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MODULARITY* IN LIE ALGEBRAS

by K. BOWMAN and V. R. VAREA

(Received 1st February 1995)

A subalgebra V of a Lie algebra L over a field F is called modular* in L if U satisfies the dual of the modular
identities in the lattice of subalgebras of L. Our aim is the study of the influence of the modular* identities
in the structure of the algebra. First we prove that if the modular* conditions are imposed on an ideal of L
then every element of L acts as an scalar on this ideal and if they are imposed on a non-ideal subalgebra U
of L then the largest ideal of L contained in U also satisfies the modular* identities. We determine Lie
algebras having a subalgebra which satisfies both the modular and modular* identities, provided that either
L is solvable or char(F) / 2, 3. As immediate consequences of this result we obtain that the existence of a co-
atom satisfying the modular* identities in the lattice C(L) forces that the lattice C(L) is modular and that
the modular* identities on any subalgebra U forces that U is quasi-abelian. In the case when L is supersolva-
ble we obtain that the modular* conditions on any non-ideal of L are enough to guarantee that C(L) is
modular. For arbitrary fields and any Lie algebra L, we prove that the modular* conditions on every co-atom
of the lattice C(L) guarantee that C(L) is modular.

1991 Mathematics subject classification: 17B05.

1. Introduction

Throughout L will denote a finite dimensional Lie algebra over a field F. We say
that L is almost-abelian if L has a basis a, an,x with product given by [a,, ay] = 0
and [a,, x] = a, for every i,j. If L is either abelian or almost-abelian we say that L is
quasi-abelian. The core of a subalgebra S of L, denoted by SL, is the largest ideal of L
contained in S. If SL = 0 we say S is core-free in L.

A subalgebra U of L is called modular in L if it is a modular element in the lattice
of subalgebras of L; that is

{U, B) n C = (B, U n C) for all subalgebras B < C

and

(U,B)C\C = (BnC,U) for all subalgebras U < C.

Here (X, Y) denotes the subalgebra of L generated by X and Y. (The easiest example
of modular subalgebras are the subalgebras Q of L such that [Q, V\ c Q + V for every
subspace V of L, such subalgebras are called quasi-ideals). Quasi-ideals have been
studied in [1], [5] and [15]. The only known examples of modular subalgebras which
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are not quasi-ideals are the one dimensional subalgebras of the three dimensional
non-split simple Lie algebras and the standard maximal subalgebra of the hamiltonian
Lie algebra H(2:l: O(y))2 (see [16]).

Although many properties of modular subalgebras have been obtained (see [2, 6, 7,
13, 14, 16]) the general problem of determining the Lie algebras with modular
subalgebras is still open. One of the known results is that every modular subalgebra U
of L is a quasi-ideal of L, except when L is three dimensional non-split simple,
provided that either L is solvable or char(F) = 0 or L is restricted and F is algebraically
closed of characteristic p > 7 (see [16]). So, under the cited conditions, if U is core-free
and modular in L then L is either almost-abelian, three-dimensional non-split simple
or a Zassenhaus algebra (see [1]). For perfect fields of characteristic different from two
or three, it is also known that if a minimal subalgebra A of L is modular then either
A < L or L is either almost-abelian or three dimensional non-split simple (see [13]) and
that if a rank one simple subalgebra of L is modular then it must be an ideal of L
(see [15]).

The modular condition can be dualised to give, a subalgebra U of L is called
modular* in L if

(U,B)nC= (B,UnC) for all subalgebras B < C

and

(U n B, C) = {B, C) n U for all subalgebras C <U.

Modular* subalgebras have been introduced in [3]. Note that if U is a maximal
subalgebra of L and modular* in L then U is modular in L. Dually, every minimal
subalgebra of L which is modular in L is modular*.

The easiest example of subalgebras satisfying the modular* identities are the
subalgebras U such that (u, S) = ((u)) + S for every subalgebra S of L and u e L, where
((«)) denotes the subspace of L generated by u; in other words, the subalgebras U such
that ((«)) is a quasi-ideal of L for every u e U (these subalgebras will be called strong
quasi-ideals). We will say that an ideal V̂ of L is a strong ideal if ((a)) is an ideal of L
for every a e N. We have the following chains of implications:

strong ideal

a-
ideal

=>• strong quasi-ideal

=> quasi-ideal

==> modular*

=> modular

In this paper, first we characterize quasi-ideals which are modular* and cores of
modular* subalgebras. We show that if a quasi-ideal is modular* in L then either it is
a strong ideal or L is almost-abelian. We prove that the core of a modular* subalgebra
of L is also modular* and it is a strong ideal. We are able to characterize Lie algebras
having subalgebras which are both modular and modular*, in the cases when either
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char(F) ^ 2,3 or L is solvable. Then, as maximal and modular* subalgebras are
modular, Lie algebras having a maximal and modular* subalgebra will be determined.
After that, we will be able to obtain that every modular* subalgebra must be quasi-
abelian, in those cases. In the general case, we obtain that the modular* conditions on
every maximal subalgebra of L force that the £(L) is modular. Some similar questions
have been looked at by Towers in [11], however the approach is quite different.

