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Scale Invariance, Power Laws, and Regular
Variation

In our daily lives, many things that we come across have a size, or scale, that we associate
with them. For example, people’s heights and weights differ, but they are not that different –
they rarely differ by more than a factor of two or three and do not differ much from the
population average. In contrast, the incomes of people we encounter in our daily lives do
not have a typical size or scale – they may differ by a factor of 100 or more and can be very
far from the population average! This contrast is a consequence of the fact that many heavy-
tailed phenomena, such as incomes, are scale invariant, aka, scale-free, while light-tailed
phenomena, such as heights and weights, are not.
Scale invariance is a property that feels particularly magical the first time you observe

it. An object is scale invariant if it looks the same regardless of what scale you look at it.
Perhaps the easiest way to understand scale invariance is using fractals, like the one shown
in Figure 2.1. If you zoom in or out, the picture will look the same. It turns out that Pareto
distributions have the same property (see Figure 2.2). But Pareto distributions are even more
special than fractals. With fractals, you have to zoom in or out in specific, discrete steps
for the picture to look the same; with Pareto distributions, the invariance holds across a
continuum of scale changes.
Scale invariance is a particularly mysterious aspect of heavy-tailed phenomena. It is nat-

ural to think of the average of a distribution as a good predictor of what samples will occur;
but for scale invariant distributions the average is actually a very poor predictor. This fact
leads to many of the counterintuitive properties of heavy-tailed distributions. For example,
consider the old economics joke: “If Bill Gates walks into a bar . . . on average, everybody
in the bar is a millionaire.”
Though initially mysterious and counterintuitive, scale invariance is a beautiful and

widely observed phenomenon that has attracted attention well beyond mathematics and
statistics (e.g., in physics, computer science, economics, and even art). For example,
scale invariance is an important concept in both classical and quantum field theory as
well as statistical mechanics. In fact, it is closely tied to the notion of “universality”
in physics, which relates to the fact that widely different systems can be described by
the same underlying theory. Further, in the context of network science, scale invar-
iance has received considerable attention. Widely varying networks have been found
to have scale invariant degree distributions (and are thus termed “scale-free networks”
[25, 41]) and this observation has had dramatic implications on our understanding of
the structural properties of networks. For a discussion of scale invariance broadly, we
recommend [220]. Here, we focus on scale invariance in the context of probability and
statistics.
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30 Scale Invariance, Power Laws, and Regular Variation

Figure 2.1 Illustration of the Sierpinski fractal [151].

In particular, in this chapter we explore the mathematics of the property of scale invar-
iance and its connections with Pareto distributions and so-called power law distributions.
Note that both “scale invariance” and “power law” are often (mis)used synonymously with
“heavy-tailed,” and thus it is important to point out that not all heavy-tailed distributions
are scale invariant or have a power law (though all scale invariant distributions are heavy-
tailed, as are all power law distributions). In this chapter, we formalize and generalize the
notions of scale invariance and power laws as a subclass of heavy-tailed distributions termed
“regularly varying distributions.” In addition, we explain why the class of regularly varying
distributions is particularly appealing from amathematical perspective. The properties of this
class shed light onmany of the counterintuitive properties of heavy-tailed distributions, high-
lighting what properties of heavy-tailed distributions can be viewed as simple consequences
of scale invariance. Further, to illustrate the usefulness of the class, we demonstrate how
to apply properties of regular variation in order to analyze heavy-tailed phenomena more
broadly. These examples show that it is not much more challenging to analyze the entire
class of regularly varying distributions than it is to work with the specific case of the Pareto
distribution.

2.1 Scale Invariance and Power Laws
To this point we have only introduced scale invariance informally as the property that some-
thing looks the “same” regardless of the scale at which it is observed. Given that our focus
is on probability distributions, we can rephrase this idea as follows: if the scale (or units)
with which the samples from the distribution are measured is changed, then the shape of the
distribution is unchanged. This leads to the following formal definition.

Definition 2.1 A distribution function F is scale invariant if there exists an x0 > 0 and a
continuous positive function g such that

F̄ (λx) = g(λ)F̄ (x),

for all x, λ satisfying x, λx ≥ x0.

To interpret the definition of scale invariant, one can think of λ as the “change of scale”
for the units being used. With this interpretation, the definition says that the shape of the
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2.1 Scale Invariance and Power Laws 31

Figure 2.2 The complementary cumulative distribution function (c.c.d.f.)
corresponding to the Pareto distribution (α = 2, xm = 1) plotted at different scales
of the independent variable. Note that the shape of the curve is preserved up to a
multiplicative scaling, consistent with scale invariance.

Figure 2.3 The complementary cumulative distribution function (c.c.d.f.)
corresponding to the Exponential distribution (with mean 1) plotted at different
scales of the independent variable. Note that the shape of the curve looks
fundamentally altered at different scales.

distribution F̄ remains unchanged up to a multiplicative factor g(λ) if the measurements are
scaled by λ. This is exactly what is shown in Figure 2.2 for the Pareto distribution.
More formally, to see that the Pareto is scale invariant, recall that a Pareto distribution has

F̄ (x) = (x/xm)
−α for x > xm. Thus,

F̄ (λx) =

(
λx

xm

)−α
= F̄ (x)λ−α, whenever x, λx > xm.

Scale invariance is an elegant property, but it is also a fragile one. In particular, it does not
hold for most probability distributions. For example, it is easy to see that the Exponential
distribution is not scale invariant. Recall that an Exponential distribution has F̄ (x) = e−µx

for x ≥ 0. Therefore,
F̄ (λx) = e−µλx = F̄ (x)e−µ(λ−1)x.

Thus, there is not a choice for g that is independent of x. This is also illustrated in Figure 2.3.
One may initially think that the lack of scale invariance of the Exponential distribution is

a consequence of its being a light-tailed distribution. But that is not the case. For example,
let us generalize the Exponential distribution to the Weibull distribution, F̄ (x) = e−βx

α for
x ≥ 0, which is equivalent to the Exponential distribution when the shape parameter α = 1
and is heavy-tailed when α < 1. As the following calculation shows, the Weibull is also not
scale invariant:
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32 Scale Invariance, Power Laws, and Regular Variation

F̄ (λx) = e−β(λx)
α

= F̄ (x)e−βx
α(λα−1).

These examples start to give some intuition about scale invariance, but they leave open a
fundamental, natural question:

Which distributions are scale invariant?

From the examples, we know that there is at least one scale invariant distribution (the
Pareto distribution), but we also know that not all common distributions are scale invariant –
not even all common heavy-tailed distributions. Perhaps surprisingly, it turns out that scale
invariance is an extremely special property: distributions with “power law tails,” (i.e., tails
that match the Pareto distribution up to a multiplicative constant) are the only scale invariant
distributions. That is, “scale invariance” can be thought of interchangeably with “power law.”
The following theorem states this formally.

Theorem 2.2 A distribution function F is scale invariant if and only if F has a power law
tail, that is, there exists x0 > 0, c ≥ 0, and α > 0 such that F̄ (x) = cx−α for x ≥ x0.

Proof Note that the case where F̄ is identically zero over [x0,∞) trivially satisfies the
conditions of the lemma (this corresponds to the case c = 0).
Excluding the trivial case from consideration, it is easy to see that F̄ (x) must be nonzero

for all x ≥ x0. Indeed, if F̄ (x′) = 0 for some x′ ≥ x0, then for any x ≥ x0, F̄ (x) =
F̄ (x′)g(x/x′) = 0.
Fix x, y > 0.Wemay then pick z large enough such that z, zx, zxy ≥ x0. From the scale

invariant property of F̄ , F̄ (xyz) = F̄ (z)g(xy). Of course, we may also write F̄ (xyz) =
F̄ (xz)g(y) = F̄ (z)g(x)g(y). Since F̄ (z) ̸= 0, we can immediately see that the function
g satisfies the following property:

g(xy) = g(x)g(y) for all x, y > 0. (2.1)

This is a very special property, and the only continuous positive functions satisfying the
condition in (2.1) are g(x) = x−α for some α ∈ R.1 Noting that F̄ (x) = F̄ (x0)g(x/x0)
for all x ≥ x0, we conclude that α > 0 (since F̄ must be monotonically decreasing, with
limx→∞ F̄ (x) = 0). Therefore, F̄ (x) = cx−α for x ≥ x0 for some c, α > 0.

