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The semisimplicity conjecture for A-motives

Nicolas Stalder

Abstract

We prove the semisimplicity conjecture for A-motives over finitely generated fields K.
This conjecture states that the rational Tate modules Vp (M) of a semisimple A-motive
M are semisimple as representations of the absolute Galois group of K. This theorem
is in analogy with known results for abelian varieties and Drinfeld modules, and has
been sketched previously by Tamagawa. We deduce two consequences of the theorem for
the algebraic monodromy groups Gp (M) associated to an A-motive M by Tannakian
duality. The first requires no semisimplicity condition on M and states that Gp (M)
may be identified naturally with the Zariski closure of the image of the absolute Galois
group of K in the automorphism group of Vp (M). The second states that the connected
component of Gp (M) is reductive if M is semisimple and has a separable endomorphism
algebra.
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1. Introduction

The aim of this article is to prove the following result, which is called the semisimplicity conjecture
for A-motives. We use standard notation and terminology (A, F , their completions Ap , Fp , . . .),
which are introduced formally in § 2. The uninitiated reader may think of the case of t-motives,
where A= Fq[t], F = Fq(t) and, in the case of p = (t), we have Ap = FqJtK and Fp = Fq((t)).

Theorem 1.1. Let K be a field which is finitely generated over a finite field. Let M be a
semisimple A-motive over K of characteristic ι. Let p 6= ker ι be a maximal ideal of A. Then the
rational Tate module Vp (M) associated to M is semisimple as a p-adic representation of
the absolute Galois group Gal(Ksep/K) of K.
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N. Stalder

The strategy of our proof of the semisimplicity conjecture is not original, it has been sketched
by Tamagawa [Tam95].

Using the categorical machinery of the author’s previous article [Sta08], the following
consequences for the algebraic monodromy groups of A-motives ensue formally from Theorem 1.1.

Theorem 1.2. Let K be a field which is finitely generated over a finite field. Let M be an
A-motive over K of characteristic ι, not necessarily semisimple. Let p 6= ker ι be a maximal ideal
of A. Let Gp (M) be the algebraic monodromy group of M , and let Γp (M) denote the image of
the absolute Galois group Gal(Ksep/K) of K in AutFp (Vp (M)).

(a) The natural inclusion Γp (M)⊂Gp (M)(Fp ) has Zariski-dense image.

(b) If M is semisimple and its endomorphism algebra is separable, then the connected
component of Gp (M) is a reductive group.

The concept of effective A-motives was invented by Anderson [And86] in the case A= Fq[t]
for perfect K under the name of t-motives. They may be viewed as analogues of Grothendieck’s
pure motives, and even the conjectural heart of Voevodsky’s derived mixed motives, with the
essential difference that both the field of definition and the ring of coefficients of an A-motive are
of positive characteristic. For an introduction to the theory of A-motives we refer to the original
source [And86] and the books of Goss [Gos96] and Thakur [Tha04].

The semisimplicity conjecture is an analogue of the Grothendieck–Serre conjecture which
asserts the semisimplicity of the étale cohomology groups of pure motives. This analogue has
been proven only in the case of abelian varieties, by Faltings [Fal83] for fields of definition of
characteristic zero, and by Zarhin [Zar76] for fields of definition of positive characteristic.

The semisimplicity conjecture is closely connected with two other conjectures, the Tate
conjecture and the isogeny conjecture. Only the conjunction of the Tate conjecture with the
semisimplicity conjecture allows us to deduce the consequences for the algebraic monodromy
groups of A-motives. The Tate conjecture characterises Galois-invariant endomorphisms of
the associated Tate modules. It has been proven independently by Tamagawa [Tam94a] and
Taguchi [Tag95, Tag96] and will be reproven in this article (Proposition 5.16). The isogeny
conjecture on the other hand is a fundamental finiteness statement which, as in the case of
abelian varieties, implies both the Tate conjecture and the semisimplicity conjecture. For fields
of definition of transcendence degree at most one, the isogeny conjecture has been proven quite
recently by Pink [Pin08], using a different method. It seems that his results combined with ours
allow us to deduce the isogeny conjecture for all finitely generated fields of definition.

A special class of A-motives arises from Drinfeld modules. All such A-motives are semisimple,
and the semsimplicity conjecture for this class has been proven previously by Taguchi
in [Tag91, Tag93] for fields of definition of transcendence degree at most one, using a different
strategy inspired by [Fal83]. Pink and Traulsen have extended this proof to direct sums of
Drinfeld modules in [PT06].

We end the introduction with an overview of this article. In § 2 we construct the rigid
tensor category A-MotK of A-motives in the spirit of Taelman [Tae09], containing the full
subcategory A-Moteff

K of effective A-motives. Inverting isogenies, we obtain the Tannakian
category of A-isomotives. We introduce the integral Tate module functors Tp with values in
the categories of integral p-adic Galois representations RepAp

(ΓK). They induce the rational
Tate module functors Vp with values in the Tannakian categories of rational p-adic Galois
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representations RepFp
(ΓK).

A-Moteff
K

⊂ A-MotK
Tp //

��

RepAp
(ΓK)

Fp ⊗Ap (−)

��
A-IsomotK Vp

// RepFp
(ΓK)

Section 3 begins with the introduction of some terminology for semilinear algebra: the notions
of bold rings R, bold modules M , restricted bold modules and bold scalar extension of modules
from one bold ring to another. Its main result, Theorem 3.11, concerns the two fundamental
properties of bold scalar extension in a special situation.

In § 4 we show that the category of A-isomotives embeds into the category FK-Modp -res

of p-restricted bold modules over a certain bold ring FK . We recall the classification of p-adic
Galois representations in terms of the category FK,p -Modp -res of p-restricted FK,p -modules,
which employs the functor Dp of Dieudonné modules. In this translation to semilinear algebra,
the functor induced by the Tate module functor is of a rather simple form, it is the functor
FK,p ⊗FK (−) of bold scalar extension from FK to FK,p . Following Tamagawa, we introduce
an intermediate bold ring FK ⊂ Fp ,K ⊂ FK,p , which allows us to factor the above bold scalar
extension functor through the category of Fp ,K-Modp -res of p-restricted Fp ,K-modules.

A-IsomotK� _

I

��

Vp // RepFp
(ΓK)

Dp ∼=
��

FK-Modp -res
Fp ,K⊗FK (−)

// Fp ,K-Modp -res

FK,p ⊗Fp ,K
(−)

// FK,p -Modp -res

The main result of § 3 then implies that the bold scalar extension functor Fp ,K ⊗FK (−) maps
semisimple objects to semisimple objects.

Sections 5 and 6 follow Tamagawa in constructing a certain bold ring B which induces a
functor Cp from rational p-adic Galois representations to p-restricted Fp ,K-modules. All of this
is very much in the spirit of Fontaine theory, note however that we are dealing with global Galois
representations, not local Galois representations as in Fontaine theory.

RepFp
(ΓK)

Dp

��

Cp

ttiiiiiiiiiiiiiiii

Fp ,K-Modp -res

FK,p ⊗Fp ,K
(−)

// FK,p -Modp -res

The functor Cp has a variety of favourable properties. Among others, it allows us to decide
which Galois representations arise from a p-restricted Fp ,K-module1 by a numerical criterion.
It also ensures that the bold scalar extension functor FK,p ⊗Fp ,K

(−) maps semisimple objects
to semisimple objects. Thereby, the proof of Theorem 1.1 is completed.

Finally, § 7 introduces the algebraic monodromy groups associated to A-isomotives via
Tannakian duality applied to the fibre functor Vp of Tate modules. We deduce Theorem 1.2
from Theorem 1.1, using results from my article [Sta08].

1 Tamagawa calls such representations quasigeometric.
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2. A-Isomotives

Let F be a global field of positive characteristic p, with finite field of constants Fq of cardinality q.
Fix a finite non-empty set {∞1, . . . ,∞s} of places of F , the ‘infinite’ places. Denote by A
the subring of F consisting of those elements integral outside the infinite places. Choose a
field K containing Fq, and set AK :=A⊗Fq K, this is a Dedekind ring. Choose also an Fq-
algebra homomorphism ι : A→K, it corresponds to a prime ideal P0 of AK of degree one. If ι is
injective, we say that the characteristic is generic. If not, we say that the characteristic is special.

Let σq denote the Frobenius endomorphism c 7→ cq of K, and let σ denote the induced
endomorphism a⊗ c 7→ a⊗ cq of AK . For any AK-module M , a σ-linear map τ : M →M is
an additive map which satisfies τ(r ·m) = σ(r) · τ(m) for all (r, m) ∈AK ×M .

Note that to give a σ-linear map τ : M →M is equivalent to giving its linearisation

τlin : σ∗M :=AK ⊗σ,AK
M →M, r ⊗m 7→ r · τ(m),

which is an AK-linear map.

Definition 2.1. An effective A-motive over K (of characteristic ι) is a finitely generated
projective AK-module M together with a σ-linear map τ : M →M such that the support of
M/(AK · τM) is contained in {P0}. The rank rk(M) of an effective A-motive (M, τ) is the rank
of its underlying AK-module M .

Definition 2.2. Let M and N be effective A-motives over K. A homomorphism M →N is an
AK-linear map that commutes with τ . An isogeny is an injective homomorphism with torsion
cokernel (as a homomorphism of AK-modules).

The category A-Moteff
K of effective A-motives over K is an A-linear category. While the

kernels and cokernels of all homomorphisms exist categorically, it is not an abelian category
since the categorical kernel and cokernel of an isogeny are both zero, even though not all
isogenies are isomorphisms. Note that, conversely, a homomorphism of effective A-motives with
zero categorical kernel and cokernel is an isogeny.

Definition 2.3. Let (M, τM ) and (N, τN ) be effective A-motives over K. The tensor product
M ⊗N of M and N is the effective A-motive consisting of the AK-module M ⊗AK

N together
with the σ-linear map

τ : M ⊗AK
N →M ⊗AK

N, m⊗ n 7→ τM (m)⊗ τN (n).

Endowed with this tensor product, the category A-Moteff
K is an associative, commutative and

unital tensor category. The unit 1 is given by AK itself, equipped with the σ-linear map σ itself.
However, it is not a rigid tensor category, since the dual of an effective A-motive M does not
exist except if its τlin is bijective.

Proposition 2.4. Let L, M, N be effective A-motives over K. If L is of rank one, then the
natural homomorphism

Hom(M, N)−→Hom(M ⊗ L, N ⊗ L), f 7→ f ⊗ id

is an isomorphism.

Remark 2.5. If a dual L∨ of L would exist in the category of effective A-motives, then
Proposition 2.4 would be trivial: we could simply ‘twist back’ using L∨. This is true more
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generally for invertible objects in tensor categories, and we use this fact in the following without
further mention.

Proof 2. The given homomorphism is induced by the bijective homomorphism

HomAK
(M, N)→HomAK

(M ⊗AK
L, N ⊗AK

L), f 7→ f ⊗ id

of the underlying AK-modules, so it is injective. An AK-linear map g = f ⊗ 1 : M ⊗AK
N →

M ⊗AK
N is a homomorphism of effective A-motives if (f ◦ τM )⊗ τL = (τN ◦ f)⊗ τL. This

implies that f ◦ τM = τN ◦ f , so f is a homomorphism of effective A-motives, as required. 2

Definition 2.6. An A-motive over K is a pair X = (M, L) consisting of two effective A-motives
over K of which L is of rank one.

Definition 2.7. Let (M ′, L′) and (M, L) be A-motives over K. A homomorphism (M ′, L′)→
(M, L) of A-motives is a homomorphism M ′ ⊗ L→M ⊗ L′ of effective A-motives over K. If the
latter is an isogeny, then we say that the given homomorphism of A-motives is an isogeny.

Example 2.8. Let X = (M, L) be an A-motive. For every 0 6= a ∈A, the homomorphism M ⊗AK

L→M ⊗AK
L, m⊗ l 7→ a ·m⊗ l is an isogeny [a]X : X →X, the scalar isogeny of X induced

by a.

Given this definition of homomorphisms of A-motives, it is not completely obvious how
to compose two homomorphisms. We will use Proposition 2.4. Let X ′ = (M ′, L′), X = (M, L)
and X ′′ = (M ′′, L′′) be A-motives over K. We define the composition of homomorphisms as
follows, where the isomorphisms are given by Proposition 2.4 and → is the composition of
homomorphisms of effective A-motives.

Hom(X ′, X)×Hom(X, X ′′)

Hom(M ′ ⊗ L, M ⊗ L′)×Hom(M ⊗ L′′, M ′′ ⊗ L)

∼=
��

Hom(M ′ ⊗ L⊗ L′′, M ⊗ L′ ⊗ L′′) ×

��

Hom(M ⊗ L′ ⊗ L′′, M ′′ ⊗ L′ ⊗ L)

Hom(M ′ ⊗ L⊗ L′′, M ′′ ⊗ L′ ⊗ L)

Hom(M ′ ⊗ L′′, M ′′ ⊗ L′)

∼=

OO

Hom(X ′, X ′′)

The category A-MotK of A-motives over K is an A-linear category. Note that the direct
sum of two A-motives X ′ = (M ′, L′) and X = (M, L) is given by X ′ ⊕X = ((M ′ ⊗ L)⊕ (M ⊗
L′), L′ ⊗ L).

We have a natural functor from effective A-motives to A-motives, mapping M to (M, 1).

2 Compare [Tae09, Lemma 2.3.1].
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Definition 2.9. The tensor product of two A-motives X ′ = (M ′, L′) and X = (M, L) is the
A-motive

X ′ ⊗X = (M ′ ⊗M, L′ ⊗ L).

Definition 2.10. Let X = (M, L) be an A-motive, and let d > 0 be an integer. The dth exterior
power

∧d X of X is the A-motive (
∧dM, L), where

∧dM denotes the dth exterior power of
the AK-module underlying M together with the unique σ-linear endomorphism such that the
homomorphism

⊗d
AK

M →
∧
AK

M is a homomorphism of A-motives.

