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The semisimplicity conjecture for A-motives

Nicolas Stalder

ABSTRACT

We prove the semisimplicity conjecture for A-motives over finitely generated fields K.
This conjecture states that the rational Tate modules V}, (M) of a semisimple A-motive
M are semisimple as representations of the absolute Galois group of K. This theorem
is in analogy with known results for abelian varieties and Drinfeld modules, and has
been sketched previously by Tamagawa. We deduce two consequences of the theorem for
the algebraic monodromy groups Gy (M) associated to an A-motive M by Tannakian
duality. The first requires no semisimplicity condition on M and states that G, (M)
may be identified naturally with the Zariski closure of the image of the absolute Galois
group of K in the automorphism group of V}, (). The second states that the connected
component of G, (M) is reductive if M is semisimple and has a separable endomorphism

algebra.
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1. Introduction

The aim of this article is to prove the following result, which is called the semisimplicity conjecture
for A-motives. We use standard notation and terminology (A, F, their completions Ay, Fy, .. .),
which are introduced formally in § 2. The uninitiated reader may think of the case of t-motives,
where A =F,[t], F =TF,4(t) and, in the case of p = (t), we have A, =Fy[t] and Fy, = Fy(t).

THEOREM 1.1. Let K be a field which is finitely generated over a finite field. Let M be a
semisimple A-motive over K of characteristic . Let p # ker « be a maximal ideal of A. Then the

rational Tate module Vy(M) associated to M is semisimple as a p-adic representation of
the absolute Galois group Gal(K*P/K) of K.
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The strategy of our proof of the semisimplicity conjecture is not original, it has been sketched
by Tamagawa [Tam95].

Using the categorical machinery of the author’s previous article [Sta08], the following
consequences for the algebraic monodromy groups of A-motives ensue formally from Theorem 1.1.

THEOREM 1.2. Let K be a field which is finitely generated over a finite field. Let M be an
A-motive over K of characteristic ¢, not necessarily semisimple. Let p # ker ¢ be a maximal ideal
of A. Let Gy (M) be the algebraic monodromy group of M, and let 'y, (M) denote the image of
the absolute Galois group Gal(K*®/K) of K in Autg, (V,(M)).

(a) The natural inclusion I'y (M) C Gy (M )(F}y) has Zariski-dense image.

(b) If M is semisimple and its endomorphism algebra is separable, then the connected
component of G (M) is a reductive group.

The concept of effective A-motives was invented by Anderson [And86] in the case A =TF,[t]
for perfect K under the name of t-motives. They may be viewed as analogues of Grothendieck’s
pure motives, and even the conjectural heart of Voevodsky’s derived mixed motives, with the
essential difference that both the field of definition and the ring of coefficients of an A-motive are
of positive characteristic. For an introduction to the theory of A-motives we refer to the original
source [And86] and the books of Goss [Gos96] and Thakur [Tha04].

The semisimplicity conjecture is an analogue of the Grothendieck—Serre conjecture which
asserts the semisimplicity of the étale cohomology groups of pure motives. This analogue has
been proven only in the case of abelian varieties, by Faltings [Fal83] for fields of definition of
characteristic zero, and by Zarhin [Zar76] for fields of definition of positive characteristic.

The semisimplicity conjecture is closely connected with two other conjectures, the Tate
conjecture and the isogeny conjecture. Only the conjunction of the Tate conjecture with the
semisimplicity conjecture allows us to deduce the consequences for the algebraic monodromy
groups of A-motives. The Tate conjecture characterises Galois-invariant endomorphisms of
the associated Tate modules. It has been proven independently by Tamagawa [Tam94a] and
Taguchi [Tag95, Tag96] and will be reproven in this article (Proposition 5.16). The isogeny
conjecture on the other hand is a fundamental finiteness statement which, as in the case of
abelian varieties, implies both the Tate conjecture and the semisimplicity conjecture. For fields
of definition of transcendence degree at most one, the isogeny conjecture has been proven quite
recently by Pink [Pin08], using a different method. It seems that his results combined with ours
allow us to deduce the isogeny conjecture for all finitely generated fields of definition.

A special class of A-motives arises from Drinfeld modules. All such A-motives are semisimple,
and the semsimplicity conjecture for this class has been proven previously by Taguchi
in [Tag91, Tag93] for fields of definition of transcendence degree at most one, using a different
strategy inspired by [Fal83]. Pink and Traulsen have extended this proof to direct sums of
Drinfeld modules in [PT06].

We end the introduction with an overview of this article. In §2 we construct the rigid
tensor category A-Motg of A-motives in the spirit of Taelman [Tae09], containing the full
subcategory A—Motﬁgf of effective A-motives. Inverting isogenies, we obtain the Tannakian
category of A-isomotives. We introduce the integral Tate module functors T}, with values in
the categories of integral p-adic Galois representations Rep Ap(FK)- They induce the rational
Tate module functors V, with values in the Tannakian categories of rational p-adic Galois
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representations Repp, (Ik).

T
A—Mo‘uﬁglc c A-Motg . RepAp (I'x)
\LFP ®Ap (_)
A-Tsomot g Repp, (I )

Section 3 begins with the introduction of some terminology for semilinear algebra: the notions
of bold rings R, bold modules M, restricted bold modules and bold scalar extension of modules
from one bold ring to another. Its main result, Theorem 3.11, concerns the two fundamental
properties of bold scalar extension in a special situation.

In §4 we show that the category of A-isomotives embeds into the category Fy-ModP'®
of p-restricted bold modules over a certain bold ring Fg. We recall the classification of p-adic
Galois representations in terms of the category F,p-ModP™® of p-restricted Fg,p-modules,
which employs the functor Dy, of Dieudonné modules. In this translation to semilinear algebra,
the functor induced by the Tate module functor is of a rather simple form, it is the functor
Fk,p, @, (—) of bold scalar extension from Fg to Fg,p. Following Tamagawa, we introduce
an intermediate bold ring Fg C Fy g C Fk,jp, which allows us to factor the above bold scalar
extension functor through the category of Fy g-ModP™* of p-restricted Fy g-modules.

Vi

A-Isomot i Repp, (Ix)

I Dpl~

Fy k-Mod? ™ Fic,p-Mod P

FK,p ®Fp,K (—)

Fgc-ModP

Fy, k®Fg (—)

The main result of §3 then implies that the bold scalar extension functor Fy g ®py (—) maps
semisimple objects to semisimple objects.

Sections 5 and 6 follow Tamagawa in constructing a certain bold ring B which induces a
functor Cp, from rational p-adic Galois representations to p-restricted Fy g-modules. All of this
is very much in the spirit of Fontaine theory, note however that we are dealing with global Galois
representations, not local Galois representations as in Fontaine theory.

Repp, (Tk)

% \LDP
Fy, gc-ModPes Fic p-ModPes

Fg,p ®FPYK(_)

The functor Cp, has a variety of favourable properties. Among others, it allows us to decide
which Galois representations arise from a p-restricted Fy, x-module! by a numerical criterion.
It also ensures that the bold scalar extension functor Fg,p ®F, x (—) maps semisimple objects
to semisimple objects. Thereby, the proof of Theorem 1.1 is completed.

Finally, §7 introduces the algebraic monodromy groups associated to A-isomotives via
Tannakian duality applied to the fibre functor V, of Tate modules. We deduce Theorem 1.2
from Theorem 1.1, using results from my article [Sta08].

! Tamagawa calls such representations quasigeometric.
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2. A-Isomotives

Let F' be a global field of positive characteristic p, with finite field of constants I, of cardinality g.
Fix a finite non-empty set {oo1,...,00s} of places of F, the ‘infinite’ places. Denote by A
the subring of F' consisting of those elements integral outside the infinite places. Choose a
field K containing F,, and set Ax := A ®p, K, this is a Dedekind ring. Choose also an -
algebra homomorphism ¢ : A — K, it corresponds to a prime ideal ‘B, of Ax of degree one. If ¢ is
injective, we say that the characteristic is generic. If not, we say that the characteristic is special.

Let o, denote the Frobenius endomorphism c+— c¢? of K, and let o denote the induced
endomorphism a ® ¢ — a® ¢! of Ag. For any Ax-module M, a o-linear map 7: M — M is
an additive map which satisfies 7(r - m) = o(r) - 7(m) for all (r,m) € Ax x M.

Note that to give a o-linear map 7: M — M is equivalent to giving its linearisation
Tin: 0sM == Ag Qo A, M — M, r@m—r-7(m),
which is an Ag-linear map.

DEFINITION 2.1. An effective A-motive over K (of characteristic ¢) is a finitely generated
projective Agx-module M together with a o-linear map 7: M — M such that the support of
M/(Ak - TM) is contained in {B,}. The rank rk(M) of an effective A-motive (M, 7) is the rank
of its underlying Ax-module M.

DEFINITION 2.2. Let M and N be effective A-motives over K. A homomorphism M — N is an
Ag-linear map that commutes with 7. An isogeny is an injective homomorphism with torsion
cokernel (as a homomorphism of Agx-modules).

The category A-Mot$! of effective A-motives over K is an A-linear category. While the
kernels and cokernels of all homomorphisms exist categorically, it is not an abelian category
since the categorical kernel and cokernel of an isogeny are both zero, even though not all
isogenies are isomorphisms. Note that, conversely, a homomorphism of effective A-motives with
zero categorical kernel and cokernel is an isogeny.

DEFINITION 2.3. Let (M, 7a) and (N, 7n) be effective A-motives over K. The tensor product
M ® N of M and N is the effective A-motive consisting of the Ax-module M ®4, N together
with the o-linear map

T: M®a, N—>M®®a, N, men—1y(m)®n(n).

Endowed with this tensor product, the category A—Mot}’ﬁlc is an associative, commutative and
unital tensor category. The unit 1 is given by Ay itself, equipped with the o-linear map o itself.
However, it is not a rigid tensor category, since the dual of an effective A-motive M does not
exist except if its m;, is bijective.

PROPOSITION 2.4. Let L, M, N be effective A-motives over K. If L is of rank one, then the
natural homomorphism

Hom(M,N) — Hom(M ® L,N® L), f+— f®id
is an isomorphism.

Remark 2.5. If a dual LY of L would exist in the category of effective A-motives, then
Proposition 2.4 would be trivial: we could simply ‘twist back’ using LY. This is true more
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generally for invertible objects in tensor categories, and we use this fact in the following without
further mention.

Proof 2. The given homomorphism is induced by the bijective homomorphism
HOInAK(M, N) HHOHlAK(M ® Ak L, N®AK L), f—rfeid

of the underlying Ax-modules, so it is injective. An Ag-linear map g=f®1: M ®4,, N —
M ®4, N is a homomorphism of effective A-motives if (f o7y) ® 71, = (75 o f) ® 7. This
implies that f o7y =7n o f, so f is a homomorphism of effective A-motives, as required. O

DEFINITION 2.6. An A-motive over K is a pair X = (M, L) consisting of two effective A-motives
over K of which L is of rank one.

DEFINITION 2.7. Let (M’', L) and (M, L) be A-motives over K. A homomorphism (M', L") —
(M, L) of A-motives is a homomorphism M’ ® L — M ® L’ of effective A-motives over K. If the
latter is an isogeny, then we say that the given homomorphism of A-motives is an isogeny.

Ezample 2.8. Let X = (M, L) be an A-motive. For every 0 # a € A, the homomorphism M ®4,.
L—-M®a, L m®Il—a-m®Iis an isogeny [a]x : X — X, the scalar isogeny of X induced
by a.

Given this definition of homomorphisms of A-motives, it is not completely obvious how
to compose two homomorphisms. We will use Proposition 2.4. Let X' = (M', L"), X = (M, L)
and X” = (M", L") be A-motives over K. We define the composition of homomorphisms as
follows, where the isomorphisms are given by Proposition 2.4 and — is the composition of
homomorphisms of effective A-motives.

Hom(X', X) x Hom(X, X"

Hom(M'® L, M ® L') x Hom(M & L", M" ® L)

(=23

Hom(M'@ L@ L' M@ L' ® L") x Hom(M @ L' @ L, M" @ L' ® L)

Hom(M' @ Lo L",M" @ L' ® L)

oY

Hom (M’ ® L", M" ® L')

Hom (X', X")

The category A-Motg of A-motives over K is an A-linear category. Note that the direct
sum of two A-motives X' = (M', L) and X = (M, L) is given by X’ @ X =(M'® L) ® (M ®
L), L'’ ® L).

We have a natural functor from effective A-motives to A-motives, mapping M to (M, 1).

2 Compare [Tae09, Lemma 2.3.1].
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DEFINITION 2.9. The tensor product of two A-motives X' = (M', L) and X = (M, L) is the
A-motive

X'oX=(MeoM,L'®L).