2.2 Approximate Scale Invariance and Regular Variation
We have just seen that all scale invariant distributions are power law distributions, aka distri-
butions with tails matching a Pareto distribution up to a multiplicative constant. This makes
scale invariance a very special property, or a very fragile property depending on how you
look at it. In fact, one interpretation of Theorem 2.2 is that we should not expect to see scale
invariance in reality since it is so fragile.

1 Defining f(x) : = log g(ex), the condition (2.1) is equivalent to f(x + y) = f(x) + f(y) for x, y ∈ R. This
is known as Cauchy’s functional equation. The stated claim now follows from the fact that the only continuous
solutions of Cauchy’s functional equation are of the form f(x) = αx for α ∈ R (see, for example, [5]).
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2.2 Approximate Scale Invariance and Regular Variation 33

(a) Populations of US cities as per the 2010 census
(data sourced from [2]).

(b) Intensities of earthquakes in the US between
1900 and 2017 (sourced from [1]). Earthquake intensity
is measured on the Richter scale, which is inherently
logarithmic. Thus, the values of the x-axis
should be interpreted as being proportional to the
logarithm of the intensity of the earthquake.

Figure 2.4 Empirical c.c.d.f. (aka rank plot) corresponding to two real-world
datasets on a log-log scale.

In the strictest sense, that interpretation is correct. It is quite unusual for the distri-
bution of an observed phenomenon to exactly match a power law distribution and thus
be scale invariant. Instead, what tends to be observed in reality is that the body of
the distribution is not an exact power law, but the tail of the distribution is approxi-
mately a power law. Consider the examples in Figure 2.4, which depicts the empirical
c.c.d.f. corresponding to two real-world datasets on a log-log scale. Notice that the body
of the empirical c.c.d.f. (on the log-log scale) does not look linear, which it would if
the data were sampled from a power law distribution, but instead seems to approach a
straight line asymptotically, which suggests that the c.c.d.f. behaves asymptotically like a
power law.
Given that we should not expect to see precise scale invariance in real observations, it is

natural to shift our focus from precise scale invariance to notions of approximate or asymp-
totic scale invariance; and it is natural not to focus on the whole distribution, but rather on
just the tail of the distribution. In particular, the relevant formalism becomes asymptotic scale
invariance, which we define here.

Definition 2.3 AdistributionF is asymptotically scale invariant if there exists a continuous
positive function g such that for any λ > 0,

lim
x→∞

F̄ (λx)

F̄ (x)
= g(λ).

The notion of asymptotic scale invariance almost exactly parallels the notion of scale
invariance, except that it only requires the property to hold in the limit as x → ∞, that
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is, it only requires the property to approximately hold for the tail: F̄ (λx) ∼ g(λ)F̄ (x) as
x→ ∞.2

As a result, it is immediately clear that Pareto distributions are asymptotically scale
invariant:

F̄ (λx)/F̄ (x) = λ−α.

Similarly, it is easy to see that asymptotic scale invariance is still quite a special property that
is not satisfied bymost distributions. For example, theWeibull and Exponential (Weibull with
α = 1) distributions are not asymptotically scale invariant since, as x→ ∞,

F̄ (λx)

F̄ (x)
= e−β(λ

α−1)xα

→


∞, λ < 1,
1, λ = 1,
0, λ > 1.

However, asymptotic scale invariance is significantly broader than scale invariance, and
it is easy to see that other distributions besides power law distributions are asymptotically
scale invariant. For example, it follows from Exercise 8 that the convolution of a Pareto and
an Exponential distribution is asymptotically scale invariant (though it is clearly not scale
invariant). Similarly, consider the Fréchet distribution, which we introduced in Section 1.2.4
and will appear in our analysis of extremal processes in Chapter 7. This distribution, which is
supported over the nonnegative reals, is defined by the distribution function F (x) = e−x

−α

for x ≥ 0, where the parameter α > 0. While this distribution is clearly not a power
law, it is not hard to see that F̄ (x) ∼ x−α (see Exercise 1). In other words, the Fréchet
distribution has an asymptotically power law tail, which in turn implies asymptotic scale
invariance:

lim
x→∞

F̄ (λx)

F̄ (x)
= λ−α.

In general, since asymptotic scale invariance focuses only on the tail of the distribution,
the body of such a distribution may behave in an arbitrary manner as long as the tail is
approximately scale invariant.
As in the case of scale invariance, given the examples above, the natural question becomes:

Which distributions are asymptotically scale invariant?

It is clear that the class of asymptotically scale invariant distributions includes a variety
of heavy-tailed distributions beyond the Pareto distribution, but it is also clear that it does
not include all heavy-tailed distributions since it does not include the Weibull distribu-
tion. However, the fact that “scale invariant” can be thought of equivalently to “power
law,” leads to the suggestion that “asymptotically scale invariant” should correspond to
some notion of “approximately power law,” and this turns out to be true. In particular, it
turns out that asymptotically scale invariant distributions have tails that are approximately
power law in a rigorous sense that can be formalized via the class of regularly varying
distributions.

2 Throughout the book we use a(x) ∼ b(x) as x → ∞ to mean limx→∞ a(x)/b(x) = 1.
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2.2 Approximate Scale Invariance and Regular Variation 35

Definition 2.4 A function f : R+ → R+ is regularly varying of index ρ ∈ R, denoted
f ∈ RV(ρ), if for all y > 0,

lim
x→∞

f(xy)

f(x)
= yρ.

Further, for ρ ≤ 0, a distribution F is regularly varying of index ρ, denoted as F ∈ RV(ρ),
if F̄ (x) = 1− F (x) is a regularly varying function of index ρ.3

The form of the definition immediately makes clear that regularly varying distributions
are asymptotically scale invariant. Further, since limx→∞ F̄ (xy)/F̄ (x) = yρ, they seem
to mimic the behavior of power law distributions, such as the Pareto distribution, asymp-
totically. This intuitively suggests that all asymptotically scale invariant distributions are
regularly varying distributions – which turns out to be true.

Theorem 2.5 A distribution F is asymptotically scale invariant if and only if it is regularly
varying.

Proof It is immediately clear that regularly varying distributions are asymptotically scale
invariant, and so we need only prove the other direction. Fix x, y > 0. The asymptotic
scale-free property implies that

lim
z→∞

F̄ (xyz)

F̄ (z)
= g(xy).

We can also compute the same limit by writing F̄ (xyz)

F̄ (z)
= F̄ (xyz)

F̄ (xz)

F̄ (xz)

F̄ (z)
. Note that F̄ (xyz)

F̄ (xz)
→

g(y) and F̄ (xz)

F̄ (z)
→ g(x) as z → ∞, implying that

lim
z→∞

F̄ (xyz)

F̄ (z)
= g(x)g(y).

From this, we can conclude that the function g satisfies

g(xy) = g(x)g(y) for all x, y > 0.

This is the same relationship we used in the proof of Theorem 2.2 and, as in that case, it
follows that there exists θ ∈ R such that g(x) = xθ. Of course, by definition, this means
that F̄ is a regularly varying function, and F is a regularly varying distribution.

Theorem 2.5 shows that the class of regularly varying distributions characterizes precisely
those distributions that are asymptotically scale invariant, and from it we can immediately

3 It is common practice to write the domain of regularly varying functions as R+. That said, it is important to
understand that regular variation is an asymptotic property of a function as its argument tends to∞. Thus, for a
function f to be regularly varying, we only require that its domain includes [x0,∞) for some x0 > 0. Similarly,
for a distribution to be regularly varying, we only require that its support include [x0,∞) for some x0 > 0.

Specifically, regularly varying distributions need not be supported on the nonnegative reals. For example, the
Cauchy distribution is regularly varying (see Exercise 1). Finally, why the index ρ must be nonpositive for
regularly varying distributions will become apparent soon (see Lemma 2.7).
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Figure 2.5 Scale invariant and regularly varying distributions.

see that a number of common heavy-tailed distributions are scale invariant. In particular, with
a little effort, it is possible to verify that the Student’s t-distribution, the Cauchy distribution,
the Burr distribution, the Lévy, and also the Zipf distribution are all regularly varying and
thus asymptotically scale invariant (see Exercise 1). This is summarized in Figure 2.5. We
have not yet proven that regularly varying distributions are heavy-tailed; this follows from
the analytic properties of regularly varying functions discussed next (see Lemma 2.9).