We denote the second-highest and highest non-trivial exterior powers of X as M∗ :=∧rk(M)−1 M and det(M) :=
∧rk(M) M , respectively.

Proposition 2.11. The category A-MotK of A-motives over K is a rigid A-linear tensor
category, and the natural functor A-Moteff

K →A-MotK is a fully faithful A-linear tensor functor.

Proof. We suppress the details, remarking only that the dual of an A-motive X = (M, L) is given
by X∨ := (M∗ ⊗ L, detM). 2

Considering A-Moteff
K as a subcategory of A-MotK , we note that an A-motive X = (M, L) is

the internal HomHom(L, M) of the effective A-motives M and L.

The category of A-motives is again not an abelian category. To obtain such a category,
we must invert those homomorphisms which have both zero kernel and zero cokernel in the
categorical sense, the isogenies. We start by studying isogenies more carefully.

We will see that every isogeny is a factor of a scalar isogeny (Proposition 2.20). This will
allow us to ‘invert isogenies’ by inverting scalar isogenies, technically a simpler task.

Definition 2.12.

(a) A torsion AK-module is a finitely generated torsion AK-module T together with a σ-linear
map τ : T → T . A homomorphism of torsion AK-modules is a τ -equivariant homomorphism
of AK-modules. The category of torsion AK-modules is an A-linear abelian category, and
has an evident tensor product.

(b) We say that a torsion AK-module (T, τ) is of characteristic ι if the supports of both kernel
and cokernel of τlin are contained in {P0}.

Given an isogeny f : M →N of effective A-motives, the quotient T :=N/f(M) in the
category of AK-modules inherits a σ-linear map, so T is a torsion AK-module. Note that it
is of characteristic ι. If necessary, we denote (T, τ) by cokerAK (f).

Definition 2.13. Let f : M ′→M be an isogeny of effective A-motives, and set (T, τ) :=
cokerAK (f). The isogeny f is separable if τlin is bijective. The isogeny is purely inseparable
if τ is nilpotent. We extend these two notions to isogenies of A-motives via the corresponding
isogenies of effective A-motives.

With an eye towards our interest in isogenies of A-motives, we turn to a discussion
(Theorem 2.17) of the structure of the associated torsion AK-modules of characteristic ι.

We intersperse a discussion of the connection of torsion AK-modules with bijective τlin with
Galois representations. The natural place for this would be later in the article, but it will be
useful in the proof of the next theorem.
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Definition 2.14. Let ΓK := Gal(Ksep/K) denote the absolute Galois group of K. An A-torsion
Galois representation is an A-module V of finite length together with a group homomorphism
ρ : ΓK →AutA(V ).

Definition 2.15.

(a) Let (T, τ) be a torsion AK-module such that τlin is bijective. We set Rq(T, τ) := (Ksep ⊗K
T )τ , taking τ -invariants with respect to the diagonal action.3 Note that the action of ΓK
on Ksep induces an action of ΓK on Rq(T, τ).

(b) Let (V, ρ) be an A-torsion Galois representation. We set Dq(V, ρ) := (Ksep ⊗Fq V )ΓK , taking
ΓK-invariants with respect to the diagonal action.4 Note that the σ-linear endomorphism σq
of Ksep induces a σ-linear endomorphism τ of Dq(V, ρ).

Proposition 2.16. Let ΓK := Gal(Ksep/K) denote the absolute Galois group of K. The
functors Dq, Rq are quasi-inverse equivalences of A-linear rigid abelian tensor categories.

((
A-torsion

Galois representations

))
∼=

Dq // ((torsion AK-modules
with bijective τlin

))
Rq

oo

Moreover, the following is true:

(a) dimK D(V, ρ) = dimFq V for every A-torsion Galois representation;

(b) the homomorphism Ksep ⊗Fq Rq(T, τ)→Ksep ⊗K T is an isomorphism for every torsion
AK-module (T, τ) with bijective τlin;

(c) the homomorphism Ksep ⊗K Dq(V, ρ)→Ksep ⊗Fq V is an isomorphism for every A-torsion
Galois representation (V, ρ).

Proof. Forgetting the A-module structure of both sides, this is Proposition 4.1 of [PT06] and its
proof. By naturality of that proposition, the statement of our proposition holds. 2

Theorem 2.17. Let (T, τ) be a torsion AK-module of characteristic ι.

(a) If ker ι= 0, then τlin is bijective.

(b) If ker ι 6= 0, then there exists a canonical filtration

0→ (T ′, τ ′)→ (T, τ)→ (T ′′, τ ′′)→ 0

of (T, τ) by torsion AK-modules such that τ ′lin is bijective and τ ′′ is nilpotent.

(c) If τ is nilpotent, then there exists a canonical filtration of (T, τ) by torsion AK-modules
such that each successive subquotient is annihilated by τ .

(d) We have AnnA(T ) 6= 0.

Proof 5.

(a) Since P0 lies over the generic prime of A, we have:

The prime ideals σm∗ (P0) for m > 0 are pairwise different. (2.18)

3 We use ‘R’ for representation.
4 We use ‘D’ for Dieudonné.
5 The author is grateful to Gebhard Böckle for helping to simplify this proof.
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Set X := ker(τlin) and Y := coker(τlin). We consider the exact sequence of AK-modules

0−→X −→ σ∗T
τlin−−−→ T −→ Y −→ 0.

To every finitely generated torsion AK-module N ∼=
⊕

a AK/a we may associate its
characteristic ideal χ(N) :=

∏
a. We have dimK X = dimK Y , so χ(X) = χ(Y ) = Pn

0 for
some n > 0, and

χ(σ∗T ) = χ(T ). (2.19)
Now (2.19) means that σ∗ permutes the (finitely many) prime ideals lying in the support
of T . Therefore, for every such prime ideal P in the support there exists an integer m > 0
such that σm∗ P = P. Now (2.18) excludes the possibility that P0 is contained in the support
of T . It follows that both X and Y are zero, so τlin is indeed bijective.

(b) Note that im(τmlin) =AK · τm(T ). Since T has finite length, this chain of submodules becomes
stationary and T ′ :=

⋂
m>0 im(τmlin) = im(τnlin) for some n� 0. In particular, the restriction

of τlin to T ′ is bijective, and the induced σ-linear endomorphism of T ′′ := T/T ′ is nilpotent.
(c) Clearly, τlin(T )⊂ T is a τ -invariant AK-submodule. The induced action of τ on the quotient

T/τlin(T ) is zero by construction. Since T has finite length, we may repeat this construction
to obtain a filtration with the desired properties.

(d) It is sufficient to prove the statement for the successive subquotients of any chosen filtration
of (T, τ) by torsion AK-modules. We use those given by items (b) and (c).

If τlin is bijective, then the A-torsion Galois representation associated by Proposition 2.16
has finite length as A-module, so it has non-zero annihilator in A. Again by Proposition 2.16, it
follows that T itself has non-zero annihilator in A.

If τ is zero and T is non-zero, then T = coker τlin has support contained in {P0}. By part (a)
we have P0 ∩A= ker ι 6= 0, so again T has non-zero annihilator in A.

Using parts (a), (b), (c) and the previous special cases, it follows that AnnA(T ) 6= 0 for all
torsion AK-modules (T, τ) of characteristic ι. 2

Proposition 2.20. Every isogeny is a factor of a scalar isogeny. More precisely, let f : X ′→X
be an isogeny of A-motives over K. There exists an element 0 6= a ∈A, and an isogeny g : X →X ′

such that g ◦ f = [a]X′ and f ◦ g = [a]X , so the following diagram commutes.

X
g

  BB
BB

BB
BB

[a]X // X

X ′

f
>>||||||||

[a]X′
// X ′

f

>>||||||||

In particular, the relation of isogeny is an equivalence relation.

Proof. We may assume that both X ′ and X are effective A-motives. Let (T, τ) := cokerAK (f),
a torsion AK-module of characteristic ι. By Theorem 2.17(d), there exists an element 0 6= a ∈A
such that a · T = 0. Therefore, a ·X is contained in f(X ′)∼=X, so we obtain an isogeny X

g−−→X ′

with f ◦ g = [a]X . Since f is a homomorphism of AK-modules, we have

f ◦ g ◦ f = [a]X ◦ f = f ◦ [a]X′ ,

so since f is injective we obtain g ◦ f = [a]X′ . 2

We include the following consequence of Theorem 2.17, it will not be needed in the following.
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Proposition 2.21. Let X ′
f−−→X ′′ be an isogeny of A-motives.

(a) If ker ι= 0, then f is separable.

(b) If ker ι 6= 0, then there exist canonically an A-motive X and a factorisation f = f ′′ ◦ f ′,

X ′
f //

f ′   BB
BB

BB
BB

X ′′

X
f ′′

==||||||||

such that f ′ : X ′→X is a separable isogeny and f ′′ : X →X ′′ is a purely inseparable
isogeny.

Proof. (a) We may assume that all A-motives involved are effective. Set (T, τ) := cokerAK (f). If
ker ι= 0, then τlin is bijective by Theorem 2.17(a), so f is separable.

(b) If ker ι 6= 0, Theorem 2.17(b) gives us a canonical filtration

0→ (T ′, τ ′)→ (T, τ)→ (T ′′, τ ′′)→ 0

such that τ ′lin is bijective and τ ′′ is nilpotent. Letting X be the inverse image of T ′ in X ′′, we
obtain an effective A-motive such that f factors as desired. 2

Definition 2.22. An A-isomotive over K is an A-motive over K. A homomorphism of A-
isomotives is an F -linear combination of homomorphisms of A-motives. More precisely, given
two A-isomotives X ′, X, we set

HomA-IsomotK
(X ′, X) := F ⊗A HomA-MotK

(X ′, X),

where A-IsomotK denotes the category of A-isomotives over K.
We might say that an A-isomotive is effective if it is isomorphic in A-IsomotK to an effective

A-motive. We remark that some authors use the terminology F -motive for what we call an
A-isomotive in this article.

Theorem 2.23.

(a) The natural functor A-MotK →A-IsomotK is universal among A-linear functors with target
an F -linear category and mapping isogenies to isomorphisms.

(b) The category A-IsomotK is an F -linear rigid abelian tensor category.

Proof.

(a) Our given functor is A-linear by definition. It maps isogenies to isomorphisms by
Proposition 2.20. Let C be an F -linear category, and let V : A-MotK →C be an A-linear
functor which maps isogenies to isomorphisms.
It remains to show that there exists a unique A-linear functor V ′ : A-IsomotK →C
extending V . Since A-MotK and A-IsomotK have the same objects, we turn our attention
to homomorphisms. Since scalar isogenies are isogenies, and V does map isogenies to
isomorphisms, the desired extension V ′ exists and is unique.

(b) The category of A-isomotives is F -linear by construction. It inherits a rigid tensor product
from the category of A-motives. We must show that it is abelian. For this, assume that
f : X ′→X is a homomorphism of A-isomotives with vanishing categorical kernel and
cokernel. We may assume that both X ′ and X are effective A-isomotives. By the definition of
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homomorphisms of A-isomotives, there exists an element 0 6= a ∈A such that a · f : X ′→X
is a homomorphism of effective A-motives. The categorical kernel and cokernel of a · f
remain zero, since multiplication by a is an isomorphism. Clearly, this implies that a · f is
injective, and cokerAK (a · f) is a torsion AK-module. Therefore, a · f is an isogeny, and
Proposition 2.20 gives an element 0 6= b ∈A and an isogeny g : X →X such that (a · f) ◦ g
and g ◦ (a · f) are both multiplication by b. Since multiplication by b is an isomorphism in
A-IsomotK , this implies that f is an isomorphism. 2

Definition 2.24. An A-motive M is semisimple if it is such as an object of the category of
A-isomotives.

We turn to p-adic Galois representations. For the remainder of this section, we introduce
the following notation: let ΓK := Gal(Ksep/K) denote the absolute Galois group of K. For every
maximal ideal p of A, denote the p-adic completions of A and F by Ap and Fp .

Definition 2.25.

(a) An integral p-adic Galois representation is a free Ap -module of finite rank together with
a continuous group homomorphism ρ : ΓK →AutAp (V ). Equipped with ΓK-equivariant
Ap -linear homomorphisms, we obtain the category RepAp

(ΓK) of integral p-adic Galois
representations.

(b) A rational p-adic Galois representation is a finite-dimensional Fp -vector space together
with a continuous group homomorphism ρ : ΓK →AutFp (V ). Equipped with ΓK-equivariant
Ap -linear homomorphisms, we obtain the category RepFp

(ΓK) of rational p-adic Galois
representations.

Definition 2.26. Let p 6= ker ι be a maximal ideal of A, and let AKsep,p := lim←−n((A/pn)⊗Fq

Ksep) denote the completion of A⊗Fq K
sep at p. For every A-motive X = (M, L) over K:

(a) The integral Tate module of X at p is the Ap -module

Tp (X) := (AKsep,p ⊗AK
M)τ ⊗Ap ((AKsep,p ⊗AK

L)τ )∨,

with τ -invariants taken with respect to the natural diagonal σ-linear endomorphism,
equipped with the induced action of ΓK .

(b) The rational Tate module of X at p is the Fp -vector space

Vp (X) := Fp ⊗Ap Tp (X),

equipped with the induced action of ΓK .

Definition 2.27. Let R→ S be a homomorphism of unital rings, C an R-linear category, and D
an S-linear category. An R-linear functor V : C →D is S/R-faithful (respectively, S/R-fully
faithful) if the natural homomorphism

S ⊗R HomC(X, Y )→HomD(V X, V Y )

is injective (respectively, bijective) for all objects X, Y of C.

Proposition 2.28. Let p 6= ker ι be a maximal ideal of A.

(a) The functor Tp is an A-linear tensor functor with values in integral p-adic representations,
which is Ap /A-faithful and preserves ranks.
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(b) The functor Vp extends uniquely to an F -linear functor with values in rational p-adic
representations, again denoted as Vp , such that the following diagram commutes.

A-MotK

��

Tp // RepAp
(ΓK)

Fp ⊗Ap (−)

��
A-IsomotK

Vp // RepFp
(ΓK)

(c) The functor Vp is an exact F -linear tensor functor which is Fp /F -faithful and preserves
ranks.