DEFINITION 2.10. Let X = (M, L) be an A-motive, and let d > 0 be an integer. The dth exterior
power A\ X of X is the A-motive (A% M, L), where A% M denotes the dth exterior power of
the Agx-module underlying M together with the unique o-linear endomorphism such that the
homomorphism ®iK M — A4, M is a homomorphism of A-motives.

We denote the second-highest and highest non-trivial exterior powers of X as M*:=
AROD=L L and det(M) := A M, respectively.

PROPOSITION 2.11. The category A-Motyg of A-motives over K is a rigid A-linear tensor
category, and the natural functor A—Mot‘}? — A-Motg is a fully faithful A-linear tensor functor.

Proof. We suppress the details, remarking only that the dual of an A-motive X = (M, L) is given
by XV :=(M*® L, det M). a

Considering A—Mot}’gf as a subcategory of A-Motg, we note that an A-motive X = (M, L) is
the internal Hom Hom(L, M) of the effective A-motives M and L.

The category of A-motives is again not an abelian category. To obtain such a category,
we must invert those homomorphisms which have both zero kernel and zero cokernel in the
categorical sense, the isogenies. We start by studying isogenies more carefully.

We will see that every isogeny is a factor of a scalar isogeny (Proposition 2.20). This will
allow us to ‘invert isogenies’ by inverting scalar isogenies, technically a simpler task.

DEFINITION 2.12.

(a) A torsion Ag-module is a finitely generated torsion Ag-module T" together with a o-linear
map 7: T — T. A homomorphism of torsion A g-modules is a 7-equivariant homomorphism
of Ax-modules. The category of torsion Ag-modules is an A-linear abelian category, and
has an evident tensor product.

(b) We say that a torsion A g-module (7', 7) is of characteristic ¢ if the supports of both kernel
and cokernel of 7;, are contained in {3,}.

Given an isogeny f: M — N of effective A-motives, the quotient T := N/f(M) in the
category of Ag-modules inherits a o-linear map, so T is a torsion Ag-module. Note that it
is of characteristic ¢. If necessary, we denote (7', 7) by coker o, (f).

DEFINITION 2.13. Let f: M’ — M be an isogeny of effective A-motives, and set (T,7):=
coker g, (f). The isogeny f is separable if 7, is bijective. The isogeny is purely inseparable
if 7 is nilpotent. We extend these two notions to isogenies of A-motives via the corresponding
isogenies of effective A-motives.

With an eye towards our interest in isogenies of A-motives, we turn to a discussion
(Theorem 2.17) of the structure of the associated torsion Ag-modules of characteristic ¢.

We intersperse a discussion of the connection of torsion A g-modules with bijective 7;, with
Galois representations. The natural place for this would be later in the article, but it will be
useful in the proof of the next theorem.
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DEFINITION 2.14. Let Ik := Gal(K*°P/K) denote the absolute Galois group of K. An A-torsion
Galois representation is an A-module V of finite length together with a group homomorphism
p: Ix — Auta (V).

DEFINITION 2.15.

(a) Let (T, 7) be a torsion Ag-module such that m, is bijective. We set Ry (T, 7) := (K*P @
T)7, taking T-invariants with respect to the diagonal action.? Note that the action of I'x
on K3 induces an action of I'y on R, (T, 7).

(b) Let (V, p) be an A-torsion Galois representation. We set Dy (V, p) := (K*P ®p, V)%, taking
I'x-invariants with respect to the diagonal action.? Note that the o-linear endomorphism o
of K%P induces a o-linear endomorphism 7 of Dy (V, p).

PROPOSITION 2.16. Let Iy := Gal(K*P/K) denote the absolute Galois group of K. The
functors Dy, R, are quasi-inverse equivalences of A-linear rigid abelian tensor categories.

Dq
A-torsion —_ 7 ([ torsion Ag-modules
Galois representations )} « with bijective Ty
Ry
Moreover, the following is true:

(a) dimg D(V, p) =dimp, V for every A-torsion Galois representation;

(b) the homomorphism K°P ®@p, Ry(T,7)— K°P @ T is an isomorphism for every torsion
Ag-module (T, 7) with bijective Tp;

(c) the homomorphism K*P @ Dy(V, p) — K ®p, V is an isomorphism for every A-torsion
Galois representation (V, p).

Proof. Forgetting the A-module structure of both sides, this is Proposition 4.1 of [PT06] and its
proof. By naturality of that proposition, the statement of our proposition holds. O
THEOREM 2.17. Let (T, 7) be a torsion A g-module of characteristic ¢.
(a) Ifker.=0, then T, is bijective.
(b) Ifker:+# 0, then there exists a canonical filtration
0— (T, 7)— (T,7) = (T",7") =0
of (T, T) by torsion A-modules such that 7, is bijective and 7" is nilpotent.

(¢c) If T is nilpotent, then there exists a canonical filtration of (T, T) by torsion Ag-modules
such that each successive subquotient is annihilated by T.

(d) We have Anna(T') # 0.

Proof °.
(a) Since P, lies over the generic prime of A, we have:

The prime ideals 0" (B) for m > 0 are pairwise different. (2.18)

3 We use ‘R’ for representation.
4We use ‘D’ for Dieudonné.
5 The author is grateful to Gebhard Béckle for helping to simplify this proof.
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Set X := ker(mi,) and Y := coker(my;,). We consider the exact sequence of Ax-modules

0—X —oT -7 Y —0.

To every finitely generated torsion Ax-module N =&, Ax/a we may associate its
characteristic ideal x(N):=]]a. We have dimg X =dimg Y, so x(X) = x(Y) =95 for
some n > 0, and

\(@.T) = x(T). (2.19)
Now (2.19) means that o, permutes the (finitely many) prime ideals lying in the support
of T'. Therefore, for every such prime ideal 8 in the support there exists an integer m >0
such that 0" = PB. Now (2.18) excludes the possibility that B is contained in the support
of T'. It follows that both X and Y are zero, so 7, is indeed bijective.

(b) Note that im(7}) = Ak - 7™(T'). Since T  has finite length, this chain of submodules becomes
stationary and T":= ), im(7{{;) = im(7},) for some n > 0. In particular, the restriction
of i, to T is bijective, and the induced o-linear endomorphism of 7" := T'/T" is nilpotent.

(c) Clearly, min(T') C T is a T-invariant A g-submodule. The induced action of 7 on the quotient
T /1in(T) is zero by construction. Since 7" has finite length, we may repeat this construction
to obtain a filtration with the desired properties.

(d) It is sufficient to prove the statement for the successive subquotients of any chosen filtration
of (T, 7) by torsion Ag-modules. We use those given by items (b) and (c).

If min is bijective, then the A-torsion Galois representation associated by Proposition 2.16
has finite length as A-module, so it has non-zero annihilator in A. Again by Proposition 2.16, it
follows that T itself has non-zero annihilator in A.

If 7 is zero and T is non-zero, then T = coker 7y;;, has support contained in {3,}. By part (a)
we have By N A =ker ¢ # 0, so again 7' has non-zero annihilator in A.

Using parts (a), (b), (¢) and the previous special cases, it follows that Ann4(7") # 0 for all
torsion A g-modules (7, 7) of characteristic ¢. O

PROPOSITION 2.20. Every isogeny is a factor of a scalar isogeny. More precisely, let f: X' — X
be an isogeny of A-motives over K. There exists an element 0 # a € A, and an isogeny g : X — X'
such that g o f =[a]xs and f o g = [a]x, so the following diagram commutes.

X . X
!
X/

lal x/

X/
In particular, the relation of isogeny is an equivalence relation.

Proof. We may assume that both X’ and X are effective A-motives. Let (T, 7) := coker 4, (f),
a torsion A g-module of characteristic «. By Theorem 2.17(d), there exists an element 0 #a € A

such that a - T = 0. Therefore, a - X is contained in f(X’) 2 X, so we obtain an isogeny X —— X’
with fog=[a]x. Since f is a homomorphism of A g-modules, we have

fogof=lalxof=folalx,
so since f is injective we obtain g o f = [a]x. O

We include the following consequence of Theorem 2.17, it will not be needed in the following.
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PROPOSITION 2.21. Let X' <~ X" be an isogeny of A-motives.
(a) Ifker =0, then f is separable.
(b) Ifker:+# 0, then there exist canonically an A-motive X and a factorisation f = f" o f’,

f

N g

X

Xl X//

such that f': X' — X is a separable isogeny and f": X — X" is a purely inseparable
isogeny.

Proof. (a) We may assume that all A-motives involved are effective. Set (T', 7) := coker o, (f). If
ker ¢« = 0, then 7, is bijective by Theorem 2.17(a), so f is separable.

(b) If ker ¢ # 0, Theorem 2.17(b) gives us a canonical filtration
0— (T, 7= (T,7)—=(T",7") =0

such that 7, is bijective and 7" is nilpotent. Letting X be the inverse image of 77 in X", we

obtain an effective A-motive such that f factors as desired. O

DEFINITION 2.22. An A-isomotive over K is an A-motive over K. A homomorphism of A-
isomotives is an F-linear combination of homomorphisms of A-motives. More precisely, given
two A-isomotives X', X, we set

HomA-IsomotK (X,7 X) =r ®A HomA—MOtK (X/) X)a

where A-Isomoty denotes the category of A-isomotives over K.

We might say that an A-isomotive is effective if it is isomorphic in A-Isomoty to an effective
A-motive. We remark that some authors use the terminology F'-motive for what we call an
A-isomotive in this article.

THEOREM 2.23.

(a) The natural functor A-Mot — A-Isomot g is universal among A-linear functors with target
an F-linear category and mapping isogenies to isomorphisms.

(b) The category A-Isomoty is an F-linear rigid abelian tensor category.

Proof.

(a) Our given functor is A-linear by definition. It maps isogenies to isomorphisms by

Proposition 2.20. Let C be an F-linear category, and let V : A-Motx — C be an A-linear
functor which maps isogenies to isomorphisms.
It remains to show that there exists a unique A-linear functor V’: A-Isomoty — C
extending V. Since A-Motg and A-Isomotx have the same objects, we turn our attention
to homomorphisms. Since scalar isogenies are isogenies, and V does map isogenies to
isomorphisms, the desired extension V' exists and is unique.

(b) The category of A-isomotives is F-linear by construction. It inherits a rigid tensor product
from the category of A-motives. We must show that it is abelian. For this, assume that
f: X'— X is a homomorphism of A-isomotives with vanishing categorical kernel and
cokernel. We may assume that both X’ and X are effective A-isomotives. By the definition of
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homomorphisms of A-isomotives, there exists an element 0 # a € Asuch thata- f: X' — X
is a homomorphism of effective A-motives. The categorical kernel and cokernel of a - f
remain zero, since multiplication by a is an isomorphism. Clearly, this implies that a - f is
injective, and cokera, (a - f) is a torsion Ag-module. Therefore, a - f is an isogeny, and
Proposition 2.20 gives an element 0 # b € A and an isogeny g: X — X such that (a- f)og
and g o (a- f) are both multiplication by b. Since multiplication by b is an isomorphism in
A-Isomot g, this implies that f is an isomorphism. O

DEFINITION 2.24. An A-motive M is semisimple if it is such as an object of the category of
A-isomotives.

We turn to p-adic Galois representations. For the remainder of this section, we introduce
the following notation: let I'x := Gal(K*°P/K) denote the absolute Galois group of K. For every
maximal ideal p of A, denote the p-adic completions of A and F' by A, and Fj,.

DEFINITION 2.25.

(a) An integral p-adic Galois representation is a free Ap-module of finite rank together with
a continuous group homomorphism p: I'x — Auts, (V). Equipped with Ix-equivariant
Ap-linear homomorphisms, we obtain the category Rep Ap (Tx) of integral p-adic Galois
representations.

(b) A rational p-adic Galois representation is a finite-dimensional Fy-vector space together
with a continuous group homomorphism p : Txx — Autg, (V). Equipped with I'x-equivariant
Ap-linear homomorphisms, we obtain the category Repp, (Tx) of rational p-adic Galois
representations.

DEFINITION 2.26. Let p #ker ¢ be a maximal ideal of A, and let Agserp :=1lim ((A/p") ®r,
K*%P) denote the completion of A ®p, K5 at p. For every A-motive X = (M, L) over K:

(a) The integral Tate module of X at p is the Ap-module
Tp (X) = (AKsepjp ®AK M)T ®Ap ((AKsep’p ®AK L)T)v,

with 7-invariants taken with respect to the natural diagonal o-linear endomorphism,
equipped with the induced action of I'k.

(b) The rational Tate module of X at p is the Fy-vector space
equipped with the induced action of I'k.