2.3 Analytic Properties of Regularly Varying Functions
The fact that regularly varying distributions are exactly those distributions that are asymp-
totically scale invariant suggests that they should be able to be analyzed (at least asymp-
totically) as if they are simply Pareto distributions. In fact, this intuition is correct
and can be formalized explicitly, as we show in this section. Concretely, the proper-
ties we outline in this section provide the tools that enable regularly varying distribu-
tions to be analyzed “as if” they were polynomials, as far as the tail is concerned. This
makes them remarkably easy to work with and shows that the added generality that
comes from working with the class of regularly varying distributions, as opposed to
working specifically with Pareto distributions, comes without too much added technical
complexity.
To begin, it is important to formalize exactly what we mean when we say that regularly

varying distributions have tails that are approximately power law. To do this, we need to first
introduce the concept of a slowly varying function.

https://doi.org/10.1017/9781009053730.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009053730.003


2.3 Analytic Properties of Regularly Varying Functions 37

Definition 2.6 A functionL : R+ → R+ is said to be slowly varying if limx→∞
L(xy)

L(x)
= 1

for all y > 0.

Slowly varying functions are simply regularly varying functions of index zero. So, intui-
tively, they can be thought of as functions that grow/decay asymptotically slower than any
polynomial; for example, log x, log log x, and so on. This can be formalized as follows.

Lemma 2.7 If the function L : R+ → R+ is slowly varying, then

lim
x→∞

xρL(x) =

{
0 for ρ < 0,
∞ for ρ > 0.

We prove this lemma later in this section using properties of regularly varying functions.
But we state it now in order to highlight an equivalent definition of regularly varying distri-
butions as distributions that are “asymptotically power law.” The following representation
theorem for regularly varying functions makes this precise.

Theorem 2.8 A function f : R+ → R+ is regularly varying with index ρ if and only if
f(x) = xρL(x), where L(x) is a slowly varying function.

Proof We start by proving the “if” direction. Suppose that f ∈ RV(ρ). Define L(x) =
f(x)/xρ. To prove the result, it is enough to show that L is slowly varying, which can be
argued as follows:

lim
x→∞

L(xy)

L(x)
= lim

x→∞

f(xy)

f(x)

xρ

(xy)ρ
= 1.

To prove the other direction, we need to show that, given f(x) = xρL(x), where L(x) is
a slowly varying function, f ∈ RV(ρ). For y > 0,

lim
x→∞

f(xy)

f(x)
= lim

x→∞

(xy)ρ

xρ
L(xy)

L(x)
= yρ,

which implies, by definition, that f ∈ RV(ρ).

It is important to remember when applying this theorem that regularly varying functions
can have arbitrary index ρ; however, regularly varying distributionsmust have index ρ ≤ 0.

4

The key implication of Theorem 2.8 in the context of heavy-tailed distributions is that
regularly varying distributions can be thought of as distributions with approximately power
law tails in a rigorous sense. That is, they differ from a power law tail only by a slowly
varying function L(x), which can intuitively be treated as a constant when doing analysis.
This intuition leads to many of the analytic properties that we discuss in the remainder of
this section.
However, before we move to the analytic properties of regularly varying distributions,

it is useful to illustrate how powerful the representation theorem is by itself. To illustrate

4 One peculiarity of this notational convention is that a Pareto distribution with tail index α, where α > 0, is
regularly varying with index −α.
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this, we use it in Lemma 2.9 to argue that regularly varying distributions are heavy-tailed.
Of course, this is not a surprising result, given the tie to Pareto distributions, but it is an
important foundational result and it provides a simple illustration of how to work with the
representation theorem.

Lemma 2.9 All regularly varying distributions are heavy-tailed.

Proof Suppose that the distribution F is regularly varying. We know then that F̄ (x) =
x−αL(x), where α ≥ 0, and L(x) is a slowly varying function. Consider µ > 0 and
β > α. Now,

F̄ (x)

e−µx
= (x−βeµx)(xβ−αL(x)).

Since x−βeµx → ∞ as x→ ∞, and xβ−αL(x) → ∞ as x→ ∞ (via Lemma 2.7), we can
conclude that limx→∞

F̄ (x)

e−µx = ∞, which proves that F is heavy-tailed.

The above provides an example of using the fact that regular varying distributions have
tails that are approximately power law; however, this representation of regularly varying
distributions has much broader implications as well. In particular, in the remainder of this
section we illustrate a variety of analytic properties of regularly varying distributions that
highlight how regularly varying distributions can be analyzed “as if” they were Pareto
distributions, as far as the tail is concerned.
In the following, we focus on two crucial analytic properties: (i) integration/differentiation

of regularly varying functions, which is formalized via Karamata’s theorem, and (ii) inverting
the integral transforms of regularly varying functions to understand properties of the tail of
the distribution, which is formalized via Karamata’s Tauberian theorem. In each case, we
include a simple example application of the result. Then, in the following section (Section
2.4), we prove closure properties of regularly varying distributions with respect to various
algebraic operations in order to provide further illustrations of how to apply these analytic
properties.

2.3.1 Integration and Differentiation of Regularly Varying Distributions
Perhaps one of the most appealing aspects of working with power law and Pareto dis-
tributions is that when one needs to manipulate them to calculate moments, conditional
probabilities, convolutions, and other such things, all that is required is the integration or
differentiation of polynomials, which is quite straightforward. This is in stark contrast to
distributions such as the Gaussian and LogNormal, which can be very difficult to work with
in this way.
One of the nicest properties of regularly varying distributions is that, in a sense, you can

treat them as if they were simply polynomials when integrating or differentiating them – as
long as you only care about the tail – and so they are not much more difficult to work with
than Pareto distributions. This is especially useful when calculating things like moments,
conditional probabilities, convolutions, and so on, as we shall see repeatedly in the remainder
of this chapter and throughout the book.
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The foundational properties of regularly varying functions with respect to integration
and differentiation are typically referred to as Karamata’s theorem. This result provides the
building block for working with regularly varying distributions.

Karamata’s Theorem
Karamata’s theorem is perhaps the most important result in the study of regular variation. We
start our discussion of it by stating Karamata’s theorem for integration of regularly varying
functions, since its statement is a bit cleaner than that of differentiation.
It is useful to begin by anticipating what we should expect Karamata’s theorem to say. To

do this, begin by considering what would happen if f(t) = tρ. In that case,∫ x

0

f(t)dt =
xρ+1

ρ+ 1
=
xf(x)

ρ+ 1
if ρ > −1, and∫ ∞

x

f(t)dt =
xρ+1

−(ρ+ 1)
=

xf(x)

−(ρ+ 1)
if ρ < −1.

Thus, we may expect that Karamata’s theorem would say that, asymptotically, the integrals
of regularly varying functions should behave as if the function were a polynomial as far as
the tail is concerned (i.e., the = above should be replaced by a ∼). In fact, this is exactly
what Karamata’s theorem states.

Theorem 2.10 (Karamata’s Theorem)

(a) For ρ > −1, f ∈ RV(ρ) if and only if∫ x

0

f(t)dt ∼ xf(x)

ρ+ 1
.

(b) For ρ < −1, f ∈ RV(ρ) if and only if∫ ∞
x

f(t)dt ∼ xf(x)

−(ρ+ 1)
.

Not surprisingly, regularly varying distributions also asymptotically behave as if they
were polynomials with respect to differentiation. In particular, if f(x) = xα, then f ′(x) =
αxα−1, and so αf(x) = xf ′(x). The following result, which is commonly referred to as the
monotone density theorem, shows that exactly this relationship holds for regularly varying
distributions with = replaced by ∼, modulo some technical conditions.

Theorem 2.11 (Monotone Density Theorem) Suppose that the function f is absolutely
continuous with derivative f ′. If f ∈ RV(ρ) and f ′ is eventually monotone, then xf ′(x) ∼
ρf(x). Moreover, if ρ ̸= 0, then |f ′(x)| ∈ RV(ρ− 1).

5

5 A function f is said to be absolutely continuous if it has a derivative f ′ almost everywhere that is integrable,
such that

f(x) = f(0) +

∫ x

0

f ′(t)dt ∀x.