Proof.

(a) Let us first consider the restriction of Tp to effective A-motives, it maps a given effective
A-motive M to

Tp (M) = (AKsep,p ⊗AK
M)τ = lim←−

n

((M ⊗K Ksep)/pn)τ .

Note that the assumption that p 6= ker ι implies that the linearisation of the σ-linear
endomorphism of (M ⊗K Ksep)/pn is bijective. By applying Proposition 2.16 to Ksep and
(M ⊗K Ksep)/pn, we see that ((M ⊗K Ksep)/pn)τ is a free A/pn-module of rank rk(M).
It follows that Tp (M) is an integral p-adic Galois representation of rank rk(M). Using
Proposition 2.16 again, it follows that the restriction of Tp to A-Moteff

K is an A-linear
tensor functor with values in integral p-adic representations which preserves ranks. By
construction, this implies that Tp itself has these properties.
It remains to show that Tp is Ap /A-faithful. Let M, N be A-motives. We may assume that
both are effective. Note that we have a natural inclusion Ap ⊗Fq K

sep ⊂AKsep,p . It follows
that we have a natural inclusion

(Ap ⊗Ksep)⊗AK
HomAK

(M, N)⊂AKsep,p ⊗AK
HomAK

(M, N).

On both sides, the left exact functors (−)ΓK of Galois-invariants and (−)τ := ker(τN ◦ (−)−
(−) ◦ τM ) of τ -invariants act, and the two actions commute. Therefore,

((Ap ⊗Ksep)⊗AK
HomAK

(M, N))ΓK ,τ ⊂ (AKsep,p ⊗AK
HomAK

(M, N))τ,ΓK ,

so
Ap ⊗A Hom(M, N)τ ⊂HomA(Tp M, Tp N)ΓK ,

which means that Ap ⊗A Hom(M, N)→HomΓK
(Tp M, Tp N) is injective, as desired.

(b) Since scalar isogenies are mapped to isomorphisms in RepFp
(ΓK), Vp extends to an F -linear

functor on A-IsomotK with values in rational p-adic Galois representations.
(c) Now item (a) implies that Vp is an Fp /F -fully faithful tensor functor, and preserves ranks.

This last property implies that Vp is exact. 2

Corollary 2.29.

(a) For every two A-motives M, N , the A-module of homomorphisms HomA-MotK
(M, N) is

finitely generated and projective.

(b) For every two A-isomotives X, Y , the F -vector space of homomorphisms HomA-IsomotK
(X,

Y ) is finite-dimensional.

(c) Every A-isomotive has a composition series of finite length.
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Proof.

(b) Since HomΓK
(Vp X,Vp Y ) is finite Fp -dimensional, so is Fp ⊗F HomA-IsomotK

(X, Y ) by
Fp /F -faithfulness of Vp . This implies the desired statement.

(a) If we show that HomA-MotK
(M, N) is torsion-free, item (a) follows from item (b). However,

HomA-MotK
(M, N) = (M∨ ⊗N)τ is a submodule of the torsion-free A-module M∨ ⊗N , so

we are done.

(c) Since Vp is faithful, it maps non-zero objects to non-zero objects. Therefore, the length of
an A-isomotive is bounded by the length of its Tate module. Since the latter is of finite
length, so is the former. 2

3. Some semilinear algebra

We begin this section by introducing the notion ‘semisimple on objects’ for functors, a categorical
generalisation of the statement of Theorem 1.1, and discuss how this property combines with
the notion of ‘relative full faithfulness’, introduced in Definition 2.27.

We then introduce some terminology for semilinear algebra, and prove a theorem on bold
scalar extension of restricted modules for a certain class of bold rings. The reader may choose
to skip to § 4 after reading the statement of Theorem 3.11, to see how it is employed.

Definition 3.1. Let A, B be abelian categories. An exact functor V : A→B is semisimple on
objects if it maps semisimple objects of A to semisimple objects of B.

We intersperse a proposition which exemplifies nicely how the properties of being ‘relatively’
full faithful and being semisimple on objects combine.

Proposition 3.2. Let F ′/F be a field extension, A an F -linear abelian category, and B an
F ′-linear abelian category. Consider an F ′/F -fully faithful F -linear exact functor V : A→B.
For every object X of A, if V (X) is semisimple in B, then X is semisimple6 in A.

Proof. Assume that

α : 0→X ′→X →X ′′→ 0

is a short exact sequence in A such that the exact sequence V (α) splits in B. We must
show that α splits, and for this it suffices to show that idX′′ is in the image of the natural
homomorphism HomA(X ′′, X)→HomA(X ′′, X ′′). This image coincides with the intersection
of HomA(X ′′, X ′′) and the image of the natural homomorphism F ′ ⊗F HomA(X ′′, X)→ F ′ ⊗F
HomA(X ′′, X ′′). By F ′/F -full faithfulness, we may identify this latter image with the image
of the natural homomorphism HomB(V (X ′′), V (X))→HomB(V (X ′′), V (X ′′)). By assumption,
idV (X′′) = V (idX′′) is an element of this image, and under our natural identifications it is also
clearly an element of HomA(X ′′, X ′′), therefore we are done. 2

We turn to some general terminology for semilinear algebra. Other authors (Anderson, Pink,
Taguchi, Tamagawa and, in particular, Fontaine) have used different names in different contexts,
such as ϕ-, σ- and τ -modules. We choose to use terminology that abstracts from the particular
context and choice of notation, so as to prove the basic properties of these objects in suitable
generality.

6 In other words, V maps non-semisimple objects of A to non-semisimple objects of B; we use this in the proof of
Proposition 3.18.
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Definition 3.3. A bold ring R is a unital commutative ring R equipped with a unital ring
endomorphism σ : R→R. The coefficient ring of R is its subring Rσ := {r ∈R : σ(r) = r} of
σ-invariant elements.

A homomorphism S→R of bold rings is a ring homomorphism that commutes with σ. It
induces a homomorphism Sσ→Rσ of coefficient rings.

Definition 3.4. Let R be a bold ring. A (bold) R-module M is an R-module M together with
a σ-linear endomorphism τ : M →M .

A homomorphism M →N of R-modules is an R-module homomorphism that commutes
with τ . The tensor product M ⊗R N of M = (M, τM ) and N = (N, τN ) is the R-module
M ⊗R N together with the σ-linear endomorphism

M ⊗R N →M ⊗R N, m⊗ n 7→ τM (m)⊗ τN (n).

The category R-Mod of R-modules is an Rσ-linear abelian tensor category.

Definition 3.5. Let S
f−−→R be a homomorphism of bold rings. Bold scalar extension from

S to R is the functor S-Mod→R-Mod mapping an S-module M to R⊗S N and a
homomorphism h of S-modules to idR ⊗h.

Recall from § 2 that the σ-linear endomorphism τ of a module M over a bold ring R = (R, σ)
corresponds to a unique R-linear homomorphism τlin : σ∗M :=R⊗σ,RM →M , its linearisation.

Definition 3.6. Let R be a bold ring.

(a) An R-module M = (M, τ) is restricted if M is a finitely generated projective R-module
and τlin is bijective.

(b) Let S
f−−→R be a homomorphism of bold rings. An R-module M is f -restricted if there

exist a restricted S-module N and an isomorphism M ∼= R⊗S N of R-modules. Clearly,
this implies that M is restricted in the sense of statement (a).

Other authors use the terminology étale for what we call restricted. This author finds that
analogy a little far-fetched, and not specific enough if one has to deal with several rings, as we
do here.

Let Fq, K, σq be as in § 2, so Fq is a finite field and K is a field containing Fq.
In this section (but not the next) F/Fq may be any field extension, that is,
we drop the assumption that F is a global field . In addition to yielding more generality, this
allows us more flexibility in the proofs.

Let FK = Frac(F ⊗Fq K) denote the total ring of fractions of F ⊗Fq K. The bold ring FK is
given by FK together with the endomorphism σ = σFK

= Frac(id⊗σq) induced by σq. If F ′/F
is a field extension, the bold ring FK

′ with underlying ring F ′K = Frac(F ′ ⊗Fq K) is defined
analogously, and we have a bold scalar extension functor FK

′ ⊗FK (−) from FK-modules to
FK
′ -modules.

Lemma 3.7. Assume that the number of roots of unity of K is finite.

(a) The ring FK is a finite product of pairwise isomorphic fields.

(b) The underlying FK-module of every restricted FK-module is free.
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Proof. Let FF and FK denote the algebraic closures of Fq in F and K, respectively. If FF = Fqr

and FK = Fqs are both finite, then

FF ⊗Fq FK ∼= (Fqlcm(r,s))× gcd(r,s)

and σ = id⊗σq corresponds to an endomorphism of the product which permutes the factors
transitively. This implies that every restricted (FF ⊗Fq FK , id⊗σq)-module has an underlying
FF ⊗Fq FK-module which is projective of constant rank, and hence free. Hereby, items (a) and
(b) are proven for F and K both finite.

If FF is infinite, then it is an algebraic closure of Fq and

FF ⊗Fq FK ∼= (FF )× dimFq FK

is a product of pairwise isomorphic fields. It follows from the above that the endomorphism
corresponding to σ = id⊗σq permutes the factors transitively, so again we have items (a) and
(b) for F and K both algebraic.

In the general case, FF ⊗Fq FK ∼= Fr for an algebraic extension F/Fq and an integer r > 1.
Then [Jac90, Theorem 8.50] shows that F ⊗FF

F⊗FK
K is a domain, which implies that

FK ∼= Frac(F ⊗FF
F⊗FK

K)×r

is a product of pairwise isomorphic fields. Tracing through these identifications, we see that σFK

permutes these fields transitively, so we obtain items (a) and (b) in general. 2

Proposition 3.8. Assume that the number of roots of unity of K is finite. The full subcategory
of restricted FK-modules is closed under subquotients and tensor products in the category of all
FK-modules. In particular, it is an F -linear rigid abelian tensor category.

Proof. Let M = (M, τ) be a restricted FK-module, and consider an exact sequence

0→ (M ′, τ ′)→M → (M ′′, τ ′)→ 0

of FK-modules. Both M ′ and M ′′ are finitely generated FK-modules since FK is Noetherian,
and both are projective FK-modules since FK is a product of fields by Lemma 3.7(a). Since
τlin : σ∗M →M is bijective, the Snake lemma implies that τ ′lin is injective and τ ′′lin is surjective.
By Lemma 3.7, this implies that both τ ′lin and τ ′′lin are bijective. Therefore, both (M ′, τ ′) and
(M ′′, τ ′′) are restricted FK-modules as claimed.

We suppress the easy proof that the tensor product of restricted FK-modules is restricted.
It follows that the full subcategory of restricted FK-modules is an F -linear abelian tensor
category, since FK-Mod is. One checks that the dual of a restricted FK-module (M, τ) is
given by M∨ := HomAK

(M, AK) together with the σ-linear endomorphism mapping f ∈M∨
to τM∨(f) := σlin ◦ σ∗(f) ◦ (τlin)−1. It follows that the category of restricted FK-modules is a
rigid tensor category. 2

We turn to the main theorem of this section, its proof will occupy the remainder of the
section. To state it, we recall the algebraic concept of separability.

Definition 3.9. A field extension F ′/F is separable if for every field extension F ′′ ⊃ F the ring
F ′ ⊗F F ′′ is reduced (contains no nilpotent elements).

Remark 3.10. An algebraic field extension F ′/F is separable in the sense of Definition 3.9 if
and only if it is separable in the usual sense. If F ′′/F ′/F is a tower of field extensions such that
F ′′/F is separable, then F ′/F is separable as well.
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Theorem 3.11. Let F ′/F/Fq be a tower of field extensions. Assume that the number of roots
of unity of K is finite. The restriction of the functor of bold scalar extension FK

′ ⊗FK (−) to
restricted FK-modules is:

(a) F ′/F -fully faithful; and

(b) if F ′/F is a separable field extension, it is semisimple on objects.

We turn first to the proof of Theorem 3.11(a).

Proposition 3.12. Let F ′/F/Fq be a tower of field extensions. Assume that the number of
roots of unity of K is finite. The restriction of the functor of bold scalar extension FK

′ ⊗FK (−)
to restricted FK-modules is F ′/F -fully faithful.

Proof. Let M ,N be restricted FK-modules, and set X := M∨ ⊗FK N . Since HomFK (M ,N) =
Xτ and HomFK′ (FK

′ ⊗FK M , FK
′ ⊗FK N) = (FK′ ⊗FK X)τ , it is sufficient to prove that

F ′ ⊗F Xτ → (FK′ ⊗FK X)τ (3.13)

is bijective for all restricted FK-modules X. We set X ′ := FK
′ ⊗FK X.

Since the homomorphism F ′ ⊗F FK → F ′K = Frac(F ′ ⊗F FK) is injective and the functor (−)τ

is left-exact, the homomorphism of (3.13) is injective. We must show that it is surjective.
Moreover, we may assume that F ′ ⊃ F is finitely generated, since for every element x′ ∈ (X ′)τ

there exists a finitely generated field extension F ′ ⊃ F 0 ⊃ F such that x′ lies in (X0)τ , where
X0 := F 0

K ⊗FK X with F 0
K := Frac(F 0 ⊗F FK , id⊗σq).

All in all, the theorem reduces to proving the surjectivity of (3.13) for the two special cases
of F ′ ⊃ F finite, and F ′ ⊃ F purely transcendental of transcendence degree one. The first is easy,
since if F ′/F is finite, then F ′ ⊗F FK ∼= FK

′ , and hence

F ′ ⊗F M τ = (F ′ ⊗F FK ⊗FK M)τ ∼= (FK′ ⊗FK M)τ

as claimed. The second is dealt with in the following Proposition 3.14. 2

Proposition 3.14. If F ′ = F (X) is a purely transcendental extension of F of transcendence
degree one and X is a restricted FK-module, then F ′ ⊗F Xτ → (FK′ ⊗FK X)τ is surjective.

