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Abstract

The aim of this paper is to study the spherical functions associated to an operator. These
functions can be thought of abstractly as being eigenfunctions of the operator which can be
expressed in terms of the operator. The meaning of these properties will be made precise as
will a notion of boundedness. The results are obtained by studying a specific shift operator on
the algebra of functionals on the complex polynomial ring. For the class studied, we obtain
ellipses of eigenvalues for which there exist bounded spherical functions. As an application of
the results, we study radial functions on discrete groups.

1980 Mathematics subject classification (Amer. Math. Soc): primary 43 A 90; secondary 42 C
10.

Let A — C[x] and let B = A* be its dual. What we are searching for are

useful expressions for the eigenfuctions of the shift operator T: B —> B given

by T(/)[p(x)] = f[xp(x)}. We will later apply these results to self-adjoint op-

erators on certain spaces. Notice that if </> is an eigenfunction with eigenvalue

z, then by definition <t>(xp(x)) = z<j>(p(x)). Thus by induction on the degree

of p{x),<j>(p(x)) = p{z)(p{\). So denning <pz{p{x)) = p(z), (j>z generates the

eigenspace of z. Thus the solution <pz has a simple expression as a functional

on A. What we are looking for are convenient ways of describing <j>z in general

settings. We need some preliminary facts.
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196 Joel M. Cohen [2]

By "measure", we always mean a positive Radon measure. In particular
assume that we are given a linear map fx: R[x] —• R such,that if p(x) is a real
polynomial with nonnegative values then n(p(x)) > 0. Then there is a unique
measure dp on R such that fq(x)dfi = fi(q(x)) for all q(x) € R[x]. (See [4]
Theorems 34.9 and Lemma 34.11.)

Assume that for each n = 0 ,1 ,2 , . . . there is given an nth degree real poly-
nomial pn{x) with positive leading coefficient. Since the pn(x) form a basis for
R[x], there is a unique inner product denned by setting pn(x) • pm(x) = 8n<m,
the Kronecker delta. For p(x) e R[x] define fi(p(x)) = 1 • p(x).

PROPOSITION 1. The following are equivalent.
(a) x is self-adjoint with respect to the inner product.
(b) fi, is a real positive measure on R and p(x) • q(x) — fj,(p(x)q(x)).
(c) There exist two sequences of real numbers bn and an with bn > 0, such

that

(1) xpn{x) = bnpn+i(x) + anpn{x) + 6n_ipn-i(x).

PROOF. Assume (a). First observe that since x is self-adjoint so is any
p(x) € R[x], so that p(x) • q(x) = 1 • p(x)q(x) = n(p(x)q(x)). We need to prove
that if p(x) is a non-zero polynomial with positive values, then /x(p(x)) > 0. By
Lemma 34.10 [4] such a p(x) can be written as a sum of squares of polynomials,
so it suffices to prove that if p(x) is any non-zero polynomial, then /a(p(x)2) > 0.
But n{p{x)2) = p(x) • p(x) > 0. This proves (b).

Next assume (b). Write xpn(x) as a linear combination X)an,tPi(z)- Since
xpn(x) is of degree n + 1, an i j = 0 for i > n + 1. Notice that an i t n = (xpn(x)) •
pm(x) = //{(xpn(x))pm(x)} = /i{pn(x)(xpm(x))} = pn(x) • (xpm(x)) = am,n . In
particular a n i m # 0 only if m = n - 1 , n, or n + 1 . Letting bn = a n ,n + 1 = a n + l i n

and an = an,n, (1) follows. Note that 6n > 0 since all leading coefficients are
positive.

Next assume (c). Then (1) shows that (xpn(x)) -pm(x) = pn(x) • (xpm(x)).
(a) follows since {pn(x)} is a basis for R[x].

Let n be a measure on the real line. We will always assume that the support
of fj, consists of more than a finite number of points and that all polynomials
are ji-integrable. We can always find a unique sequence {pn(x)} of orthonormal
polynomials for fi with pn{x) € R[x] of degree n having a positive leading coef-
ficient. Setting p(x) • q(x) = fi{p(x)q(x)} yields an inner product on A = C[x]
with respect to which {pn{x)} is an orthonormal basis.