DEFINITION 2.27. Let R — S be a homomorphism of unital rings, C an R-linear category, and D
an S-linear category. An R-linear functor V: C — D is S/R-faithful (respectively, S/R-fully
faithful) if the natural homomorphism

S ®@r Home(X,Y) — Homp(VX, VY)
is injective (respectively, bijective) for all objects X, Y of C.
PROPOSITION 2.28. Let p # ker ¢« be a maximal ideal of A.

(a) The functor Ty is an A-linear tensor functor with values in integral p-adic representations,
which is Ay /A-faithful and preserves ranks.
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(b) The functor V, extends uniquely to an F-linear functor with values in rational p-adic
representations, again denoted as Vy, such that the following diagram commutes.

T
A-Mot g 2 Rep 4, (Tk)

l \LFP ®Ap(7)

\Y%
A-Tsomot i z Repp, (k)

(c) The functor Vy is an exact F-linear tensor functor which is Fy, /F-faithful and preserves
ranks.

Proof.

(a) Let us first consider the restriction of T} to effective A-motives, it maps a given effective
A-motive M to

Ty (M) = (Agcser p @, M) = Hm((M @5 KP)/p")"

Note that the assumption that p # ker: implies that the linearisation of the o-linear
endomorphism of (M ®x K*P)/p™ is bijective. By applying Proposition 2.16 to K*P and
(M @ K5P)/p™, we see that (M ®@x KP)/p™)" is a free A/p"-module of rank rk(M).
It follows that Ty (M) is an integral p-adic Galois representation of rank rk(M). Using
Proposition 2.16 again, it follows that the restriction of T}, to A—Mot}’gf is an A-linear
tensor functor with values in integral p-adic representations which preserves ranks. By
construction, this implies that T}, itself has these properties.

It remains to show that T} is Ay /A-faithful. Let M, N be A-motives. We may assume that
both are effective. Note that we have a natural inclusion Ay ®p, K*P C Agsep p. It follows
that we have a natural inclusion

(Ap ® K°P) @4, Homa, (M, N) C Agser p @4, Homu, (M, N).
On both sides, the left exact functors (—)'% of Galois-invariants and (—)7 := ker(7y o (—) —
(=) o Tar) of T-invariants act, and the two actions commute. Therefore,
((Ap ® K*P) @4, Homy, (M, N))'87 C (Agsen p @4, Homy, (M, N))7T,
S0
Ap ®4 Hom(M, N)™ € Homa (T, M, Ty N)&,
which means that A, ® 4 Hom(M, N) — Homp, (T, M, Ty, N) is injective, as desired.

(b) Since scalar isogenies are mapped to isomorphisms in Repp, (I'x), Vy extends to an F-linear
functor on A-Isomoty with values in rational p-adic Galois representations.

- 1 5 .
(c) Now item (a) implies that V is an Fy, /F-fully faithful tensor functor, and preserves ranks
This last property implies that V, is exact. O

COROLLARY 2.29.

(a) For every two A-motives M, N, the A-module of homomorphisms Hom g ot , (M, N) is
finitely generated and projective.

(b) For every two A-isomotives X,Y, the F-vector space of homomorphisms Hom A 1somot (X,
Y') is finite-dimensional.

(c) Every A-isomotive has a composition series of finite length.
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Proof.

(b) Since Hompy, (Vp X, V, Y) is finite Fp-dimensional, so is F, ®p Hom A 1somot, (X, Y) by
F, / F-faithfulness of V. This implies the desired statement.

(a) If we show that Hom g ot (M, N) is torsion-free, item (a) follows from item (b). However,
Hom Aot (M, N) = (MY ® N)7 is a submodule of the torsion-free A-module MV @ N, so
we are done.

(c) Since Vy, is faithful, it maps non-zero objects to non-zero objects. Therefore, the length of
an A-isomotive is bounded by the length of its Tate module. Since the latter is of finite
length, so is the former. O

3. Some semilinear algebra

We begin this section by introducing the notion ‘semisimple on objects’ for functors, a categorical
generalisation of the statement of Theorem 1.1, and discuss how this property combines with
the notion of ‘relative full faithfulness’, introduced in Definition 2.27.

We then introduce some terminology for semilinear algebra, and prove a theorem on bold
scalar extension of restricted modules for a certain class of bold rings. The reader may choose
to skip to §4 after reading the statement of Theorem 3.11, to see how it is employed.

DEFINITION 3.1. Let A, B be abelian categories. An exact functor V : A — B is semisimple on
objects if it maps semisimple objects of A to semisimple objects of B.

We intersperse a proposition which exemplifies nicely how the properties of being ‘relatively’
full faithful and being semisimple on objects combine.

PROPOSITION 3.2. Let F'/F be a field extension, A an F-linear abelian category, and B an
F’-linear abelian category. Consider an F'/F-fully faithful F-linear exact functor V: A — B.
For every object X of A, if V(X) is semisimple in B, then X is semisimple® in A.

Proof. Assume that
a: 0-X -X—-X"-0

is a short exact sequence in A such that the exact sequence V(«a) splits in B. We must
show that « splits, and for this it suffices to show that idx~ is in the image of the natural
homomorphism Hom 4 (X", X) — Hom4(X"”, X”). This image coincides with the intersection
of Hom 4(X"”, X") and the image of the natural homomorphism F’ @ p Hom4 (X", X) — F' @p
Hom (X", X”). By F'/F-full faithfulness, we may identify this latter image with the image
of the natural homomorphism Homg(V(X"), V(X)) — Homp(V(X"), V(X")). By assumption,
idy (xny = V(idx~) is an element of this image, and under our natural identifications it is also
clearly an element of Hom 4 (X", X"), therefore we are done. O

We turn to some general terminology for semilinear algebra. Other authors (Anderson, Pink,
Taguchi, Tamagawa and, in particular, Fontaine) have used different names in different contexts,
such as -, o- and T-modules. We choose to use terminology that abstracts from the particular
context and choice of notation, so as to prove the basic properties of these objects in suitable
generality.

51In other words, V maps non-semisimple objects of A to non-semisimple objects of B; we use this in the proof of
Proposition 3.18.
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DEFINITION 3.3. A bold ring R is a unital commutative ring R equipped with a unital ring
endomorphism o : R — R. The coefficient ring of R is its subring R :={re€ R: o(r) =r} of
o-invariant elements.

A homomorphism S — R of bold rings is a ring homomorphism that commutes with o. It
induces a homomorphism 5% — R of coefficient rings.

DEFINITION 3.4. Let R be a bold ring. A (bold) R-module M is an R-module M together with
a o-linear endomorphism 7: M — M.

A homomorphism M — NN of R-modules is an R-module homomorphism that commutes
with 7. The tensor product M @gr N of M = (M, 1)) and N = (N, 7y) is the R-module
M ®gr N together with the o-linear endomorphism

M®r N —-M®&rN, men my(m)®7y(n).

The category R-Mod of R-modules is an R?-linear abelian tensor category.

DEFINITION 3.5. Let S 4, R be a homomorphism of bold rings. Bold scalar extension from
S to R is the functor S-Mod — R-Mod mapping an S-module M to R®g N and a
homomorphism h of S-modules to idr ®h.

Recall from §2 that the o-linear endomorphism 7 of a module M over a bold ring R = (R, o)
corresponds to a unique R-linear homomorphism 7, : 04 M := R ®, r M — M, its linearisation.

DEFINITION 3.6. Let R be a bold ring.

(a) An R-module M = (M, 1) is restricted if M is a finitely generated projective R-module
and 7y, is bijective.

(b) Let S L. Rbea homomorphism of bold rings. An R-module M is f-restricted if there
exist a restricted S-module IN and an isomorphism M = R ®g IN of R-modules. Clearly,
this implies that M is restricted in the sense of statement (a).

Other authors use the terminology étale for what we call restricted. This author finds that
analogy a little far-fetched, and not specific enough if one has to deal with several rings, as we
do here.

Let Fy, K,0, be as in §2, so F, is a finite field and K is a field containing F,.
In this section (but not the next) F/F, may be any field extension, that Iis,
]we drop the assumption that F' is a global ﬁeld\. In addition to yielding more generality, this
allows us more flexibility in the proofs.

Let F = Frac(F ®p, K) denote the total ring of fractions of F' ®p, K. The bold ring Fg is
given by Fk together with the endomorphism o = op, = Frac(id ®o,) induced by o4. If F'/F
is a field extension, the bold ring Fg with underlying ring Fj, = Frac(F” ®, K) is defined
analogously, and we have a bold scalar extension functor Fi ®p, (—) from Fg-modules to
Fj-modules.

LEMMA 3.7. Assume that the number of roots of unity of K is finite.

(a) The ring Fi is a finite product of pairwise isomorphic fields.

(b) The underlying Fx-module of every restricted Fg-module is free.
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Proof. Let Fr and Fg denote the algebraic closures of F; in F' and K, respectively. If Frp = F,r
and Fx =F,s are both finite, then

IE‘F ®]F‘Z ]FK = (Fqlcm(ns))x ng(Tys)

and o =id ®o, corresponds to an endomorphism of the product which permutes the factors
transitively. This implies that every restricted (Fr ®r, Fr,id ®0y)-module has an underlying
Fr ®F, Fx-module which is projective of constant rank, and hence free. Hereby, items (a) and
(b) are proven for F' and K both finite.

If Fr is infinite, then it is an algebraic closure of F, and
Fr ®r, Fi 22 (Fp)* 4imee Fx

is a product of pairwise isomorphic fields. It follows from the above that the endomorphism
corresponding to o =id ®o, permutes the factors transitively, so again we have items (a) and
(b) for F' and K both algebraic.

In the general case, Fr ®p, Fxr =" for an algebraic extension F/F, and an integer r > 1.
Then [Jac90, Theorem 8.50] shows that F' ®f, F ®p, K is a domain, which implies that

Fy = Frac(F Qp, F@p, K)*"

is a product of pairwise isomorphic fields. Tracing through these identifications, we see that op,
permutes these fields transitively, so we obtain items (a) and (b) in general. O

PROPOSITION 3.8. Assume that the number of roots of unity of K is finite. The full subcategory
of restricted Fg-modules is closed under subquotients and tensor products in the category of all
Fr-modules. In particular, it is an F-linear rigid abelian tensor category.

Proof. Let M = (M, 7) be a restricted Fi-module, and consider an exact sequence
0—-M,7)—M— (M",7)—0

of Fg-modules. Both M’ and M" are finitely generated Fx-modules since F is Noetherian,
and both are projective Fi-modules since F is a product of fields by Lemma 3.7(a). Since
Tiin : 0+ M — M is bijective, the Snake lemma implies that 7, is injective and 7/ is surjective.
By Lemma 3.7, this implies that both 7, and 7}  are bijective. Therefore, both (M’, 7’) and
(M",7") are restricted Fg-modules as claimed.

We suppress the easy proof that the tensor product of restricted Fg-modules is restricted.
It follows that the full subcategory of restricted Fg-modules is an F-linear abelian tensor
category, since Fi-Mod is. One checks that the dual of a restricted Fg-module (M, 7) is
given by MV :=Homy, (M, Ax) together with the o-linear endomorphism mapping f € M"
to Tarv (f) := 0t 0 0« (f) o (min) 1. It follows that the category of restricted Fg-modules is a
rigid tensor category. O

We turn to the main theorem of this section, its proof will occupy the remainder of the
section. To state it, we recall the algebraic concept of separability.

DEFINITION 3.9. A field extension F'/F is separable if for every field extension F” O F' the ring
F'@p F" is reduced (contains no nilpotent elements).

Remark 3.10. An algebraic field extension F'/F is separable in the sense of Definition 3.9 if
and only if it is separable in the usual sense. If F”//F'/F is a tower of field extensions such that
F"/F is separable, then F'/F is separable as well.
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THEOREM 3.11. Let F'/F/F, be a tower of field extensions. Assume that the number of roots
of unity of K is finite. The restriction of the functor of bold scalar extension Fg ®p, (—) to
restricted Fg-modules is:

(a) F'/F-fully faithful; and

(b) if F'/F is a separable field extension, it is semisimple on objects.

We turn first to the proof of Theorem 3.11(a).

PROPOSITION 3.12. Let F'/F/F, be a tower of field extensions. Assume that the number of
roots of unity of K is finite. The restriction of the functor of bold scalar extension Fg ®p, (—)
to restricted Fg-modules is F'/F-fully faithful.

Proof. Let M, N be restricted Fi-modules, and set X := MY ® g, N. Since Homp, (M, N) =
X" and Hompy (Fi Qp, M, Fix @, N) = (Fix @, X)7, it is sufficient to prove that
Fl op X" — (Fk @ X)" (3.13)

is bijective for all restricted Fg-modules X. We set X' := Fk Qp, X.