For the proof of Proposition 3.14, we use a slightly extended notion of ‘denominators’. By
Lemma 3.7(a), the ring FK =Q×s for some field Q. We set FK [X] :=Q[X]×s and FK(X) :=
Frac(F (X)⊗F FK) =Q(X)×s.

For f ∈ FK(X), we define the denominator den(f) of f componentwise, as the s-tuple of the
usual (monic) denominators of its s components. Similarly, for f, g ∈ FK(X), we define the least
common multiple lcm(f, g) of f and g componentwise, as the s-tuple of the usual (monic)
least common multiples of their corresponding components.

Clearly, for f, g ∈ FK(X) the following relation holds, where | denotes componentwise
divisibility in FK [X]:

den(f + g) | lcm(den f, den g). (3.15)

We may now characterise the subring F (X)⊗F FK of FK(X).

Lemma 3.16. We have

F (X)⊗F FK =
{
f ∈ FK(X) :

den(f) | g
for some g ∈ F [X] r {0}

}
.
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Proof. ⊂: Assume that f is an element of F (X)⊗F FK . We may write f =
∑m

i=1(ai/bi)⊗ λi
for elements λi ∈ FK and ai, bi ∈ F [X] with bi 6= 0. By (3.15), den(f) divides d :=

∏m
i=1 bi, an

element of F [X] r {0} as claimed.
⊃: Assume that f is an element of FK(X) which divides a non-zero element g ∈ F [X]. This

means that there exists an element h ∈ FK [X] such that g = den(f) · h. We have f = f ′/den(f)
for f ′ := f den(f) ∈ FK [X]. Therefore, f = (f ′h)/(den(f)h) with 1/(den(f)h) = 1/g ∈ F (X) and
f ′h ∈ FK [X]⊂ F (X)⊗F FK , which implies our claim that f is an element of F (X)⊗F FK . 2

Given a vector v = (vj) ∈ FK(X)r for some r > 1, we set den(v) = lcmj(den vj).

Lemma 3.17. Given two integers m, n > 1, a matrix A ∈Matm×n(FK) and a vector v ∈
FK(X)⊕n, we have

den(Av) | den(v).

In particular, if m= n and A is invertible, then den(Av) = den(v).

Proof. We suppress the easy proof of the divisibility statement, which is clear intuitively.
In the case m= n and A is invertible, we may additionally apply this divisibility statement

to the matrix A−1 and the vector Av. We obtain den(v) = den(A−1(Av)) | den(Av). Since both
den(Av) and den(v) have monic components, we infer that den(Av) = den(v). 2

Proof of Proposition 3.14. By Lemma 3.7(a), X = F rK for an integer r > 0 and τ = ∆ ◦ σ for a
certain matrix ∆ ∈GLr(FK).

Assume that x′ ∈ FK(X)⊗FK
X is τ -invariant, so x′ = (x′i)i ∈ FK(X)r and x′ = ∆(σ(x′)). By

Lemma 3.17 applied to the invertible matrix ∆ and the vector σ(x′), we obtain that den(x′) =
den(σ(x′)), and this latter vector clearly coincides with σ(den(x′)). Therefore, den(x′)
= σ(den(x′)) is an element of F [X]. Since den(x′i) | den(x′) by definition, all x′i are elements
of F ′ ⊗F FK by Lemma 3.16, and so x′ ∈ F ′ ⊗F Xτ , as claimed. 2

We now turn to the proof of Theorem 3.11(b).

Proposition 3.18. Let F ′/F/Fq be a tower of field extensions. Assume that F ′/F is separable
and the number of roots of unity of K is finite. The restriction of the functor of bold scalar
extension FK

′ ⊗FK (−) to restricted FK-modules is semisimple on objects.

Proof. As in the proof of Proposition 3.12, we start by reducing to the case where F ′/F is finitely
generated: if M is a semisimple restricted FK-module but M ′ := FK

′ ⊗FK M is not semisimple,
then there exists a non-split short exact sequence

0→M ′
1

f−−→M ′ g−−→M ′
2→ 0. (3.19)

Clearly, there exists a finitely generated field extension, F ′ ⊃ F 0 ⊃ F such that M ′
1,M

′
2, f, g are

defined over F 0
K = Frac(F 0 ⊗F FK , id⊗σq). The short exact sequence inducing (3.19) must be

non-split by Propositions 3.2 and 3.12. Thereby, we would find a contradiction to Proposition 3.18
for finitely generated field extensions. Note that F 0/F is separable since F ′/F is.

The same argument shows that the proof of our proposition reduces to the special cases
of finite separable field extensions and purely transcendental field extensions of transcendence
degree one. We deal with these cases separately in the following two propositions. Note that it is
sufficient to show that the bold scalar extension of a simple restricted FK-module is semisimple,
since bold scalar extension is an additive functor. 2
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Proposition 3.20. Assume that the number of roots of unity of K is finite. Let F ′/F/Fq be
a tower of field extensions such that F ′/F is finite separable, and let M be a simple restricted
FK-module. Then M ′ := FK

′ ⊗FK M is semisimple.

Proof. We start with the case where F ′/F is a finite Galois extension, and set Γ := Gal(F ′/F ).
Assume that S′ ⊂M ′ is a simple FK

′ -submodule. Set

X ′ :=
∑
g∈Γ

gS′ ⊂M ′.

This FK
′ -module is Γ-invariant, so X ′ = FK

′ ⊗FK X for some FK-submodule of X ⊂M .
Since M is simple and S′ 6= 0, we see that X = M and so M ′ =

∑
g∈Γ gS

′ is semisimple as
a sum of simple objects.

In the general case, let F ′′/F denote a Galois closure of F ′/F , and consider a simple restricted
FK-module M . By what we have proven, M ′′ := FK

′′ ⊗FK M is semisimple. Now Proposition 3.2
shows that M ′ := FK

′ ⊗FK M is semisimple, since we have already proven Proposition 3.12. 2

Proposition 3.21. Assume that the number of roots of unity of K is finite. Let F/Fq be
a field extension, consider F ′ = F (X) and let M be a simple restricted FK-module. Then
M ′ := FK

′ ⊗FK M is simple.

Proof. Recall that FK =Qs for some field Q by Lemma 3.7(a), so FK(X) := F ′K =Q(X)s. Let
FK [X] be the bold ring consisting of FK [X] =Q[X]s together with the restriction of σF ′K ; it acts
as the identity on X. Now M := FK [X]⊗FK M is a ‘model’ of M ′ in the sense that M is a
restricted FK [X]-module such that M ′ = FK(X)⊗FK [X] M. Moreover, M = M/X.

Assume that M ′ is not simple, so there exists a non-trivial FK
′ -submodule N ′ $ M ′. It follows

that N := M ∩N ′ is a non-trivial FK [X]-submodule of M other than M, and therefore that
N := N /(X) is a non-trivial FK-submodule of M/(X)∼= M other than M . This contradicts
the simplicity of M , using Proposition 3.8. 2

Proof of Theorem 3.11. Proposition 3.12 gives item (a), and Proposition 3.18 gives item (b). 2

4. Translation to semilinear algebra

In this section, we embed the categories of A-motives and A-isomotives in categories of bold
modules, and classify the categories of integral and rational p-adic Galois representations in
terms of categories of bold modules.

This allows us to factor the functors induced by the integral and rational Tate module functors
as composites of two bold scalar extension functors each. The section ends with a proof that the
first factor is ‘relatively’ fully faithful in both cases, and semisimple on objects in the rational
case.

Let F, Fq, A, K, ι, σq be as in § 2. Let FK denote the total ring of quotients Frac(F ⊗Fq K),
it is a field. The bold ring FK is given by FK together with σ = σFK

= Frac(idF ⊗σq). We refer
to Lemma 3.7 and Proposition 3.8 for the structure of FK and its consequences. The bold
ring AK ⊂ FK is given by AK :=A⊗Fq K, a Dedekind domain, together with the restriction
σ = σAK

= idA ⊗σq of σFK
. Given a maximal ideal p of A, let A(p ),K denote the subring of FK

consisting of those elements integral at all places P of FK lying above p, it is a semilocal Dedekind
domain. The bold ring AK ⊂A(p ),K ⊂ FK is given by A(p ),K together with the restriction
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σ = σA(p ),K
of σFK

. We say that an FK-module M is p-restricted if it is restricted with respect
to the inclusion A(p ),K ⊂ FK .

Construction 4.1. An effective A-motive (M, τ) over K induces an FK-module FK ⊗AK (M, τ),
which is p-restricted for p 6= ker ι by the assumption that (M, τ) is of characteristic ι, and hence
restricted. Thus, the essential image of the tensor functor A-Moteff

K →AK-Mod→ FK-Mod
consists of dualisable objects by Proposition 3.8, and so it extends uniquely to an A-linear tensor
functor I0 : A-MotK → FK-Mod. It maps anA-motive (M, L) to (FK ⊗AK M)⊗ (FK ⊗AK L)∨.
Now Theorem 2.23(a) implies that I0 factors through the category of A-isomotives, so there
exists a unique F -linear exact tensor functor I : A-IsomotK −→ FK-Mod such that the following
diagram commutes.

A-Moteff
K

⋂

// AK-Mod

FK⊗AK (−)

��
A-MotK

��

I0 // FK-Mod

A-IsomotK
I

77ooooooooooo

Proposition 4.2. The functor I is fully faithful and semisimple on objects. For every maximal
ideal p 6= ι of A, the essential image of I consists of p-restricted FK-modules.

Proof. The essential image of I consists of p-restricted FK-modules by construction.
Let us show that I is fully faithful, so let M ,N be A-isomotives. We may assume that both

are effective. It is clear that

Hom(M ,N)→HomFK (FK ⊗AK M , FK ⊗AK N)

is injective, so let h be an element of the target. Now h(M) and N ′ := h(M) ∩N are effective
A-motives, h|M : M → h(M) is a homomorphism of effective A-motives, h(M)⊃N ′ is an
isogeny of effective A-motives, and N ′ ⊂N is a homomorphism of effective A-motives.

FK ⊗AK M h // FK ⊗AK N

M
h|M //

∪

h(M) N ′⊃ ⊂ N

∪

Now Proposition 2.20 applied to the isogeny and Theorem 2.23(a) imply that h is induced by a
homomorphism M →N of A-isomotives.

Let us show that I is semisimple on objects, so let M be a semisimple A-isomotive. We may
assume that M is effective and simple, since I is additive. Assume that M ′

0 ⊂ FK ⊗AK M is
an FK-submodule. Then M ′ := M ∩M ′

0 is an effective A-isomotive contained in M , so either
M ′ = 0 or M ′ ∼= M by assumption. It follows that FK ⊗AK M is simple. 2

We turn to two torsion-free versions of Proposition 2.16. Let Ksep denote a separable closure
of K, with associated Galois group ΓK := Gal(Ksep/K). Given a maximal ideal p of A, let

AK,p := lim←−
n

(A/pn)⊗Fq K

denote the completion of AK at p, it is a finite product of pairwise isomorphic discrete valuation
rings. Let FK,p := Frac(AK,p ) denote the total ring of quotients of AK,p , it is a finite product of
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pairwise isomorphic fields. The bold ring AK,p is given by AK,p together with the endomorphism
σ = σAK,p

= lim←−n(idA/p n ⊗σq) induced by σq, and the bold ring FK,p is given by FK,p together
with the endomorphism σ = σFK,p

= Frac(σAK,p
) induced by σq. We say that an FK,p -module

M is p-restricted if it is restricted with respect to the inclusion AK,p ⊂ FK,p .

Definition 4.3.

(a) Let (M, τ) be restricted AK,p -module. We set

R′p (M, τ) := (AKsep,p ⊗AK,p
M)τ ,

taking τ -invariants with respect to the diagonal action. Note that the action of ΓK on AKsep,p

induces an action of ΓK on R′p (T, τ).

(b) Let (V, ρ) be an integral p-adic Galois representation. We set

D′p (V, ρ) := (AKsep,p ⊗Ap V )ΓK ,

taking ΓK-invariants with respect to the diagonal action. Note that the σ-linear
endomorphism of AKsep,p induces a σ-linear endomorphism τ of D′p (V, ρ).

Proposition 4.4. Let ΓK := Gal(Ksep/K) denote the absolute Galois group of K. The functors
D′p , R

′
p are quasi-inverse equivalences of Ap -linear rigid tensor categories.

((
integral p-adic

Galois representations

))
∼=

D′p // (( restricted
AK,p -modules

))
R′p

oo

Moreover, the following are true:

(a) rkAK,p
D′p (V, ρ) = rkAp V for every integral p-adic Galois representation (V, ρ);

(b) the homomorphism

AKsep,p ⊗Ap R
′
p (M, τ)→AKsep,p ⊗AK,p

M

is an isomorphism for every restricted AK,p -module (M, τ);

(c) the homomorphism

AKsep,p ⊗AK,p
D′p (V, ρ)→AKsep,p ⊗Ap V

is an isomorphism for every integral p-adic Galois representation (V, ρ).

Proof. This follows directly from Proposition 2.16 by considering the direct limits involved. 2

Definition 4.5.

(a) Let (M, τ) be p-restricted FK,p -module. We set

Rp (M, τ) := (FKsep,p ⊗FK,p
M)τ ,

taking τ -invariants with respect to the diagonal action. Note that the action of ΓK on FKsep,p

induces an action of ΓK on Rp (T, τ).

(b) Let (V, ρ) be a rational p-adic Galois representation. We set

Dp (V, ρ) := (FKsep,p ⊗Fp V )ΓK ,

taking ΓK-invariants with respect to the diagonal action. Note that the σ-linear
endomorphism of FKsep,p induces a σ-linear endomorphism τ of Dp (V, ρ).
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Proposition 4.6. Let ΓK := Gal(Ksep/K) denote the absolute Galois group of K. The functors
Dp , Rp are quasi-inverse equivalences of F -linear rigid abelian tensor categories.((

rational p-adic
Galois representations

))
∼=

Dp // ((
p-restricted

FK,p -modules

))
Rp

oo

Moreover, the following is true:

(a) rkFK,p
Dp (V, ρ) = dimFp V for every rational p-adic Galois representation (V, ρ);

(b) the homomorphism FKsep,p ⊗Fp Rp (M, τ)→ FKsep,p ⊗FK,p
M is an isomorphism for every

p-restricted FK,p -module (M, τ);
(c) the homomorphism FKsep,p ⊗FK,p

Dp (V, ρ)→ FKsep,p ⊗Fp V is an isomorphism for every
rational p-adic Galois representation (V, ρ).