Since we have an inner product on A for which the {pn{x)} are orthonormal,
we can represent any element of B, its dual, as an infinite sum £) anpn(x) where
the action on A is given formally by the inner product. By Proposition 1, then,
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the shift operator T: B-* B satisfies T(pn(x))\pm(x)] = {xpn{x))\pm{x)\. Thus
the operator T can be thought of as multiplication by x in B.

Now since <j>z(pn{x)) = pn(z), we can write (j>z = ^2pn{z)pn(x)- Thus

THEOREM 1. For every z e C , T: B —> B has a one-dimensional eigenspace
which is generated by

<t>z =

Note. Using (1) one can also calculate directly that x<f>z = z<j>z.
Since T is multiplication by x, <j>z can be expressed as Y!,Pn(z)pn(T). This is

what was meant in the introduction by describing the eigenfunction in terms of
T.

Let us now look a t applications of this in te rms of operators . For the moment
we will not specify the type of space on which they are to operate .

If V is a von Neumann algebra, then by a trace on V we mean a linear
functional r\: V —> C such t h a t if P is a non-zero projection then 0 < r)(P) < 1.
It follows tha t if S is a positive element of V then r\{S) > 0: The sub-von
Neumann algebra W generated by the identity 1 and by 5 is isomorphic to the
bounded functions L°° (X, v) of the spec t rum X of S wi th respect to some Borel
measure v (see for example, Theorem 2.2.4 of [1]). X is a compact subset of
[0, oo), and making the identification of W wi th L°°(X, i/), S corresponds to the
inclusion m a p X c C . We consider rj a t race on L°°(X, u). Bu t now q induces a
measure a on X by cr(U) = i]{xu) where xu 1S the characteristic function on the
I'-measurable set U. Note t h a t if v{U) > 0, then Xu is a non-zero projection so
cr(U) > 0 by the hypothesis on rj. Now rj(S) = f tda{t). Since a is a non-trivial
measure with compact suppor t in [0, oo) this integral must be positive.

Suppose t h a t we have the following si tuation: There exists a sequence of
operators Tn and polynomials qn(x) € R[x] of degree n wi th positive leading
coefficient, such t h a t Tn = qn(T), where T is some given self-adjoint operator ,
and To is the identity. Assume further t h a t there is a t race r/: V —> C, where V is
some von Neumann algebra containing the Tn such t h a t the Tn are orthogonal to
one another with repsect to r\. This is, r)(TnTm) — r n 6 n , m , r n > 0. In par t icular
ri(qn{T)qm(T)) = rn6n,m- So r\ defines an inner product on V, wi th respect to
which pn(T) = qn(T)/-^r^ yields an or thonormal sequence.

Assume further t h a t there is a space containing V on which multiplication by
T is defined and in which <t>z = J2Pn(z)pn(T) = ^2qn{z)Tn/rn converges. Since
Theorem 1 is proved in a purely formal algebraic context and since the Tn are
linearly independent by their orthogonality, we may t rea t this <j>z jus t like tha t
of Theorem 1. This says t h a t <j>z generates the eigenspace of T wi th eigenvalue
z. <j>z has as constant t e rm ly wi th respect to the Tn and is by definition a
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spherical function. Thus we get the following, which is our main use of Theorem
1:

COROLLARY. Assume that the Tn,qn, and rn are as above. If (j> = J2anTn

converges in some space and T<f> = z<t>, then <f> is necessarily some constant
multiple of<j>z = £ g n ( z ) T n / r n .

Examples of this phenomenon are the spherical functions on free groups which
are found in [8] and [11]. We will discuss these in detail in the examples.

There is another way of interpreting these results. In [6] it is shown that given
Tn^n^n^pn and n as above, the spectral measure for T can be described as

Heuristically, a spherical function ought to be the evaluation of the spectral
measure at a point; and indeed if we take neighborhoods N of a point z, then
Q(N)/n(N) does converge to ^2qn{z)Tn/rn as n(N) goes to zero.

Since the </>2 are necessarily the only spherical functions which can be de-
scribed as infinite linear combinatons of Tn, one can study directly the question
of the existence of spherical functions with given properties simply by studying
t h e <j>z.