A function g is eventually monotone if there exists x0 > 0 such that g is monotone over [x0,∞).
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In what follows, we give the proof of Theorem 2.11. The proof of Theorem 2.10 is a bit
more cumbersome, and we refer the interested reader to [183, Section 2.3.2] for the proof.

Proof of Theorem 2.11 For simplicity, we assume that f ′(x) is nondecreasing over x ≥ x0

(the proof for the case of eventually nonincreasing f ′ is along similar lines). Fixing a, b such
that 0 < a < b, we may write∫ bx

ax

f ′(t)

f(x)
dt =

f(bx)− f(ax)

f(x)
.

For x > x0/a, the monotonicity of f ′ implies that

f ′(ax)x(b− a)

f(x)
≤ f(bx)− f(ax)

f(x)
≤ f ′(bx)x(b− a)

f(x)
. (2.2)

Noting that f ∈ RV(ρ), the first inequality in (2.2) implies that

lim sup
x→∞

f ′(ax)x

f(x)
≤ bρ − aρ

b− a
.

Next, letting b ↓ a on the right side of the above inequality and noting that this corresponds
to taking the derivative of the function xρ at x = a, we obtain

lim sup
x→∞

f ′(ax)x

f(x)
≤ ρaρ−1. (2.3)

Similarly, using the second inequality in (2.2) and letting a ↑ b, we obtain

lim inf
x→∞

f ′(bx)x

f(x)
≥ ρbρ−1. (2.4)

Setting a = 1 in (2.3) and b = 1 in (2.4), we conclude that xf ′(x) ∼ ρf(x). Finally, when
ρ ̸= 0, it is easy to see that f ′(x) ∼ ρ

(
f(x)

x

)
implies that |f ′(x)| ∈ RV(ρ− 1).

Hopefully, it is already clear that Karamata’s theorem is a particularly appealing and pow-
erful property of regularly varying functions. But, it is worth considering a few examples in
order to emphasize this further. Perhaps the most powerful example of the use of Karamata’s
theorem is in deriving the so-called “Karamata representation theorem” for regularly varying
functions.

Karamata’s Representation Theorem
We have already discussed one representation theorem for regularly varying functions (The-
orem 2.8), which allows us to write any regularly varying function as F̄ (x) = xρL(x) for
some slowly varying function L(x). This is a particularly nice form since it highlights the
view of regularly varying distributions as asymptotically power law; however, it is also a
fairly implicit view of regularly varying functions since the form of L(x) is not defined.
Using Karamata’s theorem, we can derive a much more precise representation theorem for
regularly varying functions.
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Theorem 2.12 (Karamata’s Representation Theorem) f ∈ RV(ρ) if and only if it can be
represented as

f(x) = c(x)exp

{∫ x

1

β(t)

t
dt

}
(2.5)

for x > 0, where limx→∞ c(x) = c ∈ (0,∞) and limx→∞ β(x) = ρ.

The representation of regularly varying distributions in Karamata’s representation theorem
may initially seem surprising since it does not superficially look like a power law. However,
note that if one treats β(t) as if it is a constant ρ (which it converges to in the limit), then the
exponent becomes ρ log x and so the power law form appears (since eρ log x = xρ).

Proof To begin, let us first check that if a function f can be represented via (2.5), then
f ∈ RV(ρ). Note that for y > 0,

f(xy)

f(x)
=
c(xy)

c(x)
exp

{∫ xy

x

β(t)

t
dt

}
.

Now, since β(x) → ρ as x → ∞, given ϵ > 0, there exists x0 > 0 such that ρ − ϵ <
β(x) < ρ+ ϵ for all x > x0. Therefore, for x large enough so that x, xy > x0,

c(xy)

c(x)
exp

{∫ xy

x

ρ− ϵ

t
dt

}
<
f(xy)

f(x)
<
c(xy)

c(x)
exp

{∫ xy

x

ρ+ ϵ

t
dt

}
,

which is equivalent to
c(xy)

c(x)
yρ−ϵ <

f(xy)

f(x)
<
c(xy)

c(x)
yρ+ϵ.

Now, since c(xy)

c(x)
→ 1 as x→ ∞, we obtain

yρ−ϵ ≤ lim inf
x→∞

f(xy)

f(x)
≤ lim sup

x→∞

f(xy)

f(x)
≤ yρ+ϵ.

Letting ϵ ↓ 0, we finally conclude that limx→∞
f(xy)

f(x)
= yρ, which, of course, implies by

definition that f ∈ RV(ρ).
Next, we prove that if f ∈ RV(ρ), then f has a representation of the form (2.5). We prove

this first for the slowly varying case (i.e., ρ = 0), and then consider the case of general ρ.
Accordingly, suppose that L ∈ RV(0). Define b(x) = xL(x)∫ x

0
L(t)dt

. Note that Karamata’s
theorem implies that b(x) → 1 as x→ ∞. Let βL(x) = b(x)− 1. Now,∫ x

1

βL(t)

t
dt =

∫ x

1

L(t)∫ t
0
L(y)dy

dt− log(x)

= log

(∫ x

0

L(y)dy

)
− log

(∫ 1

0

L(y)dy

)
− log(x).

Now, using
∫ x
0
L(y)dy = xL(x)

b(x)
, we obtain∫ x

1

βL(t)

t
dt = log

(
L(x)

b(x)
∫ 1

0
L(y)dy

)
,
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which finally gives us

L(x) = cL(x)exp

{∫ x

1

βL(t)

t
dt

}
, (2.6)

where cL(x) = b(x)
∫ 1

0
L(y)dy. Noting that cL(x) →

∫ 1

0
L(y)dy and βL(x) → 0 as

x→ ∞, we have proved that L has the postulated representation.
Finally, moving to the case of general ρ, suppose that f ∈ RV(ρ). We know then that

f(x) = xρL(x), where L(x) is a slowly varying function. We have already established that
L(x) can be represented as (2.6), with βL(x) → 0 and cL(x) → c ∈ (0,∞) as x→ ∞. It
then follows immediately that

f(x) = cL(x)exp

{∫ x

1

(βL(t) + ρ)

t
dt

}
,

which gives us the desired representation.

Karamata’s representation theorem is an extremely powerful tool for working with reg-
ularly varying distributions. To see this, note that it is straightforward to prove Lemma 2.7
using Karamata’s representation theorem (see Exercise 4). Additionally, Karamata’s repre-
sentation theorem can be used to show a number of other properties of regularly varying
distributions that connect them to power law and Pareto distributions. We illustrate two
of these here: (i) the observation that regularly varying distributions appear approximately
linear on a log-log plot, and (ii) properties of the moments of regularly varying distributions.
Let us start by considering the behavior of regularly varying distributions in logarithmic

scale. We have seen earlier that one distinguishing property of Pareto distributions is that
they are exactly linear when viewed on a log-log scale. Specifically, recall that for Pareto
distributions F̄ (x) = (x/xm)

−α for x > xm, and so

log F̄ (x) = −α log(x) + α log(xm).

Thus, log F̄ (x) is exactly linear in terms of log x, with slopeα. This is a property that allows
for easy preliminary identification of them in data, as we have seen in Chapter 1 and explore
in detail in Chapter 8. Note that one must be very cautious using this approach for estimation,
as we illustrate in Chapter 8.
UsingKaramata’s representation theorem,we can easily obtain the corresponding property

for the tail of regularly varying distributions. In particular, we have the following result,
which shows that the tail of regularly varying distributions with index α is asymptotically
linear with slope α when viewed on a log-log plot.

Lemma 2.13 If f is a regularly varying function with index ρ, then

lim
x→∞

log f(x)

log(x)
= ρ.

Proof From Karamata’s representation theorem, we know that

f(x) = c(x)exp

{∫ x

1

β(t)

t
dt

}
,

where limx→∞ c(x) = c ∈ (0,∞) and limx→∞ β(x) = ρ.
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Given ϵ > 0, there exists x0 > 1 such that for all x ≥ x0, ρ − ϵ < β(x) < ρ + ϵ.
Therefore, for x > x0,

log f(x) ≤ log c(x) +

∫ x0

1

β(t)

t
dt+

∫ x

x0

ρ+ ϵ

t
dt

= log c(x) +

∫ x0

1

β(t)

t
dt+ (ρ+ ϵ)(log(x)− log(x0)).