Proof. Proposition 4.4 implies this rational version. In fact, ‘Dp =D′p for rational p-adic Galois
representations’ in the sense thatDp (V, ρ) coincides with (AKsep,p ⊗Ap V )ΓK , the definition ofD′p
applied to (V, ρ), and similarly Rp =R′p for p-restricted FK,p -modules. The detailed proof also
uses the fact that every rational p-adic Galois representation has a ΓK-invariant full Ap -lattice
(whereas not every restricted FK,p -module is p-restricted). 2

Proposition 4.7. For every maximal ideal p 6= ker ι of A, the following diagram commutes.

A-IsomotK
Vp //

I

��

RepFp
(ΓK)

FK-Mod
FK,p ⊗FK (−)

// FK,p -Mod

Rp ∼=

OO

Proof. This follows directly from the construction of the categories and functors involved. 2

We end this section by applying the main result of § 3, hence proving the ‘first half’ of
Theorem 1.1. Let p be a maximal ideal of A, let Fp denote the completion of F at p, and set
Fp ,K := Frac(Fp ⊗Fq K, id⊗σq). Note that we have inclusions FK ⊂ Fp ,K ⊂ FK,p , and that
the latter is an equality if and only if K is a finite field. We set Ap ,K := Fp ,K ∩AK,p , and say
that an Fp ,K-module is p-restricted if it is restricted with respect to the inclusion Ap ,K ⊂ Fp ,K .

By what we have already proven, Theorem 1.1 (the semisimplicity conjecture) follows by
proving that bold scalar extension FK,p ⊗FK (−) restricted to p-restricted FK-modules is
semisimple on objects. Since

FK,p ⊗FK (−) = (FK,p ⊗Fp ,K
(−)) ◦ (Fp ,K ⊗FK (−)),

and being semisimple on objects is a transitive property, we may subdivide our task into
two parts.

Theorem 4.8. Let p be a maximal ideal of A. Assume that the number of roots of unity of K
is finite. The restriction of the functor of bold scalar extension Fp ,K ⊗FK (−) to restricted
FK-modules is:

(a) Fp /F -fully faithful;

(b) semisimple on objects; and

(c) maps p-restricted modules to p-restricted modules.

580

https://doi.org/10.1112/S0010437X09004448 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004448


The semisimplicity conjecture for A-motives

Proposition 4.9. Every completion Fp of F at a place p is a separable field extension.

Proof. Let us start with the special case of F = Fq(t) completed at p = (t), so Fp = Fq((t)).
By [Bou58, V.§ 15.4] it is sufficient to prove the following: if f1, . . . , fm ∈ Fq((t)) are linearly
independent over Fq(t), then so are the fpi . Without loss of generality, assume that fi ∈ FqJtK,
and that for certain gi ∈ k[t] we have

∑
i gif

p
i = 0. We must show that all gi are zero.

Since Fq is perfect, we may write gi =:
∑p−1

j=0 g
p
ijt

j for certain gij ∈ k[t]. These defining
equations, together with

∑
i gif

p
i = 0, imply that for all j we have

∑
i g

p
ijf

p
i = 0. By extracting pth

roots of both sides we obtain
∑

i gijfi = 0 for all j. By assumption the fi are linearly independent,
so we have gij = 0 for all i and j. Therefore, all gi are zero, as required.

Let us return to the general setting. We choose a local parameter t ∈ F at p. Denoting the
residue field of F at p by Fp , we have Fp = Fp ((t)) and the following commutative diagram of
inclusions.

Fq(t) //

��

F

��
Fq((t)) // Fp ((t))

We have just seen that Fq(t)⊂ Fq((t)) is separable; clearly, so is Fq((t))⊂ Fp ((t)), hence Fq(t)⊂ Fp

is separable. Moreover, Fq(t)⊂ F is separable algebraic since t is a local parameter. This implies
that F ⊂ Fp is separable by [Bou58, V.§ 15]. 2

Proof of Theorem 4.8. Since Fp /F is separable by Proposition 4.9, Theorem 3.11 implies parts
(a) and (b) of Theorem 4.8. Part (c) follows from the fact that A(p ),K = FK eAK,p . 2

5. Tamagawa–Fontaine theory

In this section, we complete the proof of Theorem 1.1 with the help of what we term ‘Tamagawa–
Fontaine theory’, since the basic ideas and a sketch of the proofs are due to Tamagawa [Tam95]
and have some formal analogy to Fontaine theory.

Let F, Fq, A, p be as before, let K/Fq be a finitely generated field and let Ksep denote a
separable closure of K with associated absolute Galois group ΓK := Gal(Ksep/K). Recall that we
have constructed bold rings Ap ,K ⊂ Fp ,K and AK,p ⊂ FK,p , and that we call Fp ,K- and FK,p -
modules p-restricted if they are restricted with respect to these inclusions. To any p-restricted
Fp ,K-module M , we associate the rational p-adic Galois representation

Vp (M) := Rp (FK,p ⊗Fp ,K
M).

Definition 5.1. Following [Tam95], we say that a rational p-adic Galois representation is
quasigeometric if it is isomorphic to Vp (M) for some p-restricted Fp ,K-module M .

The theory consists of constructing a bold ring B ⊂ FKsep,p and developing the properties
of the associated functor7

Cp := ((B ⊗Fp (−))ΓK : RepFp
(ΓK)→ Fp ,K-Modp -res.

This allows us to determine which rational p-adic Galois representations are quasigeometric
(those for which rkFp ,K

(Cp (V, ρ)) = dimFp V ), and its properties imply that FK,p ⊗Fp ,K
(−),

7 ‘C’ for coreflection.
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restricted to p-restricted Fp ,K-modules, is fully faithful and semisimple on objects. Thereby, the
proof of Theorem 1.1 is complete.

We choose to postpone the construction of B to the next section (Definitions 6.6 and 6.10),
and develop the properties of Cp using only the properties of B given in the following claim.
These properties will also be established in the next section (Theorem 6.23).

Claim 5.2. Assume that K/Fq is finitely generated. There exists a ring B ⊂ FKsep,p with the
following properties:

(a) σFKsep,p
(B)⊂B and Bσ = Fp ;

(b) ΓK(B)⊂B and BΓK = Fp ,K ;

(c) every p-restricted Fp ,K-module M fulfills Vp (M)⊂B ⊗Fp ,K
M .

Note that the existence of such a ring of periods is a matter of construction, since property
(b) requires B to be ‘small enough’ (as (FKsep,p )ΓK = FK,p strictly contains Fp ,K if K is infinite),
whereas property (c) requires B to be ‘large enough’ (as it must contain the Galois-invariant
elements of FKsep,p ⊗Fp ,K

M for every p-restricted Fp ,K-module M).

This claim will be justified in Theorem 6.23. Until the end of the proof of Theorem 5.15, we
will assume that Claim 5.2 is true. Note that there exists a smallest ring with the properties
required in Claim 5.2, the intersection of the (non-empty) set of such rings. What follows does
not depend on our choice of B. However, we might as well choose this canonical smallest B in
the following, so we do.

Lemma 5.3. Let M = (M, τ) be a p-restricted Fp ,K-module. Then the natural comparison
isomorphism FKsep,p ⊗Fp Vp (M)→ FKsep,p ⊗Fp ,K

M of Proposition 4.6(b) descends to a ΓK-
equivariant isomorphism of B-modules

cM : B ⊗Fp Vp (M)−→B ⊗Fp ,K
M .

Proof. Claim 5.2(b) implies that the given isomorphism descends to a ΓK-equivariant
homomorphism of B-modules

cM : B ⊗Fp Vp (M)−→B ⊗Fp ,K
M .

Since both sides are free B-modules of finite rank, it suffices to show that the determinant of
cM is an isomorphism. Since Vp is a tensor functor, we have

det(cM ) = cdet(M),

so we may reduce to the case where rk(M) = 1. In this case, choosing a basis for both Vp (M)
and M , we see that cM is given by left multiplication by an element c(M) ∈B. Choosing the
dual bases of Vp (M∨) and M∨, analogously cM∨ is given by left multiplication by an element
c(M∨) ∈B.

By Proposition 4.6(c), the element c(M) is invertible in FKsep,p . By naturality, its inverse
c(M)−1 coincides with c(M∨). Since both c(M) and c(M∨) lie in B, cM is indeed an
isomorphism. 2

We continue to exploit the consequences of Claim 5.2.

Theorem 5.4. The functor Vp on p-restricted Fp ,K-modules is fully faithful.
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Proof. Consider two p-restricted Fp ,K-modules M ,N . By Lemma 5.3 we have a τ - and ΓK-
equivariant natural isomorphism

B ⊗M∨ ⊗N −→B ⊗Vp (M∨ ⊗N) = B ⊗Vp (M)∨ ⊗Vp (N),

which implies that

(B ⊗M∨ ⊗N)Γ,τ ∼= (B ⊗Vp (M)∨ ⊗Vp (N))τ,Γ.

Since Hom(M ,N) = (M∨ ⊗N)τ coincides with the domain of this isomorphism, and
Hom(Vp (M)∨,Vp (N)) = (Vp (M)∨ ⊗Vp (N))ΓK coincides with its target, we see that Vp is
indeed fully faithful. 2

Definition 5.5.

(a) Let (V, ρ) be a rational p-adic Galois representation. We set

Cp (V, ρ) := (B ⊗Fp V )ΓK ,

taking Galois-invariants with respect to the diagonal action. Note that the σ-linear
endomorphism of B induces a σ-linear endomorphism τ of Cp (V, ρ).

(b) Set B′ := B ∩AKsep,p . Let (T, ρ) be an integral p-adic Galois representation. We set

C′p (T, ρ) := (B′ ⊗Ap T )ΓK ,

taking Galois-invariants with respect to the diagonal action. Note that the σ-linear
endomorphism of B′ induces a σ-linear endomorphism τ of C′p (T, ρ).

Lemma 5.6. For every p-restricted Fp ,K-module M , the comparison isomorphism cM of
Lemma 5.3 induces an isomorphism of Fp ,K-modules

Cp (Vp M)
∼=−−→M .

Proof. Take ΓK-invariants. 2

Proposition 5.7. (a) The functor Cp is an exact Fp -linear tensor functor.

(b) The functor C′p is an exact Ap -linear tensor functor.

Proof. The functors C′p and Cp are left exact linear functors by definition. Let us show that they
are tensor functors. We deduce this from the fact that the functors D′p and Dp of § 3 are such.

Let us do this for Cp , mutatis mutandis the proof is the same for C ′p . Consider a rational
p-adic Galois representation V = (V, ρ). We have Dp (V ) = (FKsep,p ⊗Fp V )ΓK and Cp (V ) =
(B ⊗Fp V )ΓK . Therefore, calculating in FKsep,p ⊗Fp V , we have Cp (V ) = (B ⊗Fp V ) ∩Dp (V ).

Given another rational p-adic Galois representation W , we may apply these remarks to V ,
W and V ⊗Fp W . In FKsep,p ⊗Fp V ⊗Fp W we calculate

Cp (V ⊗Fp W ) = (B ⊗Fp V ⊗Fp W ) ∩DFp (V ⊗Fp W )
= ((B ⊗Fp V )⊗B (B ⊗Fp W )) ∩ (DFp (V )⊗FK,p

DFp (W ))
= ((B ⊗Fp V ) ∩DFp (V ))⊗Fp ,K

((B ⊗Fp W ) ∩DFp (W ))
= Cp (V )⊗Fp ,K

Cp (W ).

Finally, the right exactness of Cp and C ′p follows formally from what we have proven. Again,
we do this only for Cp , mutatis mutandis the proof is the same for C ′p . Since Cp is a tensor functor
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and V admits a dual V ∨, the Fp ,K-module Cp (V ) has a dual, namely Cp (V ∨). Therefore, if

V ′→ V → V ′′→ 0

is a right exact sequence of rational p-adic Galois representations, then its image under Cp

coincides with the dual of the image of the left exact sequence 0→ (V ′′)∨→ V ∨→ (V ′)∨.
Since Cp is left exact, the image of this left exact sequence is left exact. Since dualisation is
exact, the image of our original right exact sequence is right exact, and we are done. 2

Lemma 5.8.

(a) The ring FK,p is a finite product of fields, each isomorphic to a field of Laurent series K ′((t))
for some finite extension K ′/K.

(b) The underlying FK,p -module of every restricted FK,p -module is free.

Proof. Let t ∈A denote a local parameter at p, and let Fp denote the residue field of p. By
definition, FK,p = Frac(AK,p ), and we have

AK,p = lim←−
n

((A/pn)⊗Fq K) = lim←−
n

((Fp [t]/tn)⊗Fq K) = (Fp ⊗Fq K)JtK.

As in the proof of Lemma 3.7(a), Fp ⊗Fq K
∼= (K ′)×s for some finite field extension K ′/K and

integer s > 1. It follows that FK,p =K ′((t))×s has the property stated in part (a). Part (b) follows
as in the proof of Lemma 3.7(b). 2

Lemma 5.9.

(a) The module B′ is a projective Ap ,K-module.

(b) The module B is a projective Fp ,K-module.

Proof. By Lemma 3.7, Fp ,K =Q1 × · · · ×Qs is a finite product of fields. Setting Bi :=Qi ⊗Fp ,K

B, we obtain a decomposition B =B1 × · · · ×Bs. Since the Qi are fields, the Bi are free
Qi-modules, so B is a projective Fp ,K-module.