One interesting problem is that of finding spherical functions ^Z <*nPn{x) such
that the coefficients of the pn(x) are bounded. That is, giving A the norm
I X3 s»Pt(s)| = X3 ls»l> w e seek spherical functions that are continuous on A. So
we need to find out when the sequence pn{z) is bounded. We say that <j>z is a
bounded spherical function (w.r.t. {pn(x)}) in this case. Let us take the special
case of the constant recursive formula (1) with bn = 1 and on = 0 for all n.
We prove later a general result, Theorem 3, which subsumes Proposition 2, but
it seems worthwhile to look at this special case, because it contains the general
ideas of the proof of Theorem 3, but with much simpler calculations.

PROPOSITION 2. If the polynomials pn(x) satisfy

xpn(x) =pn+i(x)+pn_i(z),

with po(x) = 1 and Pi(x) = x, then the spherical function <j>z is bounded if and
only if z& ( -2 ,2) .

PROOF. Let 0{z,w) = £p n (z)w n . Then 9 = 1 + £pn+i(z)w"+ 1 = 1 +
T,(zPn(z) - pn-i{z))wn+1 = l + zw$- w29. Thus (l-zw + w2)9 = 1. Then

if z ^ ±2, we can find A, B, r, and s such that 8 = A/(I — rw) + B/(l — sw).
Thus pn(z), the coefficient of wn, is bounded if and only if \r\ < 1 and \s\ < 1.
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But rs = 1 and r + s — z. Thus the condition becomes \r\ = 1, whence z —
r + f € (-2,2). For z = ±2, 6 = (1 ± w)"2 and so pn(z) = (±l)n(n + 1) is
unbounded.

It follows from the proof that pn(x) can never converge to zero. In particular,
then, in this case <j>z can never be in a Hilbert space in which the pn (x) form an
orthonormal system.

Since in many applications, it is more natural to study orthogonal non-
normalized polynomials, we give here a translation and generalization of our
results in terms of the recursive formula for orthogonal polynomials which are
not necessarily orthonormal. Assume the sequence {qn(x)} of orthogonal poly-
nomials satisfies

(2) xqn{x) = vnqn+i{x) + anqn(x) +/Jn_iqn_i(x),

for real numbers vn, /?n > 0 and an. This holds for all n > 0 if we set q~i(x) = 0
and let /?_i be arbitrary.

Let kl = qn(x) • qn(x). Then, since {xqn(x)) • gn_i(a:) = qn(x) • {xqn-!(x)),

we get k^ = fciUi/Sn-iA-n-i, ^ d n e n c e

Putting pn{x) = k~lqn{x), {pn{x)} satisfies (1) with bn = s/$nvn and an = an.
In particular, the spherical functions have the form (j>z — J2in(z)Qn(x)/k%. We
now ask a different bundedness question: when are the coefficients of qn (x)
bounded? In this case the coefficient is gn(^)/^n = Pn{z)/kn. We now say
that (j> = ^2,anqn(x) is a bounded spherical function w.r.t. {qn(x)} if the an are
bounded even though the {qn(x)} may not be orthonormal.

NOTATION, (a) We write rn -» r, rn goes quickly to r, if there exist constants
e < 1 and M such that \rn -r\< Me".

(b) If f(z) is the sum of a power series, p/ represents its radius of convergence.

THEOREM 2. Assume that {qn(x)} satisfy xqn(x) = vnqn+i(x) + anqn(x) +
Pn-iQn-i{x) where an -» a, 0n -» /?, and vn -» v. Consider the elliptical region
E of all points z = u + iv satisfying

or
z € ( o - 2/J, {a + 20)b) ifv = $.

Then the spherical function (j>z is bounded if v < /? and z € E and is unbounded
if v > /? and z € E. There exists an analytic function h(w) calculable from the
{qn{x)} such that for all other z, <j)z is bounded if and only if h(a) = 0, where
a = {(z-a)±^/(z - a)2 - A0u}/2v and\a\ < 1, except if P = v and z = a±20
in which case a — ±1 .

https://doi.org/10.1017/S144678870003010X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003010X


200 Joel M. Cohen [6]

PROOF. Fix z and let 0{w) = J2(in{z)/kl)wn. Then

Kn-1

—-^E^^^E^+^E^
^n+l Kn Kn-l

K n - 1

where k(w) is the part under the final summation. Thus (w~1f3 + a + i>w — z)0 —
w~1f3 — k(w). Hence if we let

h{w) = l-w0-1k{w), and g{w) = (1 - j3~l(z - a)w + ^i/w2)'1,

we see that 0(w) = g(w)h(w). Notice that ph > pe, since an -» a,(3n -* /?,
and vn -» i/. The result now follows by applying the following lemma with
b = 0-^z - a)/2 and c = P~xv.