From the preceding inequality, it follows that

lim sup
x→∞

log f(x)

log(x)
≤ ρ+ ϵ.

Using similar arguments, it can be shown that

lim inf
x→∞

log f(x)

log(x)
≥ ρ− ϵ.

Letting ϵ approach zero completes the proof.

Next, let us move to studying the moments of regularly varying distributions. Recall that
the moments of Pareto distributions are a bit peculiar: for Pareto(xm, ρ) distributions, the
ith moment is finite if i < ρ and infinite if i > ρ. The fact that moments can be infinite is,
as we have seen in Chapter 1, not just of theoretical interest. Data from a variety of situa-
tions has been shown to exhibit power law tails with ρ around 1.2–2.1, and so is often well
approximated by distributions with infinite variance.
Using the above result, it is not hard to show that regularly varying distributions have

moments that parallel those of Pareto distributions. In particular, we have the following
result.

Theorem 2.14 Suppose that a nonnegative random variable X is regularly varying of
index −ρ. Then

E
[
X i
]
<∞ for 0 ≤ i < ρ,

E
[
X i
]
= ∞ for i > ρ.

The moment conditions in the theorem above should not be particularly surprising
at this point since computing moments has to do with integration and the finiteness of
moments has to do mainly with the tail, which means that Karamata’s theorem should
ensure that regularly varying distributions behave like power laws. This intuition serves
as a good guide for the proof, which makes use of Lemma 2.13, which was a conse-
quence of Karamata’s theorem. We leave the proof of the result as an exercise for the reader
(see Exercise 5).

2.3.2 Integral Transforms of Regularly Varying Distributions
Integral transforms like the moment generating function, the characteristic function, and the
Laplace–Stieltjes transform are of fundamental importance in probability, as well as in many
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physical problems in applied mathematics. It is often easier to study probabilistic and sto-
chastic models using transforms than it is to study them directly as a result of the ease of
computing convolutions, moments, time scalings, performing integration of the distribution,
and so on. Thus, one can typically complete the analysis in “transform space” and then invert
the transform to understand the distribution itself, taking advantage of the uniqueness of the
representation.
In the context of this book, we have already seen the importance of transforms in the def-

inition of heavy-tailed distributions. Recall that the definition of heavy-tailed distributions
explicitly uses the moment generating function (m.g.f.) and defines heavy-tailed distribu-
tions as those distributions for whichMX(t) := E [etX ] = ∞ for all t > 0. This means
that, while moment generating functions are often a powerful analytic tool, working with the
m.g.f. of heavy-tailed distributions is problematic. Thus, one needs to consider other inte-
gral transforms in the case of heavy-tailed distributions. This section provides the tools for
working with transforms in the heavy-tailed setting.
Though the m.g.f. is not appropriate for heavy-tailed distributions, one can instead use

other transforms. When the distribution corresponds to a nonnegative random variable, the
Laplace–Stieltjes transform (LST) is appropriate and, more generally, the characteristic func-
tion is the appropriate tool. The Laplace–Stieltjes transform of a function f is defined
as

ψf (s) :=

∫ ∞
−∞

e−sxdf(x).

Specializing to probability distributions, given a random variable X following distribution
F , the Laplace–Stieltjes transform of F (orX) is defined as

ψX(s) :=

∫ ∞
−∞

e−sxdF (x) = E
[
e−sX

]
.

Notice that the LST of a distribution is related to the m.g.f. via a change of variable: we
replace the argument t in the definition ofM(t) by−s. Similarly, the characteristic function
can be obtained by replacing t with it, where i is the imaginary unit. So, given a random
variableX following distribution F , the characteristic function of F (orX) is defined as

ϕX(t) := E
[
eitX

]
= E [cos(tX) + i sin(tX)] .

Note that if X is nonnegative, the LST ψX(s) is well defined and finite for s ≥ 0. On the
other hand, the characteristic function ϕ(t) associated with any distribution is well defined
and finite for all t.
To get a feel for the behavior of transforms in the case of heavy-tailed distributions it is

useful to look at the specific case of a power-law function. To keep things simple, we consider
power laws of the form

f(x) =

{
xρ x ≥ 0,
0 x < 0,

where ρ > 0. Note that with ρ > 0, f cannot capture a probability distribution, but limiting
our attention to positive indices makes things simpler, so we do that for now and then extend
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the analysis to probability distributions later in the section. We do this because the case of
ρ > 0 turns out to be quite instructive. In this case, the LST of f can be written as follows:

ψf (s) =

∫ ∞
0

e−sxdf(x)

= ρ

∫ ∞
0

e−sxxρ−1dx

= ρs−ρ
∫ ∞
0

e−sx(sx)ρ−1d(sx)

= ρs−ρΓ(ρ) = s−ρΓ(ρ+ 1),

where the last line uses the Gamma function Γ, which is a continuous extension of the
factorial function to the real numbers defined as Γ(z) :=

∫∞
0
e−ttz−1dt and satisfying

Γ(n) = (n− 1)! for n ∈ Z and zΓ(z) = Γ(z + 1).
The calculation in this example reveals something exciting. The LST of a function f with

a power law (as x→ ∞) also behaves like a power law (as s ↓ 0). This is exciting because it
suggests that one can potentially understand properties of the tail of a distribution by studying
properties of the LST near zero. Of course, one could potentially obtain this information by
inverting the LST, but that is typically very involved and cannot be done in closed form apart
from a few special cases. In contrast, in this example, the tail behavior of f can be obtained
with a simple observation about ψ.
However, before getting too excited, it is important to remember that, so far, we have only

seen this behavior in the case of specific f following a power law with a positive index.
Thus, the question becomes:

Do regularly varying distributions have regularly varying transforms?

If so, it would be quite powerful since it is often the case that one can derive the LST in
situations where it is not tractable to work directly with the distribution.
Fortunately. the answer is “yes.” Results of this form are called Abelian and Tauberian

theorems, and there is a wide variety of these theorems for the LST and the characteristic
function. As a first example, we present Karamata’s Tauberian theorem, which is the direct
extension of the power-law example above for the case of increasing functions.

Theorem 2.15 (Karamata’s Tauberian Theorem) Let f be a nonnegative right-continuous
increasing function such that f(x) = 0 for x < 0, and let ρ ≥ 0. Then, for slowly varying
L(x), the following are equivalent:

f(x) ∼ L(x)xρ (x→ ∞), (2.7)
ψf (s) ∼ Γ(ρ+ 1)L(1/s)s−ρ (s ↓ 0). (2.8)

This result says something very powerful. Informally, it says that if the behavior of the
LST as s ↓ 0 is approximately a power law, then the corresponding function is also a power
law with the same index. Further, given the representation of regularly varying functions in
Theorem 2.8, this can be interpreted in a different light as well. In particular, since (2.7)

https://doi.org/10.1017/9781009053730.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009053730.003


46 Scale Invariance, Power Laws, and Regular Variation

characterizes regularly varying functions, the theorem states that regularly varying functions
are exactly those that have LSTs that are regularly varying around zero.
Though Theorem 2.15 is commonly called a Tauberian theorem, it actually includes both

a Tauberian theorem and an Abelian theorem. In particular, the direction showing that (2.7)
implies (2.8) is called an Abelian theorem, and the reverse direction is a Tauberian theorem.
The Tauberian direction is typically harder to prove, which is why such theorems are typically
referred to as Tauberian theorems. We omit the proof of Theorem 2.15 here; the interested
reader is referred to Theorem 1.7.1 in [31].
Theorem 2.15 is powerful but does not yet give us exactly what we would like since it still

assumes that the index ρ is positive. Thus, it does not apply to regularly varying distributions
directly. However, it is possible to remedy this. In particular, the following is a more general
version of Karamata’s Tauberian theorem that uses a Taylor expansion of the LST in terms
of the moments of the distribution.

Theorem 2.16 Consider a nonnegative random variable X with distribution F. For n ∈
Z+, suppose that E [Xn] < ∞. Then for slowly varying L(x) and α = n + β where
β ∈ (0, 1), the following are equivalent:

F̄ (x) ∼ (−1)n

Γ(1− α)
x−αL(x) (x→ ∞), (2.9)

(−1)n+1

[
ψX(s)−

n∑
i=0

E [X i] (−s)i

i!