Since the homomorphism F' @ p Fx — FJ. = Frac(F’' @ Fk) is injective and the functor (—)7
is left-exact, the homomorphism of (3.13) is injective. We must show that it is surjective.

Moreover, we may assume that F’ D F is finitely generated, since for every element 2’ € (X')™
there exists a finitely generated field extension F” D F° O F such that 2’ lies in (X°)7, where
X9:=FY ®p, X with Fg := Frac(F° ®@f Fk, id ®a,).

All in all, the theorem reduces to proving the surjectivity of (3.13) for the two special cases
of F/ D F finite, and F’ D F purely transcendental of transcendence degree one. The first is easy,
since if F'/F is finite, then F’ @ p Fi = Fk, and hence

F'or M™=(F @p Fx @, M)" 2 (Fg @p, M)"

as claimed. The second is dealt with in the following Proposition 3.14. O

PROPOSITION 3.14. If F' = F(X) is a purely transcendental extension of F of transcendence
degree one and X is a restricted Fg-module, then F' @ p X7 — (Fg Qp, X)T is surjective.

For the proof of Proposition 3.14, we use a slightly extended notion of ‘denominators’. By
Lemma 3.7(a), the ring Fxg = Q** for some field Q. We set Fg[X]:=Q[X]** and Fg(X):=
Frac(F(X) ®@p Fg) = Q(X)**.

For f € Fi(X), we define the denominator den(f) of f componentwise, as the s-tuple of the
usual (monic) denominators of its s components. Similarly, for f, g € Fx(X), we define the least
common multiple lem(f, g) of f and g componentwise, as the s-tuple of the usual (monic)
least common multiples of their corresponding components.

Clearly, for f,g€ Fx(X) the following relation holds, where | denotes componentwise
divisibility in Fr[X]:
den(f + g) | lem(den f, den g). (3.15)
We may now characterise the subring F(X) @ F of Fr(X).

LEMMA 3.16. We have

F(X)®p Fk = {f € Fx(X): for Somie;(ef}[g(] ~ {O}} '
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Proof. C: Assume that f is an element of F(X)®p Fx. We may write f = ",(a;/b;)) @ \;
for elements \; € Fx and a;, b; € F[X] with b; #0. By (3.15), den(f) divides d:=[[;", b;, an
element of F[X] ~\ {0} as claimed.

D: Assume that f is an element of Fx(X) which divides a non-zero element g € F[X]. This
means that there exists an element h € Fi[X] such that g = den(f) - h. We have f = f'/den(f)
for f:= f den(f) € Fx[X]. Therefore, f = (f'h)/(den(f)h) with 1/(den(f)h)=1/g € F(X) and
f'h € Fx[X] C F(X) ®F Fg, which implies our claim that f is an element of F(X) ®p Fx. O

Given a vector v = (vj) € F(X)" for some r > 1, we set den(v) = lem;(den v;).

LEMMA 3.17. Given two integers m,n > 1, a matrix A€ Mat,,xn(Fx) and a vector v €
Fr(X)®", we have
den(Av) | den(v).

In particular, if m =n and A is invertible, then den(Av) = den(v).

Proof. We suppress the easy proof of the divisibility statement, which is clear intuitively.

In the case m =n and A is invertible, we may additionally apply this divisibility statement
to the matrix A~! and the vector Av. We obtain den(v) = den(A~!(Av)) | den(Av). Since both
den(Awv) and den(v) have monic components, we infer that den(Av) = den(v). O

Proof of Proposition 3.14. By Lemma 3.7(a), X = Fj, for an integer 7 >0 and 7= A oo for a
certain matrix A € GL, (Fk).

Assume that 2’ € Fg(X) ®p, X is T-invariant, so 2’ = (2}); € Fx(X)" and 2/ = A(o(2)). By
Lemma 3.17 applied to the invertible matrix A and the vector o(z’), we obtain that den(z') =
den(o(z')), and this latter vector clearly coincides with o(den(z’)). Therefore, den(z’)
=o(den(2)) is an element of F[X]. Since den(z}) | den(a’) by definition, all 2} are elements
of F' ®F Fx by Lemma 3.16, and so 2’ € F' @ X7, as claimed. O

We now turn to the proof of Theorem 3.11(b).

PROPOSITION 3.18. Let F'/F/IF, be a tower of field extensions. Assume that F'/F is separable
and the number of roots of unity of K is finite. The restriction of the functor of bold scalar
extension Fg @, (—) to restricted Fg-modules is semisimple on objects.

Proof. As in the proof of Proposition 3.12, we start by reducing to the case where F”/F is finitely
generated: if M is a semisimple restricted F-module but M’ := Fi ®p,. M is not semisimple,
then there exists a non-split short exact sequence

0—m LM LMo (3.19)

Clearly, there exists a finitely generated field extension, F’ D F° > F such that M/, M}, f, g are
defined over Fg = Frac(F° ®F Fk,id ®0,). The short exact sequence inducing (3.19) must be
non-split by Propositions 3.2 and 3.12. Thereby, we would find a contradiction to Proposition 3.18
for finitely generated field extensions. Note that F°/F is separable since F'/F is.

The same argument shows that the proof of our proposition reduces to the special cases
of finite separable field extensions and purely transcendental field extensions of transcendence
degree one. We deal with these cases separately in the following two propositions. Note that it is
sufficient to show that the bold scalar extension of a simple restricted Fg-module is semisimple,
since bold scalar extension is an additive functor. O
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PROPOSITION 3.20. Assume that the number of roots of unity of K is finite. Let F'/F/F, be
a tower of field extensions such that F’'/F is finite separable, and let M be a simple restricted
Fg-module. Then M' := Fi ®p,. M is semisimple.

Proof. We start with the case where F'/F is a finite Galois extension, and set ' := Gal(F'/F).
Assume that S’ C M’ is a simple Ff-submodule. Set

X':=) gS'cM.
gel

This Fg-module is I'-invariant, so X' = Fg @, X for some Fg-submodule of X C M.
Since M is simple and S’ # 0, we see that X = M and so M'=>"__ ¢S’ is semisimple as
a sum of simple objects.

gerl

In the general case, let F”'/F denote a Galois closure of F'/F', and consider a simple restricted
Fg-module M. By what we have proven, M" := Fg ®,. M is semisimple. Now Proposition 3.2
shows that M’ := F @, M is semisimple, since we have already proven Proposition 3.12. O

PROPOSITION 3.21. Assume that the number of roots of unity of K is finite. Let F/F, be
a field extension, consider F' = F(X) and let M be a simple restricted Fg-module. Then
M':= Fk Q@p, M is simple.

Proof. Recall that Fi = Q® for some field @ by Lemma 3.7(a), so Fi(X) = Fj = Q(X)*. Let
F[X] be the bold ring consisting of Fi [X] = Q[X]* together with the restriction of o ; it acts
as the identity on X. Now M := Fg[X] ®p, M is a ‘model’ of M’ in the sense that M is a
restricted Fg [X]-module such that M’ = Fg (X) ® g, [x] M. Moreover, M = M /X.

Assume that M’ is not simple, so there exists a non-trivial Fg-submodule N' & M. Tt follows
that N := M N N’ is a non-trivial Fg[X]-submodule of M other than M, and therefore that
N :=N/(X) is a non-trivial Fg-submodule of M /(X) = M other than M. This contradicts
the simplicity of M, using Proposition 3.8. O

Proof of Theorem 3.11. Proposition 3.12 gives item (a), and Proposition 3.18 gives item (b). O

4. Translation to semilinear algebra

In this section, we embed the categories of A-motives and A-isomotives in categories of bold
modules, and classify the categories of integral and rational p-adic Galois representations in
terms of categories of bold modules.

This allows us to factor the functors induced by the integral and rational Tate module functors
as composites of two bold scalar extension functors each. The section ends with a proof that the
first factor is ‘relatively’ fully faithful in both cases, and semisimple on objects in the rational
case.

Let F,Fy, A, K, 1,04 be as in §2. Let F denote the total ring of quotients Frac(F' ®r, K),
it is a field. The bold ring Fi is given by F together with 0 = o, = Frac(idr ®o,). We refer
to Lemma 3.7 and Proposition 3.8 for the structure of Fi and its consequences. The bold
ring Ag C Fi is given by Ax := A®p, K, a Dedekind domain, together with the restriction
0 =04, =ids ®0y of op,. Given a maximal ideal p of A, let A,y x denote the subring of Fi
consisting of those elements integral at all places 3 of Fix lying above p, it is a semilocal Dedekind
domain. The bold ring Ax C A(p),x C FK is given by A, x together with the restriction
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=04 x of o, . We say that an Fg-module M is p-restricted if it is restricted with respect

to the inclusion Ay k C Fk.

Construction 4.1. An effective A-motive (M, 7) over K induces an Fg-module Fx ® 4, (M, 1),
which is p-restricted for p # ker ¢ by the assumption that (M, 7) is of characteristic ¢, and hence
restricted. Thus, the essential image of the tensor functor A—Motﬁgf — Ag-Mod — Fg-Mod
consists of dualisable objects by Proposition 3.8, and so it extends uniquely to an A-linear tensor
functor Iy : A-Motx — Fg-Mod. It maps an A-motive (M, L) to (Fx ®a, M) ® (Fk @a, L)".
Now Theorem 2.23(a) implies that Iy factors through the category of A-isomotives, so there
exists a unique F-linear exact tensor functor I : A-Isomotyx — Fg-Mod such that the following
diagram commutes.

A-Mot$! —— Ag-Mod
N lFK®AK()
A-Mot g L Fr-Mod
|
A-Isomot i

PROPOSITION 4.2. The functor I is fully faithful and semisimple on objects. For every maximal
ideal p # 1 of A, the essential image of I consists of p-restricted Fy-modules.

Proof. The essential image of I consists of p-restricted Fx-modules by construction.
Let us show that I is fully faithful, so let M, N be A-isomotives. We may assume that both
are effective. It is clear that
HOHI(M, N) —>HOInFK(FK QA M, Fg R Ag N)

is injective, so let h be an element of the target. Now h(M) and N’ :=h(M)N N are effective
A-motives, hlpr: M — h(M) is a homomorphism of effective A-motives, h(M) D N’ is an
isogeny of effective A-motives, and N’ C IN is a homomorphism of effective A-motives.

Frg ®a,, M h Frg ®a, N

U U

h|nr

M—h(M) > N/ C N

Now Proposition 2.20 applied to the isogeny and Theorem 2.23(a) imply that & is induced by a
homomorphism M — N of A-isomotives.

Let us show that I is semisimple on objects, so let M be a semisimple A-isomotive. We may
assume that M is effective and simple, since I is additive. Assume that M) C Fg ® 4, M is
an Fg-submodule. Then M’ := M N M| is an effective A-isomotive contained in M, so either
M' =0 or M' =~ M by assumption. It follows that Fx ®a, M is simple. O

We turn to two torsion-free versions of Proposition 2.16. Let K®°P denote a separable closure
of K, with associated Galois group I'x := Gal(K*P/K). Given a maximal ideal p of A, let

Agp = lim(A/p") @5, K

denote the completion of Ax at p, it is a finite product of pairwise isomorphic discrete valuation
rings. Let F p := Frac(Ag p) denote the total ring of quotients of Ag p, it is a finite product of
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pairwise isomorphic fields. The bold ring A g, is given by Ak ,, together with the endomorphism
0 =04, =lm (idg/pn ®0g) induced by og4, and the bold ring Fg,p is given by Fi , together
with the endomorphism o = OFk = Frac(o K. p) induced by o,. We say that an Fg p-module
M is p-restricted if it is restricted with respect to the inclusion Ag p C Fi p.

DEFINITION 4.3.
(a) Let (M, 1) be restricted Ag,p-module. We set
R;J (M, 7') = (AK59P7p ®AK,p M)T,

taking 7-invariants with respect to the diagonal action. Note that the action of I'x on Agses j,

induces an action of Iy on Ry, (7, 7).
(b) Let (V, p) be an integral p-adic Galois representation. We set

Iy
D; (V, p) = (AKscp7p ®Ap V) K,

taking Iy-invariants with respect to the diagonal action. Note that the o-linear
endomorphism of Aser , induces a o-linear endomorphism 7 of Dy (V, p).

PROPOSITION 4.4. Let Ik := Gal(K*P/K) denote the absolute Galois group of K. The functors
D;, R;g are quasi-inverse equivalences of Ay -linear rigid tensor categories.

b
integral p-adic - restricted
Galois representations )] - Ak, p-modules
Ry,
Moreover, the following are true:
(a) rkag, D;J (V, p) =1ka, V for every integral p-adic Galois representation (V, p);
(b) the homomorphism
AKsep7p ®Ap R;J (]\47 7—) — AKsep7p ®AK,p M
is an isomorphism for every restricted Ag,p-module (M, T);
(c) the homomorphism
AKsep’p ®AK,p ‘D;D(‘/? p) — AKsep7p ®Ap V

is an isomorphism for every integral p-adic Galois representation (V, p).