LEMMA. Let f(w) = g{w)h(w) where g{w) = (1 - 2bw + cw2)~1,ph > Pf
and c > 0. Consider the elliptical disk E:

if c ^ 1 and £ = (—1,1) /or c = 1. T/ien tfte coefficients of f are bounded if
b € E and c < 1, and are unbounded ifbEE and c > 1. /n a// o</ier caaea, </iey
are bounded if and only if h{a) = 0 w/iere a = {6 ± /̂(fc2 - c)}/c, wit/i the sign
chosen so that \a\ < 1 except in the case b = ±1, c = 1 where a = b.

PROOF. We are going to use a special case of Darboux's Theorem, which
follows immediately from the version given in Theorem 4 of [2]: Assume that
F(z) — YlanZn is analytic near 0 with radius of convergence r. Assume further
that on the circle of radius r, F has a finite number of singularities on,..., a<
and that for each k, there exist an integer £/t > 0 and a function Fk analytic
near otk such that Fk{otk) # 0 and F{z) = (1 — z/ctk)1+£kFk{z) near at . Let
e = max{efc}. Then Darboux's Theorem says that
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[7] Bounded spherical functions 201

Note tha t this formula remains the same even if |c*fc| > r for some k.

Write f(w) = 5Zonw;n . Note tha t pj > mm(pg,ph). Since pf < ph, this

minimum must be p = pg.

Let <7i and a2 be the roots of the polynomial g{w)~x = (1 — 2bw + cw2).

We shall assume tha t |<TI| < |0-2|> SO tha t p — |CTI|. Let ft = 1/(7* so tha t

(1 - ftw)(l - p2w) = (1 - 2bw + cw2). Then ft + /?2 = 26 and ftft = c.
Let A = re*9 be one of the ft, whence c/A is the other. Now 26 = A + c/X =
rete+(c/r)e~*e = (r+cr"1) cos 0+i(r—cr"1) sin 0. Here we shall note two special
cases: if r = y/c this gives b = y/c cos#, hence b is in the interval [—yfc, +\/c\;
and if r = c we get points in the ellipse 26 = (1 + c) cos 6 + i(l — c) sin 0, so that
setting b = x + iy gives

l - c

if c < 1, and a point of the interval [—1,1] for c = 1.

Applying Darboux's Theorem now, we have tha t an is {^1/(0-2—^i)}[^fn'*(^i)

- ^nh{a2)) + o{p~n), if (7! # <T2 and ftfa) # 0; W ( C T X - <T2)}[<T2-
nft(a2)] +

O( |CT2|~") , if 0\ # <̂ 2 and h(ai) = Q\na~nh{a) + o(/9~nn), if o± = cr2 = a and

/i(a) ^ 0; and finally a~nh'{a) + o{p~n), if ax = a2 = CT and /i(<r) = 0.

Thus we see tha t {o n } is bounded in the cases p > 1; or p = 1 and <TI ^ a2\ or

p = 1, <Ti = (72 = <T and h{a) — 0; it is unbounded in the case p = 1, o\ — <r2 = cr

and ft(<r) 7̂  0.

Now for the case p < 1: If CTI = <r2, then { a n } is unbounded, so assume tha t

<7i ^ <r2. If ft(ai) ^ 0, then {o n } is unbounded; and finally if h(pi) — 0, then

{o n } is bounded if and only if |cr2| > 1.

We shall now examine what these conditions mean in terms of 6 and c.

