale of the forcing, and instead depends predominantly on the type of large-scale
forcing implemented. This further supports the notion that the larger overturnings in
the wave-forced cases correspond to a fundamentally different (and in some sense
‘convective’) mixing mechanism from that observed in the simulation of case H.

In the wave-forced simulations the dissipation rate ε is not correlated with the
background stratification, so we also obtain a wide range of values for the horizontally
averaged turbulent Froude number FrH defined in (4.2). This confirms the lack of
dependence of Γ on Fr in the low-Fr regime for these quasi-steady states. The
vortical mode-forced simulation (case H) does not, however, produce such a wide
range in FrH . This may be a consequence of the purely horizontal forcing allowing
vertical scales to adjust locally, as in the scalings of Billant & Chomaz (2001) where
the vertical Froude number Fv adjusts to a constant of O(1). Despite the reduced Fr
range in case H, there is still at least a hint of Fr-dependence for Γ in figure 8(a)
at the largest values of FrH ≈ 0.1. Previous studies (e.g. Lindborg 2006) have shown
that the strongly stratified limit of low Fr requires Fr 6 O(10−2), suggesting that
the observed dependence in case H is outside this regime. The variation in Γ is
more clearly displayed in figure 12 where, following Garanaik & Venayagamoorthy
(2019), henceforth denoted GV19, we plot Γ against the length scale ratio LE/LO.
In particular, we plot these quantities defined in terms of horizontal averages as
ΓH = χH/εH and (

LE

LO

)
H

=
Ri0

3/4ρ ′2
1/2

εH
1/2(1− ∂ρ/∂z)1/4

. (5.1)

At first the results shown in figure 12(a) for case H appear inconsistent with any
of the scalings proposed by GV19, with Γ ∼ (LE/LO)

2 for values of LE/LO being
O(1). However, this scaling can be reproduced by combining various self-consistent
assumptions used in that paper, as follows.

Firstly, taking Fr=O(1), we assume that the turbulent kinetic energy EK ∼w′2 and
that its dissipation rate is governed by the turbulent time scale TL = EK/ε, such that
ε∼w′2/TL. We then scale the density field by taking gρ ′rms/ρ0 to be a ‘reduced gravity’
acceleration with velocity scale w′ and time scale N−1. Typical vertical displacements
are taken to be z∼w′/N so that the potential energy density EP=gρ ′z/ρ0∼w′2, and its
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FIGURE 12. Two-dimensional p.d.f. of Γ and LE/LO calculated from horizontally averaged
quantities. Blue dashed lines show the mean value of Γ in each case and the black dotted
line in (a) plots the (LE/LO)

2 scaling found in (5.5). As before, (a) plots data from case H,
(b) plots data from case R, (c) plots data from case P.

dissipation rate is governed by the buoyancy time scale N−1, giving χ ∼EP/T ∼w′2N.
These results provide the scalings

Γ =
χ

ε
∼

w′2N
w′2/TL

=NTL, (5.2)

LE

LO
=

(
gρ ′rms

ρ0

)
ε−1/2N−1/2

∼ (w′N)
(

w′2

TL

)−1/2

N−1/2
= (NTL)

1/2. (5.3)

Recalling that NTL = Fr−1, these scalings become

Γ ∼ Fr−1, Fr∼
(

LE

LO

)−2

, (5.4a,b)

and hence at Fr=O(1), we have

Γ ∼

(
LE

LO

)2

. (5.5)

We therefore recover the behaviour shown in figure 12(a). GV19 instead find that
Γ ∼ Fr−1 for Fr=O(1), but Fr∼ (LE/LO)