Proof. This follows directly from Proposition 2.16 by considering the direct limits involved. O

DEFINITION 4.5.
(a) Let (M, ) be p-restricted Fk, p-module. We set
Rp (M, 7‘) = (FKsepm ®FK,p M)T,

taking 7-invariants with respect to the diagonal action. Note that the action of Iy on Fisep y
induces an action of I'x on Ry (T, 7).

(b) Let (V, p) be a rational p-adic Galois representation. We set
Dp (‘/, p) = (FKsep,p ®Fp V)FK,

taking Ix-invariants with respect to the diagonal action. Note that the o-linear
endomorphism of Fisep , induces a o-linear endomorphism 7 of Dy (V, p).
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PROPOSITION 4.6. Let I'x := Gal(K*P/K) denote the absolute Galois group of K. The functors
Dy, Ry are quasi-inverse equivalences of F'-linear rigid abelian tensor categories.

D
rational p-adic :’ p-restricted
Galois representations )/ - \\ Fk,p-modules
Ry

Moreover, the following is true:

(a) 1kpy, Dyp(V;, p) =dimp, V for every rational p-adic Galois representation (V, p);

(b) the homomorphism Fiser p @p,, Ry (M, T) — Fiser p @py , M is an isomorphism for every
p-restricted Fi, p-module (M, T);

(c) the homomorphism Ficser p @y, Dp(V, p) — Fgser y @, V' is an isomorphism for every
rational p-adic Galois representation (V, p).

Proof. Proposition 4.4 implies this rational version. In fact, ‘Dy = D; for rational p-adic Galois
representations’ in the sense that Dy, (V, p) coincides with (Agser p @4, V) | the definition of Dy,
applied to (V, p), and similarly Ry, = R;J for p-restricted Fg, p-modules. The detailed proof also
uses the fact that every rational p-adic Galois representation has a I'x-invariant full Ap-lattice
(whereas not every restricted Fi, p-module is p-restricted). O

PROPOSITION 4.7. For every maximal ideal p # ker ¢ of A, the following diagram commutes.

A\
A-Isomot i P Rep Fyp (I'x)
I Ry Tg

FK—MOd FK,p -Mod

K,p ®FK(*)
Proof. This follows directly from the construction of the categories and functors involved. O

We end this section by applying the main result of §3, hence proving the ‘first half’ of
Theorem 1.1. Let p be a maximal ideal of A, let F}, denote the completion of F' at p, and set
Fy i = Frac(F, ®r, K,id ®0,). Note that we have inclusions Fx C Fp g C Fk,p, and that
the latter is an equality if and only if K is a finite field. We set Ap k1= Fp k N Ak p, and say
that an Fy g-module is p-restricted if it is restricted with respect to the inclusion A, g C Fp k.

By what we have already proven, Theorem 1.1 (the semisimplicity conjecture) follows by
proving that bold scalar extension Fg,p ®p, (—) restricted to p-restricted Fg-modules is
semisimple on objects. Since

Fr,p g (=) = (FK,p OF, x () © (Fp,k @F (7)),
and being semisimple on objects is a transitive property, we may subdivide our task into
two parts.

THEOREM 4.8. Let p be a maximal ideal of A. Assume that the number of roots of unity of K
is finite. The restriction of the functor of bold scalar extension Fy g ®@p, (=) to restricted
Fr-modules is:

(a) Fp/F-fully faithful;
(b) semisimple on objects; and

(c) maps p-restricted modules to p-restricted modules.
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PROPOSITION 4.9. Every completion F,, of I at a place p is a separable field extension.

Proof. Let us start with the special case of F'=F,(t) completed at p = (), so Fp =Fy(t).
By [Bou58, V.§15.4] it is sufficient to prove the following: if fi,..., fm, € Fy(t) are linearly
independent over F,(t), then so are the f. Without loss of generality, assume that f; € Fy[¢],
and that for certain g; € k[t] we have Y, g;f’ = 0. We must show that all g; are zero.

Since F, is perfect, we may write g; =: Z?;(l] gfjtj for certain g;; € k[t]. These defining
equations, together with 37, g; f’ = 0, imply that for all j we have 3, g7 f{ = 0. By extracting pth
roots of both sides we obtain ), g;; f; = 0 for all j. By assumption the f; are linearly independent,

so we have g;; = 0 for all 7 and j. Therefore, all g; are zero, as required.

Let us return to the general setting. We choose a local parameter ¢ € F' at p. Denoting the
residue field of F' at p by Fy,, we have Fy, =F,(t) and the following commutative diagram of
inclusions.

Fq(t) F

|

Fq(t) —=TFp (1)
We have just seen that F,(t) C F,((t)) is separable; clearly, so is Fy((t)) C F((t)), hence Fy(t) C F},
is separable. Moreover, F,(t) C F' is separable algebraic since ¢ is a local parameter. This implies
that ' C F}, is separable by [Bou58, V.§15]. O

Proof of Theorem 4.8. Since Fy, /F' is separable by Proposition 4.9, Theorem 3.11 implies parts
(a) and (b) of Theorem 4.8. Part (c) follows from the fact that A, x = Fx @ Ak p. O

5. Tamagawa—Fontaine theory

In this section, we complete the proof of Theorem 1.1 with the help of what we term ‘Tamagawa—
Fontaine theory’, since the basic ideas and a sketch of the proofs are due to Tamagawa [Tam95]
and have some formal analogy to Fontaine theory.

Let F,F,, A, p be as before, let K/F,; be a ’ﬁm’tely genemted‘ field and let K®® denote a
separable closure of K with associated absolute Galois group I'x := Gal(K®*P/K). Recall that we
have constructed bold rings Ay x C Fp i and Ak, C Fk p, and that we call Fy, i- and F p-
modules p-restricted if they are restricted with respect to these inclusions. To any p-restricted
F, k-module M, we associate the rational p-adic Galois representation

Vp (M) :=Rp(Fr,p ©F, x M)

DEFINITION 5.1. Following [Tam95], we say that a rational p-adic Galois representation is
quasigeometric if it is isomorphic to Vi, (M) for some p-restricted Fy, g-module M.

The theory consists of constructing a bold ring B C Fksep , and developing the properties
of the associated functor’

Cp == ((B®r, (=)' : Repp, (Ix) — Fp,k-ModP™.

This allows us to determine which rational p-adic Galois representations are quasigeometric
(those for which rkp, , (Cp(V; p)) = dimp, V), and its properties imply that Fi p ®F, , (—),

7 for coreflection.
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restricted to p-restricted Fy g-modules, is fully faithful and semisimple on objects. Thereby, the
proof of Theorem 1.1 is complete.

We choose to postpone the construction of B to the next section (Definitions 6.6 and 6.10),
and develop the properties of Cp using only the properties of B given in the following claim.
These properties will also be established in the next section (Theorem 6.23).

CrAM 5.2. Assume that K/F, is finitely generated. There exists a ring B C Fiser p with the
following properties:

(a) OFgsep ,(B) C B and B = Fy;
(b) Ix(B) C B and B'¥ = F, ;
(c) every p-restricted Fp r-module M fulfills V, (M) C B ®F, ,, M.

Note that the existence of such a ring of periods is a matter of construction, since property
(b) requires B to be ‘small enough’ (as (Fiser )% = F , strictly contains Fy, x if K is infinite),
whereas property (c) requires B to be ‘large enough’ (as it must contain the Galois-invariant
elements of Fgsep  ® Fp i M for every p-restricted Fy g-module M).

This claim will be justified in Theorem 6.23. Until the end of the proof of Theorem 5.15, we
will assume that Claim 5.2 is true. Note that there exists a smallest ring with the properties
required in Claim 5.2, the intersection of the (non-empty) set of such rings. What follows does
not depend on our choice of B. However, we might as well choose this canonical smallest B in
the following, so we do.

LEMMA 5.3. Let M = (M, 1) be a p-restricted F} g-module. Then the natural comparison
isomorphism Ficser p @p, V(M) — Fiesep ®F, x M of Proposition 4.6(b) descends to a Tk-
equivariant isomorphism of B-modules

cv: B ®Fp VP(M) — B ®Fp,K M.
Proof. Claim 5.2(b) implies that the given isomorphism descends to a Ik-equivariant
homomorphism of B-modules

cm: B ®Fp Vp(M) — B ®Fp,K M.

Since both sides are free B-modules of finite rank, it suffices to show that the determinant of
¢y is an isomorphism. Since Vy, is a tensor functor, we have

det(car) = Cdet(na)s

so we may reduce to the case where rk(M) = 1. In this case, choosing a basis for both V(M)
and M, we see that cps is given by left multiplication by an element ¢(M) € B. Choosing the
dual bases of V(M) and MY, analogously cpsv is given by left multiplication by an element
c(MVY) e B.

By Proposition 4.6(c), the element ¢(M) is invertible in Fiser . By naturality, its inverse
c(M)~! coincides with ¢(MV). Since both ¢(M) and c¢(MV) lie in B, cpr is indeed an
isomorphism. O

We continue to exploit the consequences of Claim 5.2.

THEOREM 5.4. The functor Vy, on p-restricted Fy, -modules is fully faithful.
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Proof. Consider two p-restricted Fy g-modules M, N. By Lemma 5.3 we have a 7- and Ik-
equivariant natural isomorphism

BaM'@N-—B®V,(M'®N)=B®Vy(M)"®@V,(N),
which implies that
(BaMYe@N)'"=2(BeV,(M)'eV,(N))"".
Since Hom(M, N)= (M"Y ® N)™ coincides with the domain of this isomorphism, and
Hom(Vyp(M)Y, Vo (IN)) = (Vo (M)Y @ Vu(N)) coincides with its target, we see that Vy is
indeed fully faithful. O
DEFINITION 5.5.
(a) Let (V, p) be a rational p-adic Galois representation. We set
CP (V7 p) = (B QF, V)FK¢

taking Galois-invariants with respect to the diagonal action. Note that the o-linear
endomorphism of B induces a o-linear endomorphism 7 of Cy (V, p).

(b) Set B’ := BN Agser p. Let (T, p) be an integral p-adic Galois representation. We set
C;3 (Ta p) = (B/ ®Ap T)FKa

taking Galois-invariants with respect to the diagonal action. Note that the o-linear
endomorphism of B’ induces a o-linear endomorphism 7 of Cy (T p).

LEMMA 5.6. For every p-restricted Fy g-module M, the comparison isomorphism cpr of
Lemma 5.3 induces an isomorphism of Fy, g-modules

Cp(Vp M) — M.

Proof. Take I'x-invariants. O

PROPOSITION 5.7. (a) The functor Cy is an exact Fy-linear tensor functor.

(b) The functor Ci, is an exact Ayp-linear tensor functor.

Proof. The functors C;J and Cy, are left exact linear functors by definition. Let us show that they
are tensor functors. We deduce this from the fact that the functors D; and Dy, of §3 are such.

Let us do this for Cp, mutatis mutandis the proof is the same for C,’a. Consider a rational
p-adic Galois representation V = (V, p). We have Dy (V) = (Fgserp @p, V)5 and Cp(V) =
(B ®p, V)" . Therefore, calculating in Fiser , @, V, we have Cp (V) = (B @, V) N Dy(V).

Given another rational p-adic Galois representation W, we may apply these remarks to V,
W and V @p, W. In Fgser p ®@p, V ®p, W we calculate

Cp(V ®Fp W) = (B ®Fp V®Fp W) ﬂDFp(V ®Fp W)
= ((B®r, V)®@p (B®r, W)) N (Dr, (V) @F , Dr, (W))
= ((B@r, V)N Dp, (V) ®F, x (B®F, W) N Dp,(W))
=Cp(V) @F, i Cp(W).

Finally, the right exactness of C, and C’,’3 follows formally from what we have proven. Again,
we do this only for Cp,, mutatis mutandis the proof is the same for C{o- Since Cy, is a tensor functor
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and V admits a dual V", the Fy, g-module Cp (V') has a dual, namely C, (V). Therefore, if
V-V -V"'50

is a right exact sequence of rational p-adic Galois representations, then its image under C,
coincides with the dual of the image of the left exact sequence 0 — (V)Y — VV — (V/)V.
Since Cp is left exact, the image of this left exact sequence is left exact. Since dualisation is
exact, the image of our original right exact sequence is right exact, and we are done. O

LEMMA 5.8.
(a) The ring Fi p Is a finite product of fields, each isomorphic to a field of Laurent series K'(t))
for some finite extension K'/K.