It is known that for fields of characteristic different from two or three, the lattice
£(L) is modular if and only if L is either quasi-abelian or a /z-algebra (this means that
every proper subalgebra of L is one dimensional), see [9] or [18, Corollary 5]. If F is
perfect and char(F) ^ 2, 3 then every //-algebra is three dimensional non-split simple
(see [6, Proposition 1]).

Finally in this section we give two easy lemmas that will be useful throughout this
paper.

Lemma 1.1. If N is a proper subalgebra of L for which [n, x] e ((«)) for some n e N
and all x e L — N, then ((n)) is an ideal of L.

Proof. Let m e N. Then m + x g N, so [n, m + x] e ((«)), whence [n, m] e ((«)). •

Lemma 1.2. If Q is a proper subalgebra of L for which [q, x] e ((<?)) -I- ((x)) for some
q e Q and all x s L — Q, then ((q)) is a quasi-ideal of L.

Proof. Let r e Q. Then r + x £ Q, so [q, r + x] e ((q)) + ((r + x)), whence [q, r] e
{((<?)) + (W) + ((x))} n Q = ((q)) + ((r)). •

2. Quasi-ideals and modular* subalgebras

We begin studying relationships between quasi-ideals and modular* subalgebras.
Examples of modular* which are not strong quasi-ideals are the following: (i) every
proper subalgebra of a three dimensional non-split simple Lie algebra, (ii) every one
dimensional subalgebra of L contained in A, being L = A + ((x)) where A is an abelian
minimal ideal of L. We note that the subalgebras cited in (i) and (ii) above are not
quasi-ideals.

Lemma 2.1. An ideal N of a Lie algebra L is a strong ideal if and only if N is abelian
and each element of L acts as a scalar on N.

Proof. Suppose that N is a strong ideal. We may assume dim N > 1. Let x, x'
be linearly independent elements of N. We see that [x, x'] e ((x)) n ((x')) = 0. This
yields that N is abelian. Moreover, for each element y e L — N, we have
[x, y] = Ax, x'y = fix and [x + x', y] = a(x + x'), where )., fi,aeF. This yields that
/ = (i. Therefore each element of L — N acts a scalar on N. The converse is clear. •
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Lemma 2.2. If Q is a strong quasi-ideal of L, then either Q is a strong ideal or L is
almost-abelian.

Proof. Assume Q is a strong quasi-ideal and that there exists q e Q such that ((<?))
is not an ideal of L. Then, from Theorem 3.6 of [1] it follows that L is almost-abelian.
Then assume ((q)) < L for every q e Q. Clearly, Q is an abelian ideal of L. Hence Q is
a strong ideal of L. •

Proposition 2.3. Let Q be a proper quasi-ideal of a Lie algebra L which is modular*
in L. Then, Q is a strong quasi-ideal and so either Q is a strong ideal or L is almost-
abelian.

Proof. Assume Q is modular*. Let q e Q and x e L — Q. We have [q, x] e [Q, x] =
Q + ((x)). So, [q, x] - X(q, x)x e Q for some ?.{q, x) e F. Put C = ((q)) and B = ((x)). We
have (QHB.C) =C = ((<?)), and [q, x] - k(q, x)x e {B, C) n Q. Now, by using the
second modular* identity we obtain q e ((<?)) thus [q, x] e ((q)) + ((x)). Thus ((q)) is a
quasi-ideal of L for every q e Q by Lemma 1.2. Hence, Q is a strong quasi-ideal. The
last assertion in the proposition follows from Lemma 2.2. •

Proposition 2.4. Let U be a proper modular* subalgebra of L. Then the following
holds:

(i) UL is a strong ideal of L.
(ii) UL = {u € U I ((u)) < L}.

Proof, (i) Let ue UL and x e L - U. Put C = ((u)) and £ = ((x)). From the second
modular* identity we have ((u)) = C = (B, C) D U = (u, x) n U. As [/L is an ideal of
L, we have [u, x] e C/L n (u, x) n C/. Therefore, [u, x] e ((u)). Therefore by Lemma 1.1,
((«)) < L for every u e UL. So that C/L is a strong ideal of L.

(ii) Write /C = {u e (7 | ((u)) < L}. From (i) it follows UL < K. Let u,veK. Clearly,
[u, v] = 0 and Au e /C for every A e F. Now we prove that u + veK. To do that take
x e L — K. By the second modular* identity, we find (u + v, x) D U = ((u + y)). Since,
[u + v, x] e 1/ fi (u + u, x), we get [M + v, x] e ((u + u)). So that ((w + u)) < L. Therefore,
K is an ideal of L. Thus K < UL