]
∼ sαL(1/s) (s ↓ 0). (2.10)

To interpret the statement of Theorem 2.16, note that if a nonnegative random variableX
satisfies E [Xn] <∞, then its LST can be expressed via a Taylor expansion as follows:

ψX(s) =
n∑
i=0

E [X i] (−s)i

i!
+ o(sn). (2.11)

The Abelian component of Theorem 2.16 states that if X is regularly varying with index
−α, where α ∈ (n, n + 1), then the o(sn) correction term in (2.11) is of the order of sα.
The Tauberian component makes the converse implication.
To understand this connection better, let us first consider the case n = 0. For this case,

Theorem 2.16 states that for α ∈ (0, 1),

F̄ (x) ∼ 1

Γ(1− α)
x−αL(x) ⇐⇒ ψX(s)− 1 ∼ −sαL(1/s).

Clearly, this statement applies to distributions with infinite mean. Consider, for example, the
Lévy distribution, which is parameterized by c > 0 and has LST ψ(s) = e−

√
2sc for s ≥ 0

[120]. Noting that as s ↓ 0, 1−ψ(s) ∼ −
√
2cs, Theorem 2.16 (specifically, the Tauberian

part) implies that the Lévy tail satisfies F̄ (x) ∼
√
2c

Γ(1/2)
x−1/2, that is, F̄ (x) ∼

√
2c
π
x−1/2.

The same conclusion can be arrived at by applying Karamata’s theorem to the Lévy density
function; see Exercise 1.
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Next, consider the case n = 1. In this case, Theorem 2.16 states that for α ∈ (1, 2),

F̄ (x) ∼ −1

Γ(1− α)
x−αL(x) ⇐⇒ ψX(s)− 1 + E [X] s ∼ sαL(1/s).

This statement in turn is applicable to distributions with a finite first moment, but an infinite
second moment.

Proof sketch of Theorem 2.16 We present here the proof of Theorem 2.16 for the case n =
0 to illustrate how Theorem 2.16 actually follows from Theorem 2.15. The case n ≥ 1 is
slightly more cumbersome, but follows along similar lines (see Exercise 10).
Let us first consider the Abelian direction. Accordingly, suppose that F̄ (x) ∼
1

Γ(1−α)x
−αL(x) for α ∈ (0, 1). Consider now the function g(x) =

∫ x
0
F̄ (y)dy, which

has LST ψg(s) = 1−ψX(s)

s
(checking this claim is left as an exercise for the reader). From

Karamata’s theorem (Theorem 2.10), note that

g(x) ∼ 1

(1− α)Γ(1− α)
x1−αL(x).

Since 1 − α > 0, we can now invoke Theorem 2.15 (specifically, the Abelian part) to
conclude that

ψg(s) =
1− ψX(s)

s
∼ Γ(2− α)

(1− α)Γ(1− α)
sα−1L(1/s),

which in turn implies thatψX(s)−1 ∼ −sαL(1/s) (note thatΓ(2−α) = (1−α)Γ(1−α)).
Next, consider the Tauberian direction, that is, suppose that ψX(s) − 1 ∼ −sαL(1/s),

which is equivalent to ψg(s) ∼ sα−1L(1/s). Invoking Theorem 2.15 (specifically, the
Tauberian part), we conclude that g(x) ∼ 1

Γ(2−α)x
1−αL(x). Finally, the monotone density

theorem (Theorem 2.11) implies that

F̄ (x) ∼ 1− α

Γ(2− α)
x−αL(x) =

1

Γ(1− α)
x−αL(x).

This completes the proof.
The proof for general n follows along similar lines; the Abelian direction involves apply-

ing Karamata’s theorem n + 1 times, while the Tauberian direction involves applying the
monotone density theorem n+ 1 times (see Exercise 10).

Karamata’s Tauberian theorem is only one of many Tauberian theorems that are useful
when studying heavy-tailed distributions. In particular, given that it relies on the LST, the
versions we have stated above are only relevant for distributions of nonnegative random vari-
ables. For other distributions, one needs Tauberian theorems for the characteristic function.
An example of such a Tauberian theorem is the following, which is due to Pitman [176] (see
also page 336 of [31]). Note that this Tauberian theorem uses only the real component of the
characteristic function, UX(t), that is,

UX(t) := Re(ϕX(t)) =

∫ ∞
−∞

cos(tx)dF (x).
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Theorem 2.17 (Pitman’s Tauberian Theorem) For slowly varying L(x), and α ∈ (0, 2),
the following are equivalent:

Pr (|X| > x) ∼ x−αL(x) as x→ ∞,

1− UX(t) ∼
π

2Γ(α) sin(πα/2)
tαL(1/t) as t ↓ 0.

While there are many versions of Abelian and Tauberian theorems for the characteristic
function, we choose to highlight this one because we make use of it later in the book in Chap-
ter 5 when introducing and proving the generalized central limit theorem. Like Karamata’s
Tauberian theorem, this result connects the tail of the distribution to the behavior of a “trans-
form” around zero, only in this case the “transform” considered is the characteristic function.
Note that, because this Tauberian theorem applies to the tail of |X| rather thanX , it cannot
be used to distinguish the behavior of the right and left tails of the distribution. Rather, it
provides information only about the sum of the two tails. However, because of this fact, it
deals only with the real part of the characteristic function, which makes it much simpler to
work with analytically. The interested reader can find more general Abelian and Tauberian
theorems in [31].
We have not focused on examples in this section; however, there are a number of illustra-

tive examples of how to apply the theorems in this section scattered throughout the book. Two
particularly important examples are in Chapter 5: we apply the Abelian part of Theorem 2.17
to prove the generalized central limit theorem, and the Tauberian part of Theorem 2.16 to
study the return time of a one-dimensional random walk.

2.4 An Example: Closure Properties of Regularly Varying Distributions
Regularly varying distributions play a central role in this book, showing up in nearly every
chapter. So, as you work through the book you will encounter a variety of applications of
the properties and theorems discussed in the previous sections of this chapter. For example,
regularly varying distributions play a foundational role in the generalized central limit theo-
rem discussed in Chapter 5, the analysis of a multiplicative processes in Chapter 6, and the
discussion of the extremal central limit theorem in Chapter 7.
Here, as a “warm-up” to those applications we provide some simple illustrations of the

properties we have studied so far in order to prove some important closure properties about
the set of regularly varying distributions. These closure properties, while intuitive, should
not be taken for granted. In fact, these closure properties do not always hold for the more
general classes of heavy-tailed distributions we study in the next two chapters.

Lemma 2.18 Suppose that the random variablesX and Y are independent, and regularly
varying of index −αX and −αY respectively.

(i) min(X,Y ) is regularly varying with index −(αX + αY ).
(ii) max(X,Y ) is regularly varying with index −min{αX , αY }.
(iii) X+Y is regularly varyingwith index−min{αX , αY }.Moreover, Pr (X + Y > t) ∼

Pr (max(X,Y ) > t) .
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Lemma 2.18 shows that the class of regularly varying distributions is closed with respect
to min, max, and convolution. These properties should be exactly what you should expect,
given the intuition that regularly varying distributions are generalizations of Pareto distribu-
tions. For example, the convolution of two Pareto distributions does not yield another Pareto
distribution, of course, but when one considers only the tail, the resulting convolution will
certainly continue to have a tail that decays like a polynomial, and thus be regularly vary-
ing. A similar intuition holds for both the min and max of two Pareto random variables.
Though the resulting distributions are certainly not Pareto distributions, they still have a tail
that decays like a polynomial, and thus are regularly varying.
While simple and intuitive, these closure properties often turn out to be powerful. For

example, the third property in Lemma 2.18 can be extended to the case of n i.i.d. regu-
larly varying random variables Yi, i ≥ 1 easily, that is, Pr (Y1 + Y2 + · · ·+ Yn > t) ∼
nPr (Y1 > t) (see Exercise 7). This fact is used crucially in our analysis of random walks in
Chapter 7, specifically in the proof of Theorem 7.6.

Proof of Lemma 2.18 We begin by using the representation of regularly varying distribu-
tions given by Theorem 2.8. SinceX and Y are regularly varying, there exist slowly varying
functions LX and LY such that Pr (X > t) = t−αXLX(t) and Pr (Y > t) = t−αY LY (t).
Now, using these representations, we can prove each closure property in turn.