First consider the condition tha t p > 1. Thus |A| < 1 and \c/X\ < 1; t ha t is,

c < r < 1. In particular we have c < 1. Now 26 = A + c/X remains invariant

under the transformation A —• c/A, so the set of 6 for c < r < 1 is the same as

the set for c < r < y/c. We discussed above the two end points and all other

values are between the two. So b — x + iy is in the elliptical disk

-c) - 4

if c < 1, and in the interval (—1,1) for c = 1 since the case c — 1 and 6 = ±1 is
the exceptional case p — 1 and o\ = a2 = a. In this latter case a = b = ±1 and
(7 = 6, and as pointed out above {an} is bounded if and only if h{a) — 0. This
completes the case p> 1.

Now assume that p < 1. Let us consider first the case |ft| > 1 for i = 1,2.
Thus the conditions are |A| > 1, |c/A| > 1, that is c > r > 1. In particular, c > 1.
Since 26 = A + c/X remains invariant under the transformation A —> c/A, the set
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of b for c > r > 1 is the same as the set for c > r > y/c, and once again b is in
the elliptical disk

Finally we examine the condition |/321 < 1 < |/?i|. Thus the conditions are
|A| > 1, |c/A| < 1, that is, r > l ,r > c. Now since 26 = X + c/X remains invariant
under the transformation X —> c/X, the set of b for which r > 1, r > c is the same
as the set for which r < 1, r < c. Thus the condition on b = x + iy is

-c) 4

if c ^ 1, and 6 £ (-1,1) for c = 1. That is b <£ E.
This completes the proof of the Lemma.

Applications

(1) Let F be a free group on a fixed set of t generators, and let Xn be the
characteristic function on the words of F of length n. Then there is a sequence
of polynomials qn(x) (see [5]) such that qn(xi) = Xn- The polynomials satisfy
(2) with vn = 1, an = 0, and /?„ = 2t - 1, for n > 0, and /?0 = It. Thus
applying Theorem 2, there are spherical functions (eigenfunctions of the operator
"convolution with xi") for all z € C, which are bounded exactly for z — x + iy
inside the ellipse [z/2*]2 + [y/{2t - 2)]2 = 1. This result, first proved in [10],
can be found in [8]. In this case we do not have any "interference" from the
analtyic function h(w) of Theoerem 2. The only value of z for which h(a) = 0
is z — 2t — 1, which is already in the ellipse. h(w) is simple to calculate because
an = a, 0n = /?, and un — v for all n, with the single exception of PQ = (3 + 1.

(2) Let G be a free product of fc finite groups, each of order r. Then defining
the elements of the original factor groups to have length 1, we can define Xn as
above, and find a recursive relation (see [7], [9], and [5]) (2) with an = r — 2, and
0n = {k - l){r - 1), and vn = 1 always except for /?0 = k(r - 1). Thus applying
Theorem 2, there are spherical functions for all z eC, which are bounded exactly
for z = x+iy inside the ellipse \(x-r+2)/(kr-k-r + 2)}2 + [y/{k2-k-r)}'2 = 1.
Just as in the first example h(w) does not influence the boundedness area because
the only value of z for which h(z) — 0 is already inside the ellipse.

The above examples are the important special cases of a more general sequence
of polynomials studied in [7] where an = a, and /?„ = /?, and vn = 1 for all n
except for fa = 0 + r. In this case h(w) = 1 — f3~1r(z — a), a constant with
respect to w. Thus the only value of z for which h(o) = 0 is z = ct + 0/r. This is
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inside the ellipse if and only if r > /?/(/? + 1), which is always t rue in the group

case since r > 1.

Other examples can be found whenever the Plancherel measure of a discrete

group is known. In addit ion, Theorem 2 may be generalized, following the same

lines, to the case in which the a n , / ? n , and vn do not converge, bu t do converge

"cyclically"; t ha t is for some fixed d, adn+k,0dn+k, and Vdn+k go quickly to

some limits t ha t depend on k. Here we expect the region of bounded coefficients

to be a higher degree curve. An example of this occurs in [3] where d — 2, and

the form of the region is a quart ic , interestingly of the type t h a t a certain square

lies inside an ellipse.

Note. The author wishes to express his gra t i tude to the referee for suggestions

which led to clearer and simpler proofs. In part icular , the use of Darboux ' s

Theorem changed the proof of the Lemma from horrible and unwieldy to only

mildy unpleasant .
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