−2 for Fr<O(1). Indeed, the derivation of
(5.3) relies only on assumptions that are also applicable in the low Fr regime. We
do not believe that combining these scalings is inconsistent, since both rely on the
assumptions that the dominant time scale for density-related terms is N−1 and the
dominant time scale for kinetic energy dissipation is TL = EK/ε, and at Fr = O(1)
both of these time scales may affect the dynamics. On the other hand in a flow
dominated by internal gravity waves, it is likely that N−1 is the dominant time scale
for both the velocity and density fields. This is evident in figures 12(b) and 12(c),
where the wave-forced cases show ΓH to be less dependent on (LE/LO)H , consistent
with the low Fr and high LE/LO regime, and at least conceivably consistent with
a flow dominated by internal waves, thus still strongly affected by stratification.
The larger mean value of LE/LO in cases R and P can be associated with larger
buoyancy excursions, providing further evidence that the wave-forced cases exhibit
more convective behaviour. It appears that forcing with vortical modes at the same
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rate of energy input produces turbulence that can (at least locally) access a higher
Froude number regime than the internal wave forcing. The fact that this Fr = O(1)
regime does not show the same LE/LO scaling as in GV19 may hinder the ability
to infer Froude numbers from observations in this intermediate range. The frequent
appearance of O(1) values of LE/LO in observations (e.g. Moum 1996) motivates the
need for further research into mixing for flows in which Fr=O(1).

The appearance of a Fr=O(1) scaling in case H could suggest that the difference
in volume-averaged Γ between the simulations is purely related to a difference in the
average Froude number. However, figure 8(a) also shows a region at low values of
FrH where ΓH appears independent of FrH and importantly takes a much lower value
than in the wave-forced cases R and P. The results of Maffioli et al. (2016) also show
Γ ≈ 0.35 for values of Fr similar to cases R and P but using a forcing scheme with
a greater similarity to the forcing scheme used in case H. We are therefore confident
that the difference in the large-scale forcing is the primary contributor to the changes
in Γ between the simulations, rather than a simple dependence on Fr. Although all
the simulations here exhibit ΓH–FrH scalings consistent with the regimes predicted by
Maffioli et al. (2016) and GV19, we believe that it is important to understand how
different flows lead to scatter around these regimes. To that end, a better understanding
of how the local correlations in figures 9 and 10 are distributed would be invaluable.
It is not currently clear how the FrL dependence of ΓL shown in figure 10 leads to a
global Γ that is independent of Fr for Fr� 1.

Despite the significant differences in the mixing properties between the vortical
mode and wave-forced simulations, spectral analysis reveals remarkable similarity
between the energy spectra associated with each flow. At moderate wavenumbers of
O(10), each component of the energy spectra appears to follow universal scalings,
with wavelet analysis revealing distinct vertical wavenumber scalings between the
turbulent and quiescent regions. The emergence of an m−3 scaling in the low-Reb
portions of the domain is particularly of note, since it is consistent with the energy
spectra being determined exclusively by the buoyancy frequency (as discussed for
example in § 14.3 of Davidson 2013). Differences in the energy spectra between
the three simulations are only noticeable at low wavenumbers associated with the
large-scale flow, despite the contrasting mixing efficiencies for each simulation
persisting throughout the domains. This emphasises the importance of understanding
the larger-scale flow dynamics when inferring small-scale mixing from spectra. With
regions of the flows producing an m−3 scaling consistent with Billant & Chomaz
(2001), but variations in Γ associated with the various larger-scale forcing strategies,
it appears that the particular form of the larger-scale forcing retains a fundamental
imprint on the properties of the small-scale mixing. Therefore, it is at least plausible
that mixing events in the ocean could be sensitive to the particular form of the
large-scale energy injection, suggesting that generic, ‘unified’ arguments such as
those presented by Kunze (2018) should be treated with caution.

Our results highlight a significant challenge in the measurement and parameterisation
of turbulent mixing in the ocean. The turbulent flux coefficient Γ , commonly used to
infer mixing rates from the TKE dissipation rate, varies by over 30 % depending on
the nature of the larger-scale flow, although local estimates of Γ can of course vary by
much more. Mixing generated by internal gravity waves results in Γ ≈ 0.5, consistent
with recent studies of decaying stratified turbulence (de Bruyn Kops & Riley 2019)
but above results from numerical studies forcing turbulence through purely horizontal
motion (Maffioli et al. 2016). This is also far higher than the value 0.2 from Osborn
(1980) typically used in observational studies, and also observed in simulations of
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statistically steady forced linearly sheared stratified turbulence with high dynamic
range (Portwood et al. 2019). We conjecture that this difference may be associated
with the mixing being more appropriately characterised as being ‘convectively driven’
rather than ‘shear instability driven’. This is consistent with previous studies (e.g.
Davies Wykes, Hughes & Dalziel 2015) that show purely buoyancy-driven flows
with non-monotonic stratification can achieve very high values of mixing efficiency.
Mixing via shear instabilities often also occurs through a secondary convective
instability arising due to the roll-up of the density field in a Kelvin–Helmholtz billow.
The larger values of LE/LO in our wave-forced simulations suggest the overturns are
larger than from such shear-driven flows, consistent with the idea that the flow is
‘convectively driven’ by ‘breaking’ waves.