To show that this implies that B′ is a projective Ap ,K-module, we need some notation.
Choose a local parameter t ∈ F at p. We have Fp ,K ⊂ FK,p , and the latter ring splits as
FK,p =Q′1 × · · · ×Q′s with Q′i

∼=K ′((t)) for a finite field extension K ′ ⊃K by Lemma 5.8. We
may thus identify the fields Qi with subfields of Q′i =K ′((t)), note that Qi contains t.

Under this identification, setting Ri :=Qi ∩K ′JtK, we have Ap ,K =R1 × · · · ×Rs.
The ring B is a subring of

FKsep,p
∼= (Fp ⊗k Ksep)((t)) = (Fp ⊗k K ⊗K Ksep)((t)) = (K ′ ⊗K Ksep)((t))×s,

with Bi contained in the ith copy of (K ′ ⊗K Ksep)((t)). The ring B′ splits as B′1 × · · · ×B′s, where
B′i :=B′ ∩Bi is the ring consisting of those elements of Bi which, viewed as elements of the ith
copy of (K ′ ⊗K Ksep)((t)) in FKsep,p , are power series, that is, lie in (K ′ ⊗K Ksep)JtK.

Let us show that B′i is a free Ri-module, which implies that B′ is a projective Ap ,K-module.
For this, we choose a Qi-basis {bij}j∈Ji of Bi. Under the identifications given above, each bij
corresponds to a Laurent series

∑
bijnt

n in (K ′ ⊗K Ksep)((t)). Now K ′ ⊗K Ksep ∼= (Ksep)×r for
some r > 1, whereby 1⊗ 1 corresponds to an element (e1, . . . , eρ). By multiplying bij with a
suitable element of the form (e1t

n(i,j,1), . . . , eρt
n(i,j,r)), we may assume that bijn = 0 for n < 0

and that bij0 is invertible in K ′ ⊗K Ksep. Under this assumption, one may check that {bij} is
indeed an Ri-basis of B′i. 2
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Lemma 5.10.

(a) The natural homomorphism AK,p ⊗Ap ,K
B′ −→AKsep,p is injective.

(b) The natural homomorphism FK,p ⊗Fp ,K
B −→ FKsep,p is injective.

Proof.

(a) We use the following facts from commutative algebra: given an ideal I ⊂R of a commutative
ring R such that

⋂
In = 0, let R̂ := lim←−n R/I

n denote the I-adic completion of R. If M is a

projective R-module, then the natural homomorphism R̂⊗RM → M̂ := lim←−nM/(In ·M)
is injective. If M →N is an injective homomorphism of R-modules, then the induced
homomorphism M̂ → N̂ is injective.
The first of these facts is checked easily for free R-modules, and this implies the statement
for projective R-modules by the additivity of source and target. The second fact is a
consequence of the left exactness of lim←−.
By Lemma 5.9, we may apply this to R=Ap ,K , I = p, M =B′ and N = FKsep,p , and obtain
the desired injectivity of

AK,p ⊗Ap ,K
B′→ B̂′→ F̂Ksep,p = FKsep,p .

(b) This follows from part (a) by inverting any local parameter t ∈ F at p. 2

Proposition 5.11. (a) For every integral p-adic representation T , the following natural map
is injective:

AK,p ⊗Ap ,K
C ′p (T )−→D′p (T ).

(b) For every rational p-adic representation V , the following natural map is injective:

FK,p ⊗Fp ,K
Cp (V )−→Dp (V ).

Proof.

(a) We calculate

AK,p ⊗Ap ,K
C ′p (T ) = AK,p ⊗Ap ,K

(B′ ⊗Ap T )ΓK

= (AK,p ⊗Ap ,K
B′ ⊗Ap T )ΓK

⊂ (AKsep,p ⊗Ap T )ΓK by Lemma 5.10(a)
= D′p (T ).

(b) We may repeat the calculation of part (a), using Lemma 5.10(b). 2

Proposition 5.12.

(a) The functor C ′p has values in restricted Ap ,K-modules.

(b) The functor Cp has values in p-restricted Fp ,K-modules.

(c) For every rational p-adic Galois representation V = (V, ρ) we have rkFp ,K
Cp (V ) 6

dimFp V .

Proof. For every rational representation V there exists an integral representation T = (T, ρ) such
that V = Fp ⊗Ap T , and then Cp (V ) = Fp ,K ⊗Ap ,K

C ′p (T ). Therefore, it suffices to show that
C ′p (T ) is a restricted Ap ,K-module of rank bounded above by rkAp T .
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By Proposition 5.11(a), AK,p ⊗Ap ,K
C ′p (T ) is a submodule of D′p (T ), which is a free AK,p -

module of rank rkAp T . Therefore, C ′p (T ) is a finitely generated projective Ap ,K-module.
Since D′p (T ) has a bijective τlin, its submodule AK,p ⊗Ap ,K

C ′p (T ) has an injective τlin, and
therefore C ′p (T ) has an injective τlin as well. Since σAp ,K

permutes the factors of Ap ,K =
Fp ,K ∩Ap ,K

∼= (Q1 × · · · ×Qs) ∩Ap ,K = (Q1 ∩Ap ,K)× · · · × (Qs ∩Ap ,K) the injectivity of τlin

implies that C ′p (T ) is free of constant rank r := rkAp ,K
C ′p (T ) 6 rkAK,p

T , as in the proof of
Lemma 3.7(b).

It remains to show that the τlin of C ′p (T ) is bijective. Clearly, this is the case if and only if
the τlin of the determinant of C ′p (T ) is bijective. By Proposition 5.7(a), C ′p is a tensor functor,
so we obtain an inclusion

AK,p ⊗Ap ,K
C ′p

( r∧
Ap

T

)
⊂D′p

( r∧
Ap

T

)
,

where the right-hand side is a restricted AK,p -module of rank at least one. Tracing through
the definitions, we see that the left-hand side is saturated in the right-hand side, i.e. the
quotient is a projective AK,p -module. An application of the Snake lemma shows that this implies
that AK,p ⊗Ap ,K

C ′p (ΛrT ) has bijective τlin. Now the equality A×p ,K =A×K,p ∩Ap ,K implies that
C ′p (T ) itself has bijective τlin. 2

Proposition 5.13. Let V = (V, ρ) be a rational p-adic Galois representation:

(a) V is quasigeometric if and only if rkFp ,K
Cp (V ) = rkFp V ;

(b) Vp (Cp (V )) is the largest quasigeometric subrepresentation of V ;

(c) if V is quasigeometric, then so is every subquotient of V .

Proof.

(a) Assume that V ∼= Vp (M) is quasigeometric. By Lemma 5.6, Cp (Vp (M))∼= M . Therefore,
using the fact that Vp preserves ranks, we have

rk Cp (V ) = rk Cp (Vp (M)) = rk(M) = rk Vp (M) = rk V ,

as claimed.
Assume that we have an equality of ranks. By Proposition 5.11(b), the natural
homomorphism FK,p ⊗Fp ,K

Cp (V )−→Dp (V ) is injective. Since Dp preserves ranks, both
sides are free of equal finite rank over the semisimple commutative ring FK,p . So the
homomorphism is an isomorphism. We set M := Cp (V ), a p-restricted Fp ,K-module by
Proposition 5.12. Then the following isomorphisms shows that V is quasigeometric:

V ∼=Rp (Dp (V ))∼=Rp (FK,p ⊗Fp ,K
Cp (V )) = Vp (Cp (V )) = Vp (M).

(b) The representation Vp (Cp V ) is quasigeometric by Proposition 5.12(b). Proposition 5.11(b)
and the exactness of Vp imply that Vp (Cp V ) is a subrepresentation of V . Let us show that
it contains every other quasigeometric subrepresentation Vp (M ′)∼= V ′ ⊂ V . By restricting
the isomorphism cM ′ of Lemma 5.3 to ΓK-invariants, we have M ′ = Cp (Vp M ′). So
using the left-exactness of Cp , we see that

M ′ = Cp (Vp M ′) = Cp V ′ ⊂ Cp V .

In turn, since Vp is exact, this shows that V ′ = Vp (M ′)⊂Vp (Cp V ), as claimed.
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(c) Let 0→ V ′→ V → V ′′→ 0 be an exact sequence of representations, and assume that V is
quasigeometric. Consider the induced sequence

0−→ Cp V ′ −→ Cp V −→ Cp V ′ −→ 0. (5.14)

It is exact by Proposition 5.7. Applying the exact functor Vp , we obtain an exact sequence

0−→Vp Cp V ′ −→ V −→Vp Cp V ′′ −→ 0,

where V = Vp Cp V by part (b). Now

rk V = rk Vp Cp V ′ + rk Vp Cp V ′′ 6 rk V ′ + rk V ′′ = rk V

implies that rk Vp Cp V ′ = rk V ′ and rk Vp Cp V ′ = rk V ′, so V ′ = Vp Cp V ′ and V ′′ =
Vp Cp V ′′ are both quasigeometric by part (a). 2

We collect our results in a categorical reformulation.

Theorem 5.15.

(a) The functor Vp : Fp ,K-Modp -res→ RepFp
(ΓK) is an exact Fp -linear tensor functor which

is fully faithful and semisimple on objects.

(b) The pair (Vp , Cp ) is an adjoint pair of functors, that is, for every p-restricted Fp ,K-module
M and rational p-adic Galois representation V there exists a natural isomorphism of
Fp -vector spaces

Hom(Vp (M), V )−→Hom(M , Cp (V )).
(c) The unit id⇒ Cp ◦Vp of this adjunction is an isomorphism (so Cp is a ‘coreflection’ of the

‘inclusion’ Vp ).

(d) The counit Vp ◦ Cp ⇒ id of this adjunction is a monomorphism.

Proof. (a) The functor Vp = Rp ◦ (FK,p ⊗Fp ,K
(−)) is an exact Fp -linear tensor functor as a

composition of such. It is fully faithful by Theorem 5.4. Proposition 5.13(c) implies that Vp

maps simple objects to simple objects, so it is semisimple on objects.
(b) Let us construct the inverse of the adjunction isomorphism for a given M and V . Since Vp

is fully faithful, we have a natural isomorphism

Vp : Hom(M , Cp V )−→Hom(Vp M ,Vp Cp V )

One the other hand, every homomorphism Vp M → V has a quasigeometric image
by Proposition 5.13(c), which must lie in Vp Cp V by Proposition 5.13(b). Therefore,
Hom(Vp M ,Vp Cp V ) = Hom(Vp M , V ), and we are done.

(c), (d) Both of these items follow from Proposition 5.13. 2

Proof of Theorem 1.1. By Proposition 4.7, the functor Vp on A-isomotives coincides with
Rp ◦ (FK,p ⊗FK

(−)) ◦ I. By Proposition 4.2, I is semisimple on objects and has p-restricted
values. The functor (FK,p ⊗FK

(−)) is a composition of the functors (Fp ,K ⊗FK
(−)) and

(FK,p ⊗Fp ,K
(−)). The former is semisimple on restricted FK-modules and maps p-restricted

modules to p-restricted Fp ,K-modules by Theorem 4.8(b) and (c), whereas the latter is
semisimple on p-restricted Fp ,K-modules by Theorem 5.15(a). The functor Rp is semisimple on
p-restricted FK,p -modules since it is an equivalence of categories. Therefore, Vp is semisimple
on objects, being a composition of such functors. 2

We end this section with a proof of the Tate conjecture for A-motives.
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Proposition 5.16. Let K be a field which is finitely generated over a finite field. Let p 6= ker ι
be a maximal ideal of A.

(a) Let M, N be A-motives of characteristic ι. The natural homomorphism Ap ⊗A
Hom(M, N)→Hom(Tp M, Tp N) is an isomorphism.

(b) Let X, Y be A-isomotives of characteristic ι. The natural homomorphism Fp ⊗F
Hom(X, Y )→Hom(Vp M,Vp N) is an isomorphism.

Proof.

(b) By Proposition 4.7 we have Vp = Rp ◦(FK,p ⊗FK
(−)) ◦ I. As in the proof of Theorem 1.1,

this reduces the proof that Vp is Fp /F -fully faithful to Proposition 4.2, Theorem 4.8(a), (c)
and Theorem 5.15(a).

(a) The image of the given homomorphism Ap ⊗A Hom(M, N)→Hom(Tp M, Tp N) is
saturated; this is well known. Therefore, part (b) implies part (a). 2

6. Constructing a ring of periods

We turn to the laborious task of constructing a ring B which fulfills Claim 5.2.
Recall that we assume that K is a finitely generated field extension of a finite field Fq with q

elements. We identify K with the function field Fq(X) of a proper normal variety X over Fq.
For every finite Galois extension Ksep ⊃ L⊃K, let XL be the normalisation of X in L, this is a
proper normal variety over L.

Let ΣL be the set of prime (Weil) divisors of XL. For every Galois tower

Ksep ⊃ L′ ⊃ L⊃K

we have a projection map prL,L′ : ΣL′ −→ ΣL, so we may let

Σsep := lim←−
L⊃K

ΣL

be the projective limit along the projections prL′,L. Given a Galois extension L⊃K, an element
xL ∈ ΣL and an element x ∈ Σsep, we say that x lies over xL if xL is the Lth component of x.

For each x= (xL)L ∈ Σsep, there is a unique associated valuation

vx : Ksep −→Q ∪ {∞}

extending the normalised valuation vxK of K associated to xK . Explicitly, for f ∈Ksep we
may choose a finite Galois extension K ⊂ L⊂Ksep containing f , and set vx(f) := vxL(f)/exL ,
where vxL denotes the normalised valuation of L associated to xL, and exL is the index of vxL(K∗)
in vxL(L∗).

Let F be a global field with field of constants Fq, and fix a place p of degree d := deg p of F
with residue field Fp . We wish to extend vx to a function on FKsep,p . For calculational reasons,
we choose a local parameter t ∈ F at p and obtain identifications AKsep,p = (Fp ⊗k Ksep)JtK and
FKsep,p = (Fp ⊗k Ksep)((t)) =AKsep,p [t−1]. Recall that by Lemma 5.8 the homomorphism

(Fp ⊗k Ksep, id⊗σ)−→ ((Ksep)×d, σ′) (6.1)

mapping x⊗ y to (x · σiq(y))d−1
i=0 is an isomorphism of bold rings, with

σ′(z0, . . . , zd−1) = (zqd−1, z
q
0, . . . , z

q
d−2)
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for (z0, . . . , zd−1) ∈ (Ksep)×d. We denote the action of σ′ on (Ksep)×d simply by σ. Writing an
element f ∈ FKsep,p as f =

∑
i�−∞ fit

i with fi = (fij)j ∈ (Ksep)×d, we set

vx(f) := inf
i

min
j
vx(fij).