(b) The underlying Fk p-module of every restricted Fi p-module is free.

Proof. Let t € A denote a local parameter at p, and let F, denote the residue field of p. By
definition, F , = Frac(Ag,p), and we have

Agp =lim((A/p") ®p, K) = lim((Fy [t]/t") @5, K) = (Fp ®r, K)[{].

n

As in the proof of Lemma 3.7(a), Fy ®p, K = (K')*® for some finite field extension K'/K and
integer s > 1. It follows that Fg , = K'((t)*® has the property stated in part (a). Part (b) follows
as in the proof of Lemma 3.7(b). O

LEMMA 5.9.

(a) The module B’ is a projective Ay r-module.
(b) The module B is a projective Fy j-module.

Proof. By Lemma 3.7, Fy g = @1 X - - - X ()5 is a finite product of fields. Setting B; := Qi ®F,, ,
B, we obtain a decomposition B = By X --- X Bs. Since the @Q; are fields, the B; are free
(Q;-modules, so B is a projective F}, g-module.

To show that this implies that B’ is a projective A, g-module, we need some notation.
Choose a local parameter t € ' at p. We have Fj, i C Fkp, and the latter ring splits as
Frgp=Q) x - x Q) with Q; = K'((t)) for a finite field extension K’ D K by Lemma 5.8. We
may thus identify the fields @); with subfields of @, = K'((t)), note that @Q); contains t.

Under this identification, setting R; := Q; N K'[t], we have Ap g = Ri X - -+ X Rs.

The ring B is a subring of

Fierer p == (Fy @ K*P)(t) = (Fp @1 K @k K*P)(t) = (K’ @x K*P) ()",

with B; contained in the ith copy of (K’ @ ¢ K5P)((t). The ring B’ splits as B} x - - - x B., where
B! := B’ N B; is the ring consisting of those elements of B; which, viewed as elements of the ith
copy of (K’ @ K°P)(t)) in Fiser p, are power series, that is, lie in (K’ @ K5P)[t].

Let us show that B} is a free R;-module, which implies that B’ is a projective A, x-module.

For this, we choose a Q;-basis {b;j}jcj, of B;. Under the identifications given above, each b;;
corresponds to a Laurent series Y b;jnt"™ in (K’ @k K*P)(t). Now K’ @) K5P = (K5P)*" for

some r > 1, whereby 1® 1 corresponds to an element (e, ...,e,). By multiplying b;; with a

suitable element of the form (elt”(W’l), ce ept”(“”)), we may assume that b;;, =0 for n <0

and that b;jo is invertible in K’ ® g K*P. Under this assumption, one may check that {b;;} is

indeed an R;-basis of Bj. O
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LEMMA 5.10.

(a) The natural homomorphism Ag p ® Ap x B' — Agser  Is injective.

(b) The natural homomorphism Fi p ®F, x B — Fkser p Is injective.

Proof.

(a) We use the following facts from commutative algebra: given an ideal I C R of a commutative
ring R such that (1 /" =0, let R:=lim R/I" denote the I-adic completion of R. If M is a

projective R-module, then the natural homomorphism R® rRM — M= mn M/(I™- M)
is injective. If M — N is an injective homomorphism of R-modules, then the induced
homomorphism M — N is injective.
The first of these facts is checked easily for free R-modules, and this implies the statement
for projective R-modules by the additivity of source and target. The second fact is a
consequence of the left exactness of @
By Lemma 5.9, we may apply this to R = Ay , I =p, M = B’ and N = Fisep p, and obtain
the desired injectivity of

Akp ®ay i B' = B — Fioon p = Ficson .

(b) This follows from part (a) by inverting any local parameter t € F' at p. O

PROPOSITION 5.11. (a) For every integral p-adic representation T, the following natural map
is injective:
Axkp ®A, x C,/J (T) — D;J (T).
(b) For every rational p-adic representation V', the following natural map is injective:
Frp @p, x Cp(V) — Dp(V).
Proof.
(a) We calculate
AK,p ®Ap,K C;J (T) = AK,P ®Ap,K (B, ®Ap T)FK
= (Akp ®a, » B ®a, T)'
C (Agser p ®4, T)'¥ by Lemma 5.10(a)
= D;, (T).

(b) We may repeat the calculation of part (a), using Lemma 5.10(b). O

PROPOSITION 5.12.

(a) The functor Cy, has values in restricted Ay, r-modules.
b) The functor C, has values in p-restricted Fy, g-modules.
( p p P,
c) For every rational p-adic Galois representation V = (V,p) we have rkp. . Cp,(V) <
p, K p
dime V.

Proof. For every rational representation V' there exists an integral representation T' = (7, p) such
that V.=, ®4, T, and then Cp(V) = Fp k ®4,,  Cy,(T). Therefore, it suffices to show that
Cp(T) is a restricted Ap, g-module of rank bounded above by rk, 7.
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By Proposition 5.11(a), A p ®4,  Cp(T) is a submodule of D (T'), which is a free Ag p-
module of rank rky, T. Therefore, C\(T) is a finitely generated projective Ay x-module.
Since D; (T) has a bijective 7y, its submodule Ak p ®a, C{o (T') has an injective 7y, and
therefore C;a (T) has an injective 7, as well. Since OA, ; Dermutes the factors of Ap x =
Fp7K N Ap,K = (Ql X e X QS) N Ap,K = (Ql N APJ{) X oo X (QS N Apj{) the injectivity of iy
implies that C},(T') is free of constant rank r:=rka, , Cy,(T) <tka, , T, as in the proof of
Lemma 3.7(b).

It remains to show that the m;, of C{O (T) is bijective. Clearly, this is the case if and only if
the 7, of the determinant of Cy,(T') is bijective. By Proposition 5.7(a), Cy, is a tensor functor,
so we obtain an inclusion

Agp ®4, , Cp (/\ T> C D, </\ T),
Ap Ap

where the right-hand side is a restricted A, p-module of rank at least one. Tracing through
the definitions, we see that the left-hand side is saturated in the right-hand side, i.e. the
quotient is a projective Ag p-module. An application of the Snake lemma shows that this implies
that Axp ®4, , Cp,(A"T) has bijective 7. Now the equality A;K = AIX{AJ N Ay i implies that
C{, (T) itself has bijective 7. O

PROPOSITION 5.13. Let V = (V, p) be a rational p-adic Galois representation:
(a) V is quasigeometric if and only if tkp, , Cp (V) =1kp, V;
(b) Vu(Cp(V)) is the largest quasigeometric subrepresentation of V';

(c) if V' is quasigeometric, then so is every subquotient of V.

Proof.

(a) Assume that V =V, (M) is quasigeometric. By Lemma 5.6, Cp, (Vy(M)) = M. Therefore,
using the fact that V|, preserves ranks, we have

tk Cp(V) =1k Cp (Vo (M)) =1k(M) =rk Vo, (M) =1k V,

as claimed.

Assume that we have an equality of ranks. By Proposition 5.11(b), the natural
homomorphism Fk,p ®@F, x Cp(V) — Dy (V) is injective. Since Dy, preserves ranks, both
sides are free of equal finite rank over the semisimple commutative ring F . So the
homomorphism is an isomorphism. We set M :=C,(V), a p-restricted Fy g-module by
Proposition 5.12. Then the following isomorphisms shows that V is quasigeometric:

VERy(Dp(V)) = Rp(Fr,p ®F, x Cp(V))=Vp(Cp(V)) =V,(M).

(b) The representation V (Cy, V') is quasigeometric by Proposition 5.12(b). Proposition 5.11(b)
and the exactness of Vi, imply that V,(C, V') is a subrepresentation of V. Let us show that
it contains every other quasigeometric subrepresentation V,(M') = V' C V. By restricting
the isomorphism cpp of Lemma 5.3 to I'x-invariants, we have M'=C,(V, M’). So
using the left-exactness of Cy, we see that

In turn, since Vy, is exact, this shows that V' =V,(M') C V,(Cp V), as claimed.
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(c) Let 0 - V' =V — V" — 0 be an exact sequence of representations, and assume that V' is
quasigeometric. Consider the induced sequence
0—C,V —C, V—C, V' —0. (5.14)
It is exact by Proposition 5.7. Applying the exact functor V,, we obtain an exact sequence
0—V,CpV—V —V,C, V' — 0,
where V =V, C, V by part (b). Now
tk V =1k V,, Cp V/+1“1<V1J Cp V'<tkV 41k V' =1k V
implies that 1tk V, Cp, V/ =1k V’ and 1k V, Cp, V' =1k V', so V' =V, C, V' and V" =
V, Cp V' are both quasigeometric by part (a). O
We collect our results in a categorical reformulation.
THEOREM 5.15.
(a) The functor Vi : Fy k-Mod?™ — Repp, (Tx) is an exact Fy-linear tensor functor which

is fully faithful and semisimple on objects.

(b) The pair (Vy, Cyp) is an adjoint pair of functors, that is, for every p-restricted Fy i-module
M and rational p-adic Galois representation V there exists a natural isomorphism of
Fy,-vector spaces

Hom(Vy (M), V) — Hom(M, C, (V)).
(c) The unit id = Cy, o V, of this adjunction is an isomorphism (so Cy, is a ‘coreflection’ of the
‘inclusion’ V).

(d) The counit V, o Cp = id of this adjunction is a monomorphism.

Proof. (a) The functor Vy =Ry o (Fk,p ®F, x (—)) is an exact Fp-linear tensor functor as a
composition of such. It is fully faithful by Theorem 5.4. Proposition 5.13(c) implies that V,
maps simple objects to simple objects, so it is semisimple on objects.

(b) Let us construct the inverse of the adjunction isomorphism for a given M and V. Since V,,
is fully faithful, we have a natural isomorphism

One the other hand, every homomorphism V, M — V has a quasigeometric image
by Proposition 5.13(c), which must lie in V, C, V' by Proposition 5.13(b). Therefore,
Hom(Vy, M,V, C, V) =Hom(V, M, V), and we are done.

(c), (d) Both of these items follow from Proposition 5.13. O

Proof of Theorem 1.1. By Proposition 4.7, the functor V, on A-isomotives coincides with
Rp o (Fr,p ®F (—)) o I. By Proposition 4.2, I is semisimple on objects and has p-restricted
values. The functor (Fkp ®p, (—)) is a composition of the functors (Fy g ®r, (—)) and
(Fk,p ®F,  (—)). The former is semisimple on restricted Fi-modules and maps p-restricted
modules to p-restricted Fy g-modules by Theorem 4.8(b) and (c), whereas the latter is
semisimple on p-restricted Fy, g-modules by Theorem 5.15(a). The functor Ry, is semisimple on
p-restricted F p-modules since it is an equivalence of categories. Therefore, V, is semisimple
on objects, being a composition of such functors. O

We end this section with a proof of the Tate conjecture for A-motives.
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PRrROPOSITION 5.16. Let K be a field which is finitely generated over a finite field. Let p # ker ¢
be a maximal ideal of A.

(a) Let M,N be A-motives of characteristic t. The natural homomorphism Ay ®a
Hom(M, N) — Hom(Ty, M, Ty, N) is an isomorphism.

(b) Let X,Y be A-isomotives of characteristic . The natural homomorphism F, ®p
Hom(X,Y) — Hom(Vy, M, V, N) is an isomorphism.

Proof.

(b) By Proposition 4.7 we have Vy, = Ry o(Fg,p @F, (—)) o I. As in the proof of Theorem 1.1,
this reduces the proof that Vy, is F}, /F-fully faithful to Proposition 4.2, Theorem 4.8(a), (c)
and Theorem 5.15(a).

(a) The image of the given homomorphism A, ®4 Hom(M, N) — Hom(Ty, M, Ty N) is
saturated; this is well known. Therefore, part (b) implies part (a). O

6. Constructing a ring of periods

We turn to the laborious task of constructing a ring B which fulfills Claim 5.2.

Recall that we assume that K is a finitely generated field extension of a finite field F, with ¢
elements. We identify K with the function field Fy(X) of a proper normal variety X over F,.
For every finite Galois extension K°P D L D K, let X, be the normalisation of X in L, this is a
proper normal variety over L.

Let ¥, be the set of prime (Weil) divisors of X,. For every Galois tower
K**>L'>LDOK
we have a projection map pry, 1/ : X — Y, so we may let
Y%P .= lim X,
qm
LOK

be the projective limit along the projections pr;, ;. Given a Galois extension L D K, an element
xr, € X1, and an element x € X°°P, we say that = lies over xy, if xp is the Lth component of z.