(i) Note that Pr (min(X,Y ) > t) = Pr (X > t) Pr (Y > t) = t−(αX+αY )LX(t)LY (t).
Since the product of slowly varying functions is also slowly varying, Claim (i) of the
lemma follows.

(ii) Since {max(X,Y ) > t} = {X > t} ∪ {Y > t}, we have

Pr (max(X,Y ) > t) = Pr (X > t) + Pr (Y > t)− Pr (X > t) Pr (Y > t) . (2.12)

Without loss of generality, we can consider the following cases separately: αX < αY ,
and αX = αY .
If αX < αY , it follows from (2.12) that Pr (max(X,Y ) > t) ∼ Pr (X > t) , which
then implies thatmax(X,Y ) is regularly varying with index −αX .
If αX = αY , then it follows from (2.12) that Pr (max(X,Y ) > t) ∼ Pr (X > t) +
Pr (Y > t) , that is, Pr (max(X,Y ) > t) ∼ t−αX (LX(t) +LY (t)). Since the sum of
slowly varying functions is also slowly varying, it follows thatmax(X,Y ) is regularly
varying with index −αX .
This completes the proof of Claim (ii).

(iii) This final claim is the most involved. The first step in our proof is to establish an upper
bound and a lower bound on the probability of the event {X + Y > t}. Then we
analyze those bounds to obtain the result.
To begin, note that the event {X > t} ∪ {Y > t} implies {X + Y > t}. This gives
us the following lower bound.

Pr (X + Y > t) ≥ Pr (X > t) + Pr (Y > t)− Pr (X > t) Pr (Y > t) . (2.13)

Next, let us fix δ ∈ (0, 1/2). It is easy to see that the event {X + Y > t} implies the
event {X > (1 − δ)t} ∪ {Y > (1 − δ)t} ∪ {X > δt, Y > δt}. This implication,
along with the union bound, leads to the following upper bound.
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Pr (X+Y > t) ≤ Pr (X > (1−δ)t)+Pr (Y > (1− δ)t)+Pr (X > δt) Pr (Y > δt) .
(2.14)

Now, to complete the proof we consider the following two cases separately: αX < αY ,
and αX = αY .
Let us first consider the case αX < αY . It follows from (2.13) that

lim inf
t→∞

Pr (X + Y > t)

Pr (X > t)
≥ 1.

Similarly, it follows from (2.14) that

lim sup
t→∞

Pr (X + Y > t)

Pr (X > t)
≤ lim

t→∞

Pr (X > (1− δ)t)

Pr (X > t)
= (1− δ)−αX .

Letting δ approach zero, we conclude that Pr (X + Y > t) ∼ Pr (X > t) . This
implies that X + Y is regularly varying with index −αX , and also that
Pr (X + Y > t) ∼ Pr (max(X,Y ) > t) (since we have established in the proof of
Claim (ii) that Pr (max(X,Y ) > t) ∼ Pr (X > t)).
Finally, we consider the case αX = αY . In this case, using the same steps as above, it
can be shown that

Pr (X + Y > t) ∼ Pr (X > t) + Pr (Y > t) .

This, of course, implies that X + Y is regularly varying with index −αX , and also
that Pr (X + Y > t) ∼ Pr (max(X,Y ) > t) (we have established in the proof of
Claim (ii) that Pr (max(X,Y ) > t) ∼ Pr (X > t) + Pr (Y > t)).
This completes the proof of Claim (iii).

2.5 An Example: Branching Processes
Branching processes are a fundamental and widely applicable area of stochastic processes.
While they were born from the study of surnames in genealogy, at this point they have found
applications broadly in the study of reproduction, epidemiology, queueing theory, statistics,
and many other areas. Here we use one of the first, and most famous branching process mod-
els – the Galton–Watson process – as an illustrative example of the power of the properties
of regular variation that we have explored in this chapter.
Not only is the Galton–Watson model one of the most prominent examples of a branching

process, it has an interesting story behind it. As the story goes, Victorian aristocrats were
concerned about keeping their surnames from going extinct and wanted to understand how
many children they needed to have to ensure the survival of their name. This prompted Sir
Francis Galton to pose the following question in the Educational Times in 1873 [95]:

How many children (on average) must each generation of a family have
in order for the family name to continue in perpetuity?

Just a year later, Reverend Henry William Watson came up with the answer, and the two
wrote a paper [215]. By now, the model named after them has become the canonical model
of branching processes and has been used in wide-reaching areas from biology (see [11]), to
the analysis of algorithms (see [65]), to the spread of epidemics (see, for example, [35, 164]).
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The modern version of this model is defined formally as follows. In particular, a Galton–
Watson process {Xn}n≥0 is defined by

X0 = 1,

Xn+1 =
Xn∑
j=1

N
(n+1)
j (n ≥ 0),

where N (n+1)
j are i.i.d. random variables taking nonnegative integer values, distributed as

N. In the Victorian context, N was interpreted as the number of male children (since the
woman took the man’s surname at marriage) in a family, and Xn as the number of men in
the n+ 1st generation. Given this model, the question asked by Victorian aristocrats can be
studied by asking, given the distribution of N , will the process go on forever (i.e., Xn > 0
for all n) or will it go extinct (i.e., for some no, Xn = 0 for all n ≥ n0)? And, if it goes
extinct, how many total distinct descendants (across all generations) would exist?
It turns out that the answers to these questions depend on the expected number of male

children each person has, that is, µ := E [N ]. It is not hard to see that the probability of
extinction, η, is given by η = limn→∞ Pr (Xn = 0) . The foundational theorem for Galton–
Watson processes illustrates that there are three cases, depending on whether µ is greater
than, less than, or equal to 1. Basically, to have a positive probability of avoiding extinction,
the expected number of children of each generation needs to be strictly greater than one.

Theorem 2.19 The probability of extinction, η, in a Galton–Watson branching process
satisfies the following:

(i) Subcritical case: If µ < 1 then η = 1.
(ii) Critical case: If µ = 1 andN has positive variance, then η = 1.
(iii) Supercritical case: If µ > 1, then η ∈ (0, 1).

Note that in the subcritical case and the critical case, extinction is guaranteed (except in
the trivial case whereN equals 1 with probability 1). On the other hand, in the supercritical
case, the lineage has a positive probability of surviving in perpetuity. Theorem 2.19 is clas-
sically proven using an approach based on probability generation functions; and we refer the
interested reader to [104, Section 5.4] for the proof.
While the subcritical and critical cases are identical from the standpoint of extinction prob-

ability, they differ in terms of the distribution of the total number of distinct male descendants
Z :=

∑
n≥0Xn as well as the time to extinction τ := min{n : Xn = 0} (see [20, 103]).

Here, our goal in studying branching processes is to illustrate the power of the Tauberian
theorems we have introduced in this chapter; thus, we study the tail of Z in the critical case.
Specifically, we prove the following result.

Theorem 2.20 Suppose that µ = 1 and thatN has finite, positive variance. Then, the total
number of distinct male descendants, Z, is regularly varying with

Pr (Z > t) ∼ 1√
π(E [N2]− E [N ])

t−1/2.
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Before moving to the proof, it is important to notice that the total number of distinct male
descendants has the following recursive structure:

Z
d
= 1 +

N∑
i=1

Zi, (2.15)

where {Zi} are i.i.d. random variables with the same distribution as Z and independent of
N. To see this, think of N as the number of descendants of the “first” individual, and Zi
as the number of descendants of his ith child. That each Zi has the same distribution as Z
is referred to as the branching property. In the proof that follows, we exploit this branching
property to characterize the tail of Z.

Proof of Theorem 2.20 Since we are going to apply a Tauberian theorem, the transform
of Z is important. Here, we use the LST of Z, denoted by ψZ . Let GN(t) := E [tN ] =∑∞

i=0 t
iPr (N = i) denote the probability generating function of N. It is now not hard to

show, using (2.15), that ψZ satisfies the following functional equation:

ψZ(s) = e−sGN(ψZ(s)); (2.16)

see Exercise 13.
Analogously to the LST, the probability generating function admits the following Taylor

expansion around t = 1:

GN(t) = 1 +m1(t− 1) +m2(t− 1)2(1 + o(1)) as t ↑ 1,

where m1 = E [N ] , m2 = E [N2] − E [N ] . Given that N has finite, positive variance,
m2 > 0 (see Exercise 14) and using the fact that m1 = µ = 1 in the critical case that we
are studying, the above expansion simplifies to

GN(t) = t+m2(t− 1)2(1 + o(1)).