Moreover, for all m, n > 1 and ∆ = (δij) ∈Matm×n(FKsep,p ) we set

vx(∆) := inf
i,j
vx(δij).

Proposition 6.2. For each x ∈ Σsep and all m, n > 1, the function

vx : Matm×n(FKsep,p )−→ R ∪ {±∞}

is well defined and independent of the choices made. For m= n= 1 and all f, g ∈ FKsep,p it has
the following properties:

(a) vx(f + g) > min{vx(f), vx(g)};
(b) vx(fg) > vx(f) + vx(g) (using the convention −∞+∞=−∞);

(c) vx(σ(f)) = q · vx(f).

Proof. Since vx(F×p ) = 0, the choice of local parameter does not influence the definition of vx.
Now properties (a) and (b) follow from short calculations using the semicontinuity of infima,
whereas property (c) follows from (6.1). 2

Remark 6.3. Note that, in general, we do not have vx(fg) = vx(f) + vx(g).

Proposition 6.4. For all integers m, n > 1, matrices ∆ ∈Matn×n(FKsep,p ) and column vectors
F ∈ FKsep,p

⊕n the equation σm(F ) = ∆ · F implies the inequality

vx(F ) >
1

qm − 1
vx(∆).

Proof. If vx(∆) =−∞, the inequality stated is tautological, so we assume that C := vx(∆) 6=−∞.
By a matrix version of Proposition 6.2, the equation σm(F ) = ∆F would imply that qm · vx(F ) >
C + vx(F ). If also vx(F ) 6=±∞, this would imply the claim of this proposition. However, if
vx(F ) =−∞, there is a problem. The following proof deals with all cases at once.

Write F = (fi) and ∆ = (δij) with fi, δij ∈ FKsep,p . Furthermore, write fi =
∑

r firt
r and

δij =
∑

s hijst
s for fir, δijs ∈ Fp ⊗k Ksep. By multiplying the entire equation by a suitable power

of t, we may assume that these coefficients are zero for r, s < 0. By assumption we have
vx(δijs) > C, and by definition we have vx(fir) 6=−∞.

The equation σm(F ) = ∆ · F means σm(fi) =
∑n

j=1 δijfj for all i, and gives∑
r>0

σm(fir)tr =
n∑
j=1

∑
a>0

∑
b>0

δijafjbt
a+b =

∑
r>0

( n∑
j=1

r∑
l=0

δijlfj,r−l

)
tr.

From this we see that

σm(fir) =
n∑
j=1

r∑
l=0

δijlfj,r−l (6.5)

and must prove that vx(fir) > C/(qm − 1). We perform induction on r.
If r = 0, then for all i we have σm(fi0) =

∑n
j=1 δij0fj0 which gives qm · vx(fi0) > minnj=1(C +

vx(fj0)). Choosing j such that the minimum is attained we obtain qmvx(fj0) > C + vx(fj0) and
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hence vx(fj0) > C/(qm − 1). So by the choice of j, for all i we may deduce that vx(fi0) > vx(fj0) >
C/(qm − 1).

For r > 0, equation (6.5) gives qmvx(fir) > infj6n,l6r(C + vx(fjl)), hence by the induction
hypothesis for all r′ < r

qmvx(fir) > min
(

qm

qm − 1
C,

n
min
j=1

(C + vx(fjr))
)
.

If qmC/(qm − 1) is smaller, we obtain vx(fir) > C/(qd − 1) for all i as in the case r = 0. Otherwise,
choosing j such that the inner minimum is attained, we first obtain vx(fjr) > C/(qm − 1) and
then vx(fir) > C/(qm − 1) for all i, as in the case r = 0. 2

We now turn to the definition of our ring of periods.

Definition 6.6. Following [Tam95], we set:

(a) B+ :=
{
f ∈ FKsep,p :

vx(f) 6=−∞ for all x ∈ Σsep

vx(f) > 0 for almost all x ∈ Σsep

}
, ‘almost all’ meaning that the

set of exceptions has finite image in ΣK ;
(b) S := {s ∈A×Ksep,p : (σ(s)/s) ∈ Fp ⊗k K}.

Lemma 6.7. We have that B+ is a ΓK-stable ring.

Proof. The fact that B+ is ΓK-stable follows directly from its definition. That B+ is a ring (closed
under finite sums and products) follows from Proposition 6.2: clearly, B+ contains 1. For f ∈B+

let Σf denote the finite subset of those elements of ΣK over which there lies an element x ∈ Σsep

such that vx(f)< 0.
Given two elements f, g ∈B+, for all x ∈ Σsep by Proposition 6.2(a) we have vx(f + g) >

min(vx(f), vx(g)), which is not equal to −∞, since this is such for both vx(f) and vx(g). For
all x whose image in ΣK does not lie in its the finite subset Σf ∪ Σg we even have vx(f + g) > 0.
Therefore, f + g is an element of B+.

A similar proof, using Proposition 6.2(b), shows that f · g is an element of B+. All in all,
B+ is a ring. 2

Lemma 6.8. We have (B+)ΓK = Fp ⊗k K.

Proof. We note that (B+)ΓK =B+ ∩ FK,p . So the desired equality (B+)ΓK = Fp ⊗k K is an
equality of subrings of FK,p . By Lemma 5.8(a), we have FK,p = (K ′)e((t)) for a finite Galois
extension K ′/K (it is Galois since Fp ⊃ k is Galois and Fp ⊗k K ∼= (K ′)e). The inclusion FK,p ⊂
FKsep,p corresponds to a homomorphism (K ′)e((t)) ↪→ (Ksep)d((t)) mapping the ith component of
the source to d/e components of the target, according to the d/e different K-linear embeddings
of K ′ in Ksep. It follows that the image of this homomorphism lies in (K ′)d((t)).

Given an element f ∈ FK,p , we may write it as a Laurent series
∑

i fit
i, with coefficients

fi = (fi1, . . . , fid) ∈ (K ′)d. We let Vf denote the k-vector subspace of K ′ generated by the fij .
Clearly, Fp ⊗k K consists of those elements of FK,p such that dimk Vf is finite.

On the other hand, by definition (B+)ΓK consists of those elements of FK,p such that
vx′(f) 6=−∞ for all x′ ∈ ΣK′ and vx′(f) > 0 for all but a finite number of x′ ∈ ΣK′ .

Now, if f ∈ FK,p is an element of Fp ⊗k K, then dimk Vf is finite, so the subset of ΣK′

consisting of the poles of the (coefficients of the) elements of Vf is finite, so f is an element of
B+ by our above characterisation.
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On the other hand, if f ∈ FK,p is an element of B+, then we may choose a finite subset
Σ0 ⊂ ΣK′ such that vx′(f) > 0 for all x′ 6∈ Σ0. For x′ ∈ Σ0, we set n(x′) :=−vx′(f), which is finite
by assumption. Let X ′ denote the proper normal variety over k corresponding to K ′. Since X ′

is proper, the space of global sections of

OX′
( ∑
x′∈Σ0

n(x′)x′
)

is finite-dimensional. Since it contains Vf , this implies that f ∈ Fp ⊗k K by our above
characterisation. 2

Lemma 6.9. The subset S is a ΓK-stable multiplicative subset of B+.

Proof. The fact that S is a ΓK-stable multiplicative subset of FKsep,p follows directly from its
definition.

Let us show that S is contained in B+. For s ∈ S choose f ∈ Fp ⊗k K such that σ(s) = f · s,
such an f exists by definition of S. By Lemma 6.8 and Proposition 6.4, vx(s) 6=−∞ for all
x ∈ Σsep, and there exists a finite subset Σ0 of ΣK such that vx(f) > 0 for all x ∈ Σsep not lying
over Σ0.

For all x ∈ Σsep, Proposition 6.4 shows that vx(s) > vx(f)/(q − 1). So s has the required
properties that vx(s) 6=−∞ for all x ∈ Σsep and vx(s) > 0 for all x ∈ Σsep not lying over Σ0, since
this is the case for f . 2

Definition 6.10. Following [Tam95], we let B ⊂ FKsep,p be the ring obtained by inverting
S ⊂B+, and set B = (B, σ), where σ is the given ring endomorphism of FKsep,p .

Lemma 6.11. The ring B is a bold ring with ring of scalars Fp .

Proof. The ring B is clearly σ-stable since B+ and S are. Furthermore, since Fp ⊂B and
Bσ ⊂ F σKsep,p = Fp , we have Bσ = Fp . 2

We say that an element f ∈ FKsep,p has order n ∈ Z if, writing f as
∑
fit

i ∈ (Fp ⊗k Ksep)((t))
we have n= inf{i : fi 6= 0}. We say that an element f ∈ FKsep,p of order n has invertible leading
coefficient if fn is invertible in Fp ⊗k Ksep. If f has order zero, then we will denote by f(0) the
leading coefficient of f . Note that the invertible elements of AKsep,p are precisely the elements
of FKsep,p of order zero with invertible leading coefficient.

Remark 6.12. Let us set ti := ei · t ∈ FKsep,p , where ei is the standard basis vector of the ith
copy of Ksep in the product (Ksep)d. Clearly, an element f ∈ FKsep,p is invertible if and only if
we can write

f =
(d−1∏
i=0

tni
i

)
· f̃ ,

for certain ni ∈ Z, where f̃ is an element of A×Ksep,p .

Lemma 6.13. Every element f ∈A×Ksep,p may be written as f = σ(s)/s for some other element

s ∈A×Ksep,p .
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Proof. We write f =
∑

i>0 fit
i and use the ‘ansatz’ s=

∑
j>0 sjt

j . This gives

∑
r

σ(sr)tr = σ(s) = sf =
∑
i,j

fisjt
i+j =

∑
r

( r∑
i=0

fisr−i

)
tr.

We proceed by induction. For r = 0, we must solve σ(s0) = f0s0. We write f0 = (f0,0, . . . , f0,d−1)
and s0 = (s0,0, . . . , s0,d−1) for f0,i, s0,i ∈Ksep. Note that by assumption all f0,i 6= 0. Since

σ(s0) = (sq0,d−1, s
q
0,0, s

1
0,1, . . . , s

q
0,d−1)

our equation σ(s0) = f0s0 is equivalent to the system of equations

sq0,i = f0,i+1s0,i+1, i ∈ Z/dZ.

This means, for instance, that s0,0 = sq0,d−1/f0,0 and s0,d−1 = sq0,d−2/f0,d−1, which gives

sq0,0 =
sq0,d−1

f0,0
=

(sq0,d−2/f0,d−1)q

f0,0
.

Iterating this substitution, we obtain the equation

sq
d

0,0 − (f q
d−1

0,1 · f q
d−2

0,2 · · · f q0,d−1 · f0,0)s0,0 = 0.

Since all of the f0,i 6= 0, the constant φ := f q
d−1

0,1 · f q
d−2

0,2 · · · f q0,d−1 · f0,0 is non-zero, so this is a
separable equation for s0,0 and hence has a non-trivial solution in Ksep. The s0,i for i 6= 0 are
then determined by the assignments s0,i := sq0,i−1/f0,i, they are non-trivial since s0,0 and the f0,i

are.

Let us consider the case r > 0, and write sr = (sr,0, . . . , sr,d−1) and fr = (fr,0, . . . , fr,d−1). In
this case, the equation σ(sr) =

∑r
i=0 fisr−i that we must solve is equivalent to the system of

equations

sqr,i+1 =
r∑
j=0

fi,0sr−i,0 =: f0,isr,i + Cr,i,

where the Cr,i ∈Ksep are constants dependant only on f and the sr′ for r′ < r.

We may use the same type of replacement as before, and obtain an equation

sq
d

r,0 − φ · sr,0 = Cr

with Cr ∈Ksep a constant determined by the Cr,i. Again, this is a separable equation for sr,0,
so there exists a solution in Ksep. The sr,i for i 6= 0 are then determined by the equations
sr,i = (sqr,i+1 − Cr,i)/f0,i.

Finally, since we may choose the s0,i to be non-zero, our solution s is in fact invertible in
AKsep,p . 2

Proposition 6.14. The ring B is a ΓK-stable ring, and BΓK ⊃ Fp ,K .

Proof. The ring B is clearly ΓK-stable, since B+ and S both are. We have BΓK =B ∩ FK,p .

Let us show that Fp ,K ⊂B. Consider g/f ∈ Fp ,K with f, g ∈ Fp ⊗k K. By Remark 6.12, we
may assume that f is in A×Ksep,p . By Lemma 6.13 there exists an element s ∈ S with f = σ(s)/s.
It follows that g/f = gs/σ(s) ∈B, since gs ∈B+ by Lemma 6.7 and σ(s) ∈ S. 2
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We turn to the inclusion BΓK ⊂ Fp ,K , which is more difficult. Consider b= b+/s ∈BΓK , with
b+ ∈B+ and s ∈ S ⊂A×Ksep,p . We set f := σd(s)/s, which is an element of Fp ⊗k K, and for
N > 0; following [Tam04], we set

aN := b · f(tq
d
) · f(tq

2d
) · · · f(tq

Nd
) ∈ FK,p .

Remark 6.15. Our goal is to show that for N large enough the element aN lies in B+. By
Lemma 6.9 this will imply that aN ∈ Fp ⊗k K, and in particular that b ∈B.

Lemma 6.16. There exists a finite set Σ0 ⊂ ΣK such that for all N > 0 and all x ∈ Σsep not lying
above ΣN we have vx(aN ) > 0.