For each x = (z1), € ¥°P, there is a unique associated valuation
vy 1 KPP — QU {o0}

extending the normalised valuation v,, of K associated to xg. Explicitly, for fe K5P we
may choose a finite Galois extension K C L C K*P containing f, and set vy (f) := vy, (f)/€xz,,
where v, denotes the normalised valuation of L associated to xr,, and e, is the index of v, (K™)

in vy, (L*).

Let I be a global field with field of constants F,, and fix a place p of degree d :=deg p of F
with residue field F,. We wish to extend v, to a function on Fkser . For calculational reasons,
we choose a local parameter ¢ € F' at p and obtain identifications Agser p, = (Fp ®j K5P)[t] and
Fgsep p = (Fp ®p K5P)((t) = Agser p[t1]. Recall that by Lemma 5.8 the homomorphism

(Fp @1 P, id @) — ((K°P)*, o) (6.1)

mapping £ @ y to (x - Jé(y));-i:_ol is an isomorphism of bold rings, with

o' (20,5 2d-1) = (21 1,28, -, 2 5)
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for (20, ..., 24-1) € (K*P)*4. We denote the action of ¢’ on (K5P)*? simply by o. Writing an
element f € Fisep p as f =3, fit' with fi = (fi;); € (K5eP)*d | e set
v (f) == irlgf Hl]ln vz (fij)-

Moreover, for all m,n >1 and A = (0;;) € Maty,xn (Frser p) we set
v (A) = inf vz (6ij).-

PROPOSITION 6.2. For each x € ¥5°P and all m,n > 1, the function
Vg o Mathn(FKseRp) —RU {:l:OO}

is well defined and independent of the choices made. For m =n =1 and all f, g € Fiser it has
the following properties:

(a) va(f +g) > min{va(f), va(9)};

(b) ve(fg) =vz(f) + vz(g) (using the convention —oo + 0o = —00);

(c) va(o(f)) =q-va(f)
Proof. Since vw(Fg) =0, the choice of local parameter does not influence the definition of v,.

Now properties (a) and (b) follow from short calculations using the semicontinuity of infima,
whereas property (c) follows from (6.1). O

Remark 6.3. Note that, in general, we do not have v, (fg) = v (f) + vz(9)-
PROPOSITION 6.4. For all integers m, n > 1, matrices A € Maty, s (Fser p) and column vectors
F € Fgser , ™™ the equation o™ (F) = A - F implies the inequality

1
m_1

vy (A).

v (F) >

Proof. If v;(A) = —o0, the inequality stated is tautological, so we assume that C' := v;(A) # —oc.
By a matrix version of Proposition 6.2, the equation o™ (F') = AF would imply that ¢ - v, (F) >
C + v (F). If also v, (F) # £oo, this would imply the claim of this proposition. However, if
v, (F') = —00, there is a problem. The following proof deals with all cases at once.

Write F'=(f;) and A= (0;;) with f;, 0;j € Fisep . Furthermore, write f; =) fit" and
dij = Y4 hijst® for fir, dijs € Fp ®5 K3°P. By multiplying the entire equation by a suitable power
of t, we may assume that these coefficients are zero for r, s <0. By assumption we have
vz(0i55) = C, and by definition we have v, (fi) # —oo.

The equation o™ (F) = A - F means o™ (f;) =37, 8;;f; for all 4, and gives

Z o™ fzr Z Z Z 5Z]af]bta+b Z <Z Z 5ijlfj,r—l>tT

r>0 7=1a=0 b>0 r>0 “j=1 1=0
From this we see that

fzr Z Z 5Zjlf],T l (65)

7=11=0
and must prove that vy (fir) > C/(¢™ — 1). We perform induction on r.

If r =0, then for all i we have 0™ (fi0) = >_7_; dijofjo which gives ¢ - vz (fio) = min7_, (C' +
vz(fjo)). Choosing j such that the minimum is attained we obtain qmvx(fjo) >C+ vx(f]()) and
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hence v;(fj0) = C/(¢"™ — 1). So by the choice of j, for all i we may deduce that v, (fio) = vz(fjo) >
C/(g™ —1).

For r >0, equation (6.5) gives ¢"v;(fir) > infj<; 1<, (C + v.(fj1)), hence by the induction
hypothesis for all ' <r

m

q"vg(fir) > min <q,3_ 1

Con(C + (1) ).
i

If ¢™C/(q™ — 1) is smaller, we obtain v, (f;) > C/(q% — 1) for all i as in the case r = 0. Otherwise,
choosing j such that the inner minimum is attained, we first obtain v, (f;.) > C/(¢™ — 1) and
then v, (fir) = C/(¢™ — 1) for all i, as in the case r = 0. O

We now turn to the definition of our ring of periods.

DEFINITION 6.6. Following [Tam95], we set:

+._ L w(f) # —oo forall x e TP
(a) BT {f € Figrerp - vz (f) =0 for almost all z € X5¢P
set of exceptions has finite image in X

(b) Si={s€ Afuep ,: (0(5)/5) € Fp @k K}.
LEMMA 6.7. We have that B" is a Ix-stable ring.

} , ‘almost all’ meaning that the

Proof. The fact that BT is [kx-stable follows directly from its definition. That B is a ring (closed
under finite sums and products) follows from Proposition 6.2: clearly, Bt contains 1. For f € BT
let Xy denote the finite subset of those elements of ¥ i over which there lies an element x € ¥5P
such that v;(f) <O0.

Given two elements f,g € BT, for all z € ¥%°° by Proposition 6.2(a) we have v,(f + g) >
min(vg(f), vz(g)), which is not equal to —oo, since this is such for both v, (f) and v,(g). For
all  whose image in ¥ does not lie in its the finite subset ¥ U 3, we even have v, (f + g) > 0.
Therefore, f + g is an element of B™.

A similar proof, using Proposition 6.2(b), shows that f - g is an element of BT. All in all,
BT is a ring. O

LEMMA 6.8. We have (BT = F, ®; K.

Proof. We note that (BT)!x = Bt N Fg . So the desired equality (BT)'% =F, ®; K is an
equality of subrings of Fk ,. By Lemma 5.8(a), we have Fg = (K')¢(t) for a finite Galois
extension K'/K (it is Galois since Fy, D k is Galois and F, ®; K = (K')¢). The inclusion Fg , C
Fsep , corresponds to a homomorphism (K’)¢(t) < ()3¢P)?((t) mapping the ith component of
the source to d/e components of the target, according to the d/e different K-linear embeddings
of K’ in K. It follows that the image of this homomorphism lies in (K”)(t).

Given an element f € Fkp, we may write it as a Laurent series ), fit', with coefficients
fi=(fit,- -, fia) € (K')%. We let V; denote the k-vector subspace of K’ generated by the f;;.
Clearly, F}, ®j, K consists of those elements of Fx,, such that dimy V is finite.

On the other hand, by definition (BT)!X consists of those elements of Ff, such that
vy (f) # —oo for all 2’ € X+ and v,/ (f) > 0 for all but a finite number of 2’ € Y.

Now, if f € Fk,p is an element of Fy, ®; K, then dimy Vy is finite, so the subset of Xg-
consisting of the poles of the (coefficients of the) elements of V; is finite, so f is an element of
BT by our above characterisation.
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On the other hand, if f € Fk,p is an element of BT, then we may choose a finite subset
Y9 C X g+ such that v (f) = 0 for all 2’ € . For 2’ € X, we set n(z’) := —v,(f), which is finite
by assumption. Let X’ denote the proper normal variety over k corresponding to K’. Since X’
is proper, the space of global sections of

(’)X/< > n(m’)x')

z' €3

is finite-dimensional. Since it contains V}, this implies that f€ F, ®; K by our above
characterisation. O

LEMMA 6.9. The subset S is a I'x-stable multiplicative subset of BT.

Proof. The fact that S is a I'x-stable multiplicative subset of Fgse ;, follows directly from its
definition.

Let us show that S is contained in BT. For s € S choose f € F,, ® K such that o(s) = f - s,
such an f exists by definition of S. By Lemma 6.8 and Proposition 6.4, v,(s) # —oo for all
x € X% and there exists a finite subset X of X such that v, (f) > 0 for all z € 5P not lying
over Y.

For all x € ¥°P Proposition 6.4 shows that vz(s) > v.(f)/(¢ —1). So s has the required
properties that v;(s) # —oo for all z € ¥ and v,(s) > 0 for all x € 3P not lying over ¥, since
this is the case for f. O

DEFINITION 6.10. Following [Tam95], we let B C Fgserp, be the ring obtained by inverting
S C B*, and set B = (B, 0), where o is the given ring endomorphism of Fisep .

LEMMA 6.11. The ring B is a bold ring with ring of scalars Fy,.

Proof. The ring B is clearly o-stable since BT and S are. Furthermore, since F, C B and
B C Fiesep o = Fp, we have B? = F},. O

We say that an element f € Fgsep , has order n € Z if, writing f as > fit' € (Fp @5 K*°P)(t)
we have n =inf{i: f; # 0}. We say that an element f € Fisep ,, of order n has invertible leading
coefficient if f, is invertible in Fy, ®; K®P. If f has order zero, then we will denote by f(0) the
leading coefficient of f. Note that the invertible elements of Agser , are precisely the elements
of Fisep p of order zero with invertible leading coefficient.

Remark 6.12. Let us set t; :=e; -t € Fgsep pp, where e; is the standard basis vector of the ith
copy of K¢ in the product (K*P)?. Clearly, an element f € F Ksev p s invertible if and only if
we can write

d—1 N
r=(T0e) 7
i=0
for certain n; € Z, where fis an element of Alx(sep o

LEMMA 6.13. Every element f € A, p may be written as f = o(s)/s for some other element
s€ Af(sepm.
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Proof. We write f =, f;t" and use the ‘ansatz’ s = Zj>0 s;t/. This gives

Yool =o(s)=sf=Y  fisit' T =" (Z fz-sm-> £
i, i=0

T T

We proceed by induction. For r = 0, we must solve o(sg) = foso. We write fo = (fo,0,-- -, fo.d—1)
and so = (50,0, - - - » S0,d—1) for foi, s0,; € K°P. Note that by assumption all fy; # 0. Since
1
o(so) = (Sg,dflv 58,07 50,15 - -+ Sg,dfl)

our equation o(sg) = foso is equivalent to the system of equations
Sg,i = foit+150i+1, 1€ Z/dL.

. . _ q _ q . .
This means, for instance, that soo = So,d—l/fO,O and sg4-1 = soﬂd_Q/f()’d_l, which gives

G Sg,dfl _ (Sg,dfz/fo,d—l)q
007 fo0 fo,0

Iterating this substitution, we obtain the equation
d d—1 d—2
38,0 - (fg,l : fg,2 T f&d_l - fo,0)80,0 = 0.

d—1 d—2
Since all of the fo; #0, the constant ¢:= fi, - fly -+ fl,_1 foo is non-zero, so this is a
separable equation for spo and hence has a non-trivial solution in K®P. The s¢; for i # 0 are
then determined by the assignments sq; 1= 8871»_1/ fo,i, they are non-trivial since sg ¢ and the fo;

are.

Let us consider the case r > 0, and write s, = (sy0,...,Sr4-1) and fr = (fr0,..., fra—1). In
this case, the equation o(s,) = :_ fisr—; that we must solve is equivalent to the system of
equations

.
q _ .
Spitl = E fi08r—i,0 =: foisri + Cri,
i=0

where the C,; € K*P are constants dependant only on f and the s,/ for r' <r.

We may use the same type of replacement as before, and obtain an equation
qd
= b-s0=Cp

with C, € K a constant determined by the C, ;. Again, this is a separable equation for s, ,
so there exists a solution in K®*P. The s,; for i# 0 are then determined by the equations

(o
Sri = (Sm‘+1 = Cri)/ foi-

Finally, since we may choose the sg; to be non-zero, our solution s is in fact invertible in
AKsep’p. O

PROPOSITION 6.14. The ring B is a I'x-stable ring, and B'% > F, .

Proof. The ring B is clearly Ix-stable, since BT and S both are. We have B'"x = BN F, Kp-
Let us show that F,, x C B. Consider g/f € F k with f,g € F, ®; K. By Remark 6.12, we

may assume that f is in Aj.., ,. By Lemma 6.13 there exists an element s € S with f = o(s)/s.
It follows that g/f = gs/o(s) € B, since gs € BT by Lemma 6.7 and o(s) € S. O
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We turn to the inclusion B'¥ ¢ Fy i, which is more difficult. Consider b = bt /s € B'x | with
b" € BY and s €S C Ajuep ,- We set fi= o%(s)/s, which is an element of F,, ®; K, and for
N > 0; following [Tam04], we set

d 2d Nd
Ni=be fET) - fRT) - f(ET) € Fip.
Remark 6.15. Our goal is to show that for N large enough the element ay lies in B*. By
Lemma 6.9 this will imply that ay € F, ®; K, and in particular that b € B.