When interpreting our results in the context of ocean mixing, some caveats must be
addressed. As mentioned in § 1, a significant fraction of mixing in the ocean occurs
in surface and bottom boundary layers. The physics determining mixing efficiency in
these regions is rather different from the ocean interior, with wind-driven shear and
tidal flows as examples of important drivers of turbulence and mixing (Thorpe 2005).

Furthermore, our simulations are performed with a molecular Prandtl number of 1
for computational efficiency, rather than a typical oceanic value of 7 for a thermally
stratified region. Numerical studies of shear instabilities (Smyth, Moum & Caldwell
2001; Salehipour, Peltier & Mashayek 2015) have shown that higher Prandtl numbers
can lead to a significant decrease in the mixing efficiency. This factor may bring our
results closer to the value used in oceanographic estimates, but it is unclear how the
differences in mixing efficiency between the simulations would change at higher Pr.

Another issue which needs to be considered is the potential ‘patchiness’ of mixing,
with the turbulent mixing in the ocean exhibiting significant spatio-temporal variability.
Observational studies that focus on small-scale mixing frequently isolate patches of
turbulence for their measurements in intermittent oceanic flows (e.g. Moum 1996).
Both Smyth et al. (2001) and Ijichi & Hibiya (2018) produce a Γ ∼ (LT/LO)

4/3 scaling
from such patches, where LT is the Thorpe scale. The construction of this scaling
(see Ijichi & Hibiya (2018) for further details) is fundamentally associated with two
assumptions consistent with high Fr dynamics, in particular that the characteristic
time and length scales are determined from the turbulence properties alone, largely
unaffected by the ambient stratification. The first assumption is that the turbulence is
largely unaffected by stratification, and using a classical mixing length argument then
leads to

L∼
E3/2

K

ε
; κT ≡

Γ ε

N2
∼ E1/2

K L. (5.6a,b)

Here, κT is the turbulent ‘eddy’ diffusivity of density, defined in terms of the ‘mixing
length’ L and the characteristic turbulent velocity scale E1/2

K . The second assumption
is that this mixing length L ∼ LT , leading to Γ ∝ (LT/LO)

4/3 in patches where the
ambient stratification has little effect on the turbulent mixing properties, although it is
of course possible that this scaling can be observed in situations where the underlying
assumptions are no longer completely justified.

Indeed, the results presented here pose an interesting question of how best to model
mixing in a spatio-temporally intermittent flow. The combination of our wavelet
analysis and the work of Maffioli (2017) suggests that the m−3 portion of the energy
spectrum may be associated with larger scales and regions with smaller turbulent
dissipation rates. The associated nonlinear buoyancy-dominated flow could be thought
to act as a background from which the turbulent patches develop intermittently. Since
high Fr flows are associated with lower values of mixing efficiency, it is therefore
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important to quantify the relative contributions to mixing of these highly energetic
isolated patches compared to the total background.

The main differences between our simulations, coinciding with the change in Γ ,
are an increase in the energy component of the vertical velocity and the available
potential energy in our simulations. Despite these changes being most significant at
large scales in our domain, validation of our results in the field would be difficult.
Scales we refer to as large require high resolution equipment to resolve in the ocean:
for example if we take a velocity scale of U0= 10−2 m s−1 and a buoyancy frequency
N0= 10−2 s−1, then our domain length will be less than 10 m given the Re, Ri0 values
we have chosen. An investigation of high-resolution measurements of vertical velocity
and density fluctuations that coincide with the appearance of an E ∼ m−3 vertical
wavenumber spectrum would be invaluable for determining the nature of flows at
these scales. A better understanding of which flows are dominated by convective
wave breaking and which mix through primarily horizontal motion or even shear
instabilities, would then allow us to constrain mixing estimates better and improve
our predictions of spatial patterns in diapycnal transport.
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