Proof. The idea is to use that b+, s and f all lie in B+, and then apply Proposition 6.2(b). In order
to handle 1/s, which is not necessarily an element of B+, we need some modifications. Let s(0)
denote the leading coefficient of s, and set s̃ := s/s(0). Clearly, s̃ is an element of S with leading
coefficient 1. Setting f̃ := σd(s̃)/s̃, we have f̃ ∈ Fp ⊗k K and f = µ · f̃ with µ := σd(s(0))/s(0)
an invertible element of Fp ⊗k K. Now by definition and Proposition 6.2(b), we have

vx(aN ) = vx

(
b+

s
· f(tq

d
) · · · f(tq

Nd
)
)

= vx

(
µN

s(0)
· b+ · 1

s̃
· f̃(tq

d
) · · · f̃(tq

Nd
)
)

> N · vx(µ) + vx

(
1
s(0)

)
+ vx(b+) + vx

(
1
s̃

)
+N · vx(f̃).

Since E := {µ, 1/s(0), b+, f̃} is a finite subset of B+, the set Σ′0 of those x ∈ Σsep for which there
exists an e ∈ E such that vx(e)< 0 has finite image in ΣK . Call this image Σ0, and consider any
x ∈ Σ0. Proposition 6.4 implies that vx(s̃) > vx(f̃)/(qd − 1) > 0. Since s̃ has leading coefficient 1,
we may calculate 1/s̃ via the geometric series, and obtain vx(1/s̃) > 0, using Proposition 6.2.
Therefore, vx(aN ) is bounded below by a finite sum of non-negative numbers, so vx(aN ) > 0 for
all x not lying above Σ0. 2

Lemma 6.17 (Following [Tam94b]). Let s ∈A×Ksep,p , x ∈ Σsep and N > 0 fulfill:

(a) vx(s) > 0; and

(b) vx(s(0))< qN .

Then, for every a ∈ FK,p we have an inequality

vx(σN (a)) >

⌊
vx(s · σN (a))

qN

⌋
· qN ,

where for x ∈ R the term bxc denotes the largest integer smaller than x.

Proof. We write s=
∑

i>0 sit
i and b := σN (a) =

∑
i bit

i with coefficients si ∈ Fp ⊗k Ksep and
bi ∈ Fp ⊗k K. We may assume that bi = 0 for i < 0. By assumption, vx(si) > 0 for all i,
and vx(s0)< qN . Note that since s0 is invertible, the inequality vx(s0 · bi) > vx(s0) + vx(bi) is
in fact an equality.

We set C := bvx(sb)/qNc · qN , must prove that vx(bi) > C for all i, and do this by induction
on i.

For i= 0, we consider the inequality vx(s0) + vx(b0) = vx(s0b0) > C. It implies that, vx(b0) >
C − vx(s0)>C − qN . However, by assumption the value of vx(b0) lies in qN · Z ∪ {∞}, and there
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exists no integral multiple of qN strictly greater than C − qN and less than C. Therefore, we
have vx(b0) > C.

For i > 0, we have s0bi = (sb)i −
∑i

j=1 sjbi−j . By induction, we deduce that

vx(s0bi) = vx

(
(sb)i −

i∑
j=1

sjbi−j

)

> min
(
vx ((sb)i), min

16j6i
(vx(sj) + vx(bi−j))

)
> min(C,min(0 + C)) > C.

So vx(bi) > C − vx(s0), which implies that vx(bi) > C as in the case i= 0 since vx(bi) is an integral
multiple of qN and 0 6 vx(s0)< qN . 2

Lemma 6.18. There exists an N0 > 1 such that for all N >N0 and all x ∈ Σsep we have
vx(aN ) 6=−∞.

Proof. By Lemma 6.18, there exists a finite set Σ0 ⊂ ΣK such that vx(aN ) > 0>−∞ for all x not
lying above Σ0. Hence, it suffices to prove that, for one given xK ∈ ΣK , there exists an integer
N0 > 1 such that for all N >N0 and all x lying above xK we have vx(aN ) 6=−∞. We fix such an
xK ∈ Σ0.

Let π denote a local parameter ofK at xK . For all x over xK , we have vx(s) > vx(f)/(qd − 1)>
−∞ by Proposition 6.4, so that s= π−ns̃ for some n > 0 and s̃ ∈ S satisfying vx(s) > 0. As a
first substep, we wish to show that it is sufficient to deal with the case s= s̃. This will make our
calculations easier.

If n > 0, then

f̃ :=
σd(s̃)
s̃

=
σd(πn)
πn

· σ(s)
s

= πn(qd−1)f ∈ Fp ⊗k K,

and by setting b̃+ := πnb+ ∈B+, we obtain b= b̃+/s̃, so that

ãN := b · f̃(tq
d
) · · · f̃(tq

Nd
)

= b · πn(qd−1)f(tq
d
) · · · πn(qd−1)f(tq

Nd
)

= πNn(qd−1)aN .

In particular, vx(aN ) 6=−∞ if and only if vx(ãN ) 6=−∞, and we may assume in the following
without loss of generality that the s ∈A×Ksep,p we are given fulfills vx(s) > 0.

We remark that for all g ∈ FKsep,p and i > 0 we have the formula

σid(g(tq
id

)) = gq
id
, (6.19)

in particular for our given f ∈ Fp ⊗k K.

Second, note that from b+ = bs and σd(s) = sf we obtain σd(b+) = σd(b)σd(s) = σd(b)sf , and
by induction for N > 1

σNd(b+) = σNd(b)s · (f · σd(f) · · · σ(N−1)d(f)). (6.20)
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Hence,

σNd(aN )s = σNd(b · f(tq
d
) · · · f(tq

Nd
)) · s

= σN (b)s · σNd(f(tq
d
) · · · f(tq

Nd
))

= σN (b+) · σ
Nd(f(tq

d
) · · · f(tq

Nd
))

σ(N−1)d(f) · · · f
by equation (6.20)

= σN (b+) ·
N∏
i=1

σ(N−i)d
(
σid(f(tq

id
))

f

)

= σN (b+) ·
N∏
i=1

σ(N−i)d(f q
id−1) by (6.19)

=: σN (b+) · φ,

with φ ∈ Fp ⊗k K, so it follows that vx(σN (aN )s) > qNvx(b+) + vx(φ) 6=−∞.
Now if N is large enough, namely, qN > vx(s(0)), then Lemma 6.17 shows that qNvx(aN ) =

vx(σN (aN )) 6=−∞, so vx(aN ) 6=−∞ as required. 2

Proposition 6.21. The ring B fulfills BΓK = Fp ,K .

Proof. By Proposition 6.14 it suffices to show that BΓK ⊂ Fp ,K . For b ∈BΓK and N > 0, define aN
as before Remark 6.15. Lemmas 6.16 and 6.18 show that for N large enough, aN is an element
of B+. By construction, it is an ΓK-invariant, so Lemma 6.7 shows that aN ∈ Fp ⊗k K. By
definition, this shows that

b=
aN

f(tqd) · f(tq2d) · · · f(tqNd)
is an element of Fp ,K , since both aN and the denominator lie in Fp ⊗k K ⊂ Fp ,K . 2

So far, we have shown that B is a well-defined ΓK-stable bold ring with scalar ring Fp and
BΓK = FK,p . It remains to prove that B has property (c) of Claim 5.2.

Lemma 6.22. Let M be a p-restricted Fp ,K-module. Then Vp (M)⊂B ⊗Fp ,K
M .

Proof. We may assume, by choosing a basis, that M = (F⊕np ,K , τ) with τ(m) = ∆σ(m) for some
matrix ∆ ∈GLn(Fp ,K) and all m.

Since Vp (M) = (FKsep,p ⊗M)τ , we have to prove that for all m ∈ F⊕nKsep,p the equation
∆ · σ(m) =m implies that all entries of m lie in B.

Let us denote the inverse of ∆ by ∆−1 = (gij/fij)i,j , with gij ∈ Fp ⊗k K and fij ∈ (Fp ⊗k
K) ∩A×Ksep,p . Setting f :=

∏
i,j fij , we see that ∆−1 = 1/f∆′ for some matrix ∆′ with entries

in Fp ⊗k K ⊂B+.
By Lemma 6.13, we may write f = σ(s)/s for some s ∈ S. For any element m ∈M write

m′ := sm. Now the equation τ(m) =m is equivalent to the equation σ(m′) = ∆′ ·m′. By
Proposition 6.4, this implies that m′ has entries in B+, so in particular m=m′/s has entries
in B, as claimed. 2

Theorem 6.23. The ring B fulfills Claim 5.2.

Proof. By construction, B is a subring of FKsep,p . By Lemma 6.11, it fulfills Claim 5.2(a). By
Propositions 6.14 and 6.21, it fulfills Claim 5.2(b). By Lemma 6.22, it also fulfills Claim 5.2(c). 2
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7. Algebraic monodromy groups

We recall the setup of Tannakian duality.

Definition 7.1.

(a) Let F be a field. A pre-Tannakian category over F is an F -linear rigid tensor category T such
that all objects are of finite length, and for which the natural homomorphism F → EndT (1)
is an isomorphism.

(b) Let T be a pre-Tannakian category, and consider an object X of T . Then ((X))⊗ denotes
the smallest full abelian subcategory of T closed under tensor products and subquotients
in T .

(c) Let T be a pre-Tannakian category over F . Let F ′/F be a field extension. A fibre functor
on T is a faithful F -linear exact tensor functor ω : T →VecF ′ , where VecF ′ denotes the
category of finite-dimensional F ′-vector spaces. If F ′ = F , the fibre functor is called neutral.

(d) A Tannakian category over F is a pre-Tannakian category for which there exists a fibre
functor over some field extension F ′/F .

(e) Let T be a Tannakian category over F , consider a fibre functor ω of T over F ′/F , and fix
an object X of T . The algebraic monodromy group of X with respect to ω is the functor

Gω(X) : ((F ′-algebras))−→ ((groups)),

mapping an F ′-algebra R′ to the group of tensor automorphisms of the functor R′ ⊗F ′ ω(−)
from ((X))⊗ to R′-modules.

Proposition 7.2. Let T be a Tannakian category over F , consider a fibre functor ω of T over
F ′/F , and fix an object X of T . Then the algebraic monodromy group of X with respect to T
is representable by an affine group scheme over F ′.

Proof ([Sta08, Theorem 3.1.7(a)]). This seems to be well known (to the experts). 2

Let F, Fq, A, K, ι be as in § 2, and choose a maximal ideal p 6= ker ι. In § 2, we have
constructed the category A-IsomotK of A-isomotives over K. Using either the results of § 2,
or the embedding I of Proposition 4.2, we see that it is a pre-Tannakian category. The category
RepFp

(ΓK) is a Tannakian category, since it fulfills the properties required by a pre-Tannakian
category, and the forgetful functor U : RepFp

(ΓK)→VecFp is a fibre functor.
In § 2, we also constructed the functor

Vp =Rp ◦ (FK,p ⊗Fp ,K
(−)) ◦ (Fp ,K ⊗FK

(−)) ◦ I : A-IsomotK → RepFp
(ΓK),

associating to an A-isomotive its rational Tate module. It is faithful, F -linear and exact as a
composition of such functors. Therefore, A-IsomotK is Tannakian, with fibre functor U ◦Vp .

Given an A-isomotive X, we set Gp (X) :=GU◦Vp (X), the algebraic monodromy group
of X at p. On the other hand, we may consider Γp (X), the image of ΓK := Gal(Ksep/K) in
AutFp (Vp (X)). This might be called the p-adic monodromy group of X, or rather Vp (X).

Proposition 7.3. Let F ′ be a field, V be a finite-dimensional F ′-vector space and consider

a subgroup Γ⊂GL(V )(F ′) with associated algebraic group G := ΓZar ⊂GL(V ). The natural
homomorphismG→GU (V ), with target the algebraic monodromy group of V as a representation
of G with respect to the forgetful fibre functor U : RepF ′(Γ)→VecF ′ , is an isomorphism.

Proof ([Sta08, Proposition 3.3.3(b)]). This seems to be well known (to the experts). 2
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It follows that Γp (X) is a Zariski-dense subgroup of the group of Fp -rational points of the
algebraic monodromy group of Vp (X) with respect to the forgetful fibre functor U of RepFp

(ΓK).
In order to prove Theorem 1.2(a), we must compare GU◦Vp (X) and GU (Vp X). It is here that
we invoke one of the main results of the author’s previous article [Sta08].

Theorem 7.4. Let F ′/F be a separable field extension, T a Tannakian category over F , T ′ a
Tannakian category over F ′ and ω : T ′→VecF ′ a neutral fibre functor. Let V : T → T ′ be an
F -linear exact functor which is F ′/F -fully faithful, and semisimple on objects.

For every object X of T the natural homomorphism Gω(V (X))→Gω◦V (X) is an
isomorphism of algebraic groups.

Proof. See [Sta08, Proposition 3.1.8]. 2

Proof of Theorem 1.2(a). Theorem 1.1 and Proposition 5.16 show that Vp has the properties
required in Theorem 7.4. Together with Proposition 7.3, we see that the image of Γp (X)→
Gp (X)(Fp ) is indeed Zariski dense in Gp (X) for every A-isomotive X. 2

Definition 7.5. A semisimple F -algebra E is separable if the center of each simple factor of E
is a separable field extension of F .

Proposition 7.6. Let F ′ be a field, V a finite-dimensional F ′-vector space, and consider a
closed algebraic subgroup G⊂GL(V ). If V is semisimple as a representation of G, and EndG(V )
is a separable F ′-algebra, then the identity component G◦ is a reductive group.

Proof ([Sta08, Proposition 3.2.1]). This seems to be well known (to the experts). 2

Proof of Theorem 1.2(b). Let X be a semisimple A-isomotive with separable endomorphism
algebra. By Theorem 1.2(a) the algebraic monodromy group G :=Gp (X) acts faithfully on
Vp (X), the rational Tate module of X. Since Vp is fully faithful by Proposition 5.16,
EndG(Vp X)∼= Fp ⊗F End(X), so this is a semisimple separable Fp -algebra by [Bou58, no. 7,
§ 5, Proposition 6, Corollaire]. Therefore, Proposition 7.6 implies that G◦ is indeed a reductive
group. 2
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