Now, we combine this with the functional equation for ψZ(s) to obtain

ψZ(s) = e−s[ψZ(s) +m2(1− ψZ(s))
2(1 + o(1)) as s ↓ 0. (2.17)

Our goal is to apply Theorem 2.16, but we must first simplify the above expression. To do
so, we use a few Taylor expansions. First, note that e−s = 1 − s(1 + o(1)). Similarly, we
also know that ψZ(s) = 1 − o(1), since the total size of Z is finite with probability 1 by
Theorem 2.19. Now, if we first move the term e−sψZ(s) to the left-hand side of (2.16) and
then use the two expansions, we get

s = m2(1− ψZ(s))
2(1 + o(1)) as s ↓ 0.

It follows that

1− ψZ(s) ∼
√
s/m2 as s ↓ 0.

Finally, we are ready to apply Theorem 2.16 with n = 0, α = 1/2, and L(x) = 1/
√
m2.

Using the identity Γ(1/2) =
√
π, we get

Pr (Z > x) ∼ 1
√
πm2

x−1/2 as x→ ∞.
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2.6 Additional Notes
In the chapter we gave an overview of several properties of regularly varying distributions.
While we did not focus much on regularly varying functions, the properties we described
also apply more broadly. However, the interested reader can find much more on regularly
varying functions in [31]. That book also contains results for sums that are discrete analogues
of Section 2.3.1. That section is the only section in this chapter that assumes continuity.
While we described many analytic and closure properties of regularly varying distribu-

tions within this chapter, there are many other useful properties we did not have space to
cover. For example, with respect to closure properties, an additional important property is
the closure of products of random variables, for which we refer to one of the exercises at
the end of the chapter; see also [63]. In addition, it can be shown that certain generalized
inverses of regularly varying distributions are still regularly varying. On the analytical side,
an important property that should be mentioned is the uniform convergence theorem, stating
that the convergence of L(at)/L(t) in the definition of slowly varying functions is neces-
sarily uniform on any interval a ∈ [g, d] for 0 < g < d <∞. For an overview of these and
many other properties, we refer to the landmark monograph on regular variation [31].
We have focused on the most classical version of regularly varying distributions in this

chapter, but it is important to be aware that there are several important extensions of regular
variation, some of which will appear in later chapters. Two particularly useful extensions
are (i) intermediate regular variation and (ii) dominated variation. A function f is of
intermediate regular variation if

lim
ϵ↓0

lim sup
x→∞

f(x(1 + ϵ))

f(x)
= lim

ϵ↓0
lim inf
x→∞

f(x(1 + ϵ))

f(x)
= 1; (2.18)

and a function f is of dominated variation if

lim sup
x→∞

f(xa)

f(x)
<∞, lim inf

x→∞

f(xa)

f(x)
> 0, (2.19)

for every a > 0.
It is straightforward to see that regularly varying functions of index ̸= 0 satisfy both

intermediate regular variation and dominated variation. In some particular situations, for
example in queueing theory, the assumption of intermediate regular variation is the most
general possible assumption for particular approximations of the tail to hold, or for particular
proof methods to work; see [33, 165] for examples.
In statistical applications such as establishing asymptotic normality of estimators, it is

convenient to consider a subclass of slowly varying functions, which is the class of second-
order slowly varying functions. In particular, a function L is second-order slowly varying of
index γ if there exists a function g that is regularly varying with index γ such that

lim
t→∞

L(tx)

L(t)
− 1

g(t)
= K

xγ − 1

γ
. (2.20)

See, for example, Chapter 2 in [31].
As we have mentioned already, regular variation plays an important in queuing theory.

In addition, the concept of regular variation is also paramount in financial and insurance
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mathematics [75], [17]. Another application area where the concept of scale-freeness and
regular variation is important is that of complex networks, where the definition of power
laws versus the more flexible class of regularly varying distributions sometimes seems to
cause some confusion; see the discussion in [212]. For an introduction to the field of complex
networks, see [23]. In Chapter 6 of this book, we come back to this application, when we
discuss the mechanism of preferential attachment as a classical example of the emergence of
heavy-tailed phenomena.
Regular variation will reappear at many other places in this book. A non-exhaustive list

of examples is

l Chapter 3, where we use regularly varying distributions to investigate the behavior of
random sums.

l Chapter 4, where we apply regularly varying distributions to study residual life and
illustrate a connection between slowly varying functions and long-tailed distributions.

l Chapter 5, where we use Tauberian theorems to derive the generalized Central Limit
Theorem.

l Chapter 6, where we use regular variation to understand variations of the multiplicative
Central Limit Theorem.

l Chapter 7, where characterizing the classes of distributions that admit a limit law for their
maxima rely on analytic tools of regular variation, as does the analysis of the all-time
maximum of a random walk with negative drift.

l Chapters 8 and 9, where regular variation plays a key role in the development of statistic
tools for estimating heavy-tailed distributions from data.

2.7 Exercises
1. Show that the following distributions are asymptotically scale invariant (i.e., regularly

varying).
(a) The Cauchy distribution.
(b) The Burr distribution.
(c) The Lévy distribution.
The definitions of these distributions can be found in Section 1.2.4.

2. Consider a distribution F overR+ with finite mean µ. Recall that the excess distribution
corresponding to F, denoted by Fe, is defined as

F̄e(x) =
1

µ

∫ ∞
x

F̄ (y)dy.

If F ∈ RV(−α) for α > 1, show that Fe ∈ RV(−(α− 1)). Specifically, show that

F̄e(x) ∼
x

α− 1
F̄ (x).

3. Prove that the LogNormal distribution is not regularly varying.
4. Prove Lemma 2.7.
5. Prove Theorem 2.14.
6. Prove that if the function f satisfies xf ′(x) ∼ ρf(x), then f ∈ RV(ρ).

Hint: Use the Karamata representation theorem (Theorem 2.12).
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7. Suppose that X1, X2, . . . , Xn are i.i.d. regularly varying random variables with index
−α, where n ≥ 2. Prove that

Pr (X1 +X2 + · · ·+Xn > x) ∼ nPr (X1 > x) .

8. Suppose that the random variablesX and Y are independent, withX ∈ RV(−αX) and

Pr (Y > t) = o(Pr (X > t)) (t→ ∞).

Prove thatX + Y ∈ RV(−αX).
9. Suppose that the random variable X ∈ RV(−α). Show that the same property holds

for its integer part ⌊X⌋.
10. Prove Theorem 2.16 for the case n = 1. Specifically, for a nonnegative random variable

with finite mean, prove that for α ∈ (1, 2),

F̄ (x) ∼ −1

Γ(1− α)
x−αL(x) ⇐⇒ ψX(s)− 1 + E [X] s ∼ sαL(1/s).

Note: The above exercise should give the reader an idea of how to prove Theorem 2.16
for general n.

11. LetX be a nonnegative random variable of which the distribution functionF is regularly
varying with index −α, and let Y be a random variable independent of X for which
E[Y α+ϵ] <∞ for some ϵ > 0. Show that

Pr (XY > t)

Pr (X > t)
→ E [Y α] (2.21)

as t → ∞. [Hint: condition on the value of Y and use the condition E[Y α+ϵ] < ∞
and a useful property of slowly varying functions to justify the interchange of limit and
integral.]

12. Suppose that f(t) is regularly varying of index α > 0. Define f←(x) = inf{t : f(t) =
x}. Prove that f←(x) is regularly varying of index 1/α.

13. Suppose that {Xi}i≥1 is a sequence of i.i.d. random variables. The random variable N
takes nonnegative integer values, and is independent of {Xi}i≥1. LetGN(·) denote the
probability generating function corresponding toN.Define SN =

∑N
i=1Xi. Prove that

ψSN
(s) = GN(ψX(s)).

Here, ψY (·) denotes the LST corresponding to random variable Y.
14. Suppose that the random variableN takes nonnegative integer values. If the variance of

N is positive and finite, show that E [N2] > E [N ] .
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