LEMMA 6.16. There exists a finite set Xy C X such that for all N > 0 and all x € >%°° not lying
above ¥ we have v, (ay) = 0.

Proof. The idea is to use that b™, s and f all lie in B*, and then apply Proposition 6.2(b). In order
to handle 1/s, which is not necessarily an element of B*, we need some modifications. Let s(0)
denote the leading coefficient of s, and set 5:=s/5(0). Clearly, s is an element of S with leading
coefficient 1. Setting f := 0%(3)/5, we have f € F, @y K and f=p- f with p:=o%(s(0))/s(0)
an invertible element of F, ®; K. Now by definition and Proposition 6.2(b), we have

wnlan) = o (B0 ™))

:vz<su(gf)'b+';f(tqd)"'f(tqw))

> N v, () —|—vx<s(10)> + (b )+vm<s> + N - v,(f)

Since F := {u, 1/s(0), b+, f} is a finite subset of BT, the set X, of those z € ¥°°P for which there
exists an e € I such that v, (e) <0 has finite image in ¥ . Call this image Yo, and consider any
x € Xg. Proposition 6.4 implies that v,(3) > v.(f)/(¢? — 1) > 0. Since § has leading coefficient 1,
we may calculate 1/5 via the geometric series, and obtain v,(1/3) > 0, using Proposition 6.2.
Therefore, v, (ay) is bounded below by a finite sum of non-negative numbers, so v;(ay) > 0 for
all z not lying above Y. O

LEMMA 6.17 (Following [Tam94b]). Let s € Ajeep ,,, © € 2P and N > 0 fulfill:
(a) vg(s) >0; and
(b) va(s(0)) <q™.
Then, for every a € F  we have an inequality
N
vg(s- o (a
UI(UN(Q)) > {‘T(qN())J gV,

where for x € R the term | x| denotes the largest integer smaller than x.
Proof. We write s =3, sit’ and b:=oN(a) =Y, bit" with coefficients s; € Fp ®5 K5 and
b € Fp ®; K. We may assume that b; =0 for ¢ <0. By assumption, vy(s;) >0 for all ¢,
and v (sg) < ¢~. Note that since sq is invertible, the inequality v, (so - b;) = vz(s0) + ve(b;) is
in fact an equality.

We set C:= |v.(sb)/qV | - ¢"V, must prove that v, (b;) > C for all 4, and do this by induction
on 1.

For ¢ = 0, we consider the inequality v, (so) + vz (bg) = vz (Sobo) = C. It implies that, v, (by) >
C — vz(s0) > C — ¢V. However, by assumption the value of v, (bg) lies in ¢" - Z U {00}, and there
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exists no integral multiple of ¢V strictly greater than C' — ¢V and less than C. Therefore, we
have v, (bg) = C.

For i > 0, we have sob; = (sb); — Z;Zl sjbi—;. By induction, we deduce that

v (S0bi) = v ((Sb)z‘ - ZZ: Sjbz'—j)

=1

> i (v (58)), gnin (va(55) + va(0)
> min(C, min(0 + C)) > C.

So vz (b;) = C' — vg(sp), which implies that v, (b;) > C as in the case i = 0 since v, (b;) is an integral
multiple of ¢" and 0 < v, (sg) < ¢. O

LEMMA 6.18. There exists an Ng>1 such that for all N > Ny and all x € X°°P we have
vg(an) # —oc.

Proof. By Lemma 6.18, there exists a finite set X9 C X such that v, (ay) > 0> —oo for all x not
lying above 3. Hence, it suffices to prove that, for one given xx € Yk, there exists an integer
Np > 1 such that for all N > Ny and all z lying above i we have v (an) # —oo. We fix such an
T € .

Let 7 denote a local parameter of K at xx. For all 2 over 2, we have v, (s) > v.(f)/(¢? — 1) >
—oo by Proposition 6.4, so that s =7~"5 for some n >0 and s € S satisfying v,(s) > 0. As a
first substep, we wish to show that it is sufficient to deal with the case s ='s. This will make our
calculations easier.

If n >0, then

o
f=
and by setting b+ := 70+ € BY, we obtain b = bN+/§, so that
an =b- () F()
Nd

= b @D pgaty et p g
= anl@' =g,

43) o) o(s) d
: — - K
s s f S p Qk 5

(5)
s T
+

In particular, v,(ay) # —oo if and only if v, (ay) # —oo, and we may assume in the following
without loss of generality that the s € A, p We are given fulfills v, (s) = 0.

We remark that for all g € Fisep , and ¢ > 0 we have the formula
o (g(t7")) = ", (6.19)
in particular for our given f € Fy, ®; K.

Second, note that from b+ = bs and 0%(s) = sf we obtain 0?(b*) = ¢?(b)o?(s) = o%(b)sf, and
by induction for N > 1

N =N b)s - (f ol f) - a D)), (6.20)
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Hence,

aNd(aN)s = UNd(b-f(tq ). (Y
(

by equation (6.20)

N id
— SNt g(N=id [ T (f@7))
-l (=5)

= oV t) - T o™ (7Y by (6.19)

1=
=" (b") - ¢,
with ¢ € F, ®j, K, so it follows that vw( N(an)s) = ¢Nvp(bT) + v (¢) # —oo.
Now if N is large enough, namely, ¢~ > v,(s(0)), then Lemma 6.17 shows that ¢V v, (ay)

ve (N (an)) # —00, 50 vy (an) # —oo as required. 5

PROPOSITION 6.21. The ring B fulfills B's = F,, .

Proof. By Proposition 6.14 it suffices to show that B'x C Fy, jc. For b € B'¥ and N > 0, define ay
as before Remark 6.15. Lemmas 6.16 and 6.18 show that for IV large enough, ay is an element
of B*. By construction, it is an Ix-invariant, so Lemma 6.7 shows that ay € F,, ®; K. By
definition, this shows that

F@aty - f@ety - (et
is an element of F}, f, since both ay and the denominator lie in Fy, ®; K C Fy k. O

So far, we have shown that B is a well-defined I'x-stable bold ring with scalar ring F}, and
Bk = Fg p. It remains to prove that B has property (c) of Claim 5.2.

LEMMA 6.22. Let M be a p-restricted Fy g-module. Then Vi, (M) C B ®F, , M.

Proof. We may assume, by choosing a basis, that M = (FSB%, 7) with 7(m) = Ao(m) for some
matrix A € GL,,(Fy k) and all m.

Since Vyp(M) = (Fgserp @ M)", we have to prove that for all m e F;?Z‘ep,p the equation
A - o(m) =m implies that all entries of m lie in B.

Let us denote the inverse of A by A~! (g,]/f”)”, with g;; € Fy @i K and fij € (Fp ®p

K)n Alx(sep’p. Setting f := Hm fij, we see that A=t =1/fA’ for some matrix A’ with entries
in Fp Rk K C Bt.

By Lemma 6.13, we may write f =o(s)/s for some s € S. For any element m € M write
m’:=sm. Now the equation T(m) m is equivalent to the equation o(m')=A’-m/. By
Proposition 6.4, this implies that m’ has entries in B, so in particular m = m’/s has entries
in B, as claimed. O

THEOREM 6.23. The ring B fulfills Claim 5.2.

Proof. By construction, B is a subring of Fisep p. By Lemma 6.11, it fulfills Claim 5.2(a). By
Propositions 6.14 and 6.21, it fulfills Claim 5.2(b). By Lemma 6.22, it also fulfills Claim 5.2(c). O
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7. Algebraic monodromy groups

We recall the setup of Tannakian duality.
DEFINITION 7.1.

(a) Let F be afield. A pre-Tannakian category over F'is an F-linear rigid tensor category 7 such
that all objects are of finite length, and for which the natural homomorphism F' — Endz (1)
is an isomorphism.

(b) Let 7 be a pre-Tannakian category, and consider an object X of 7. Then (X)g denotes
the smallest full abelian subcategory of 7 closed under tensor products and subquotients
in 7.

(¢) Let T be a pre-Tannakian category over F. Let F'/F be a field extension. A fibre functor
on 7 is a faithful F-linear exact tensor functor w: 7 — Vecps, where Vecgs denotes the
category of finite-dimensional F’-vector spaces. If F/ = F', the fibre functor is called neutral.

(d) A Tannakian category over F is a pre-Tannakian category for which there exists a fibre
functor over some field extension F’/F.

(e) Let 7 be a Tannakian category over F', consider a fibre functor w of 7 over F'/F, and fix
an object X of 7. The algebraic monodromy group of X with respect to w is the functor

Gy (X): (F'-algebras) — ((groups)),

mapping an F’-algebra R’ to the group of tensor automorphisms of the functor R’ @ g w(—)
from (X)g to R'-modules.

PROPOSITION 7.2. Let T be a Tannakian category over F', consider a fibre functor w of T over
F'/F, and fix an object X of T. Then the algebraic monodromy group of X with respect to T
is representable by an affine group scheme over F’.

Proof ([Sta08, Theorem 3.1.7(a)]). This seems to be well known (to the experts). O

Let F,F,, A,K,. be as in §2, and choose a maximal ideal p#ker.. In §2, we have
constructed the category A-Isomotg of A-isomotives over K. Using either the results of §2,
or the embedding I of Proposition 4.2, we see that it is a pre-Tannakian category. The category
Rep Fp (Tx) is a Tannakian category, since it fulfills the properties required by a pre-Tannakian
category, and the forgetful functor U : Rep Fp (I'x) — Vecp, is a fibre functor.

In § 2, we also constructed the functor

Vi =Ry o (Fk,p ®F, (7)) o (Fp,x @F (—)) oI+ A-lsomotg — Repp, (k).
associating to an A-isomotive its rational Tate module. It is faithful, F-linear and exact as a
composition of such functors. Therefore, A-Isomotg is Tannakian, with fibre functor U o V.

Given an A-isomotive X, we set G,(X):= Gyov,(X), the algebraic monodromy group
of X at p. On the other hand, we may consider I'y(X), the image of I'x := Gal(K*P/K) in
Autp, (Vp(X)). This might be called the p-adic monodromy group of X, or rather V,(X).

PROPOSITION 7.3. Let I’ be a field, V be a finite-dimensional F’'-vector space and consider

a subgroup T' C GL(V)(F’) with associated algebraic group G := T GL(V). The natural

homomorphism G — Gy (V'), with target the algebraic monodromy group of V' as a representation
of G with respect to the forgetful fibre functor U : Repp, (I') — Vecpr, is an isomorphism.

Proof ([Sta08, Proposition 3.3.3(b)]). This seems to be well known (to the experts). O
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It follows that I'y (X)) is a Zariski-dense subgroup of the group of Fj-rational points of the
algebraic monodromy group of V, (X') with respect to the forgetful fibre functor U of Repp, (Ik).
In order to prove Theorem 1.2(a), we must compare Gyov,(X) and Gy (Vyp X). It is here that
we invoke one of the main results of the author’s previous article [Sta08].

THEOREM 7.4. Let F'/F be a separable field extension, T a Tannakian category over F, T' a
Tannakian category over F' and w: T’ — Vecpr a neutral fibre functor. Let V : T — T’ be an
F-linear exact functor which is F'/F-fully faithful, and semisimple on objects.

For every object X of T the natural homomorphism G,(V(X))— Guv(X) is an
isomorphism of algebraic groups.

Proof. See [Sta08, Proposition 3.1.8]. O

Proof of Theorem 1.2(a). Theorem 1.1 and Proposition 5.16 show that V, has the properties
required in Theorem 7.4. Together with Proposition 7.3, we see that the image of I'y(X) —
Gp(X)(Fy) is indeed Zariski dense in Gy (X)) for every A-isomotive X. O

DEFINITION 7.5. A semisimple F-algebra F is separable if the center of each simple factor of F
is a separable field extension of F.

PROPOSITION 7.6. Let F’ be a field, V a finite-dimensional F'-vector space, and consider a
closed algebraic subgroup G C GL(V). If V' is semisimple as a representation of G, and Endg(V)
is a separable F'-algebra, then the identity component G° is a reductive group.

Proof ([Sta08, Proposition 3.2.1]). This seems to be well known (to the experts). 0

Proof of Theorem 1.2(b). Let X be a semisimple A-isomotive with separable endomorphism
algebra. By Theorem 1.2(a) the algebraic monodromy group G :=Gp(X) acts faithfully on
Vp(X), the rational Tate module of X. Since V, is fully faithful by Proposition 5.16,
Endg(Vy X) = F, ®p End(X), so this is a semisimple separable Fj,-algebra by [Bou58, no. 7,
§5, Proposition 6, Corollaire|. Therefore, Proposition 7.6 implies that G° is indeed a reductive
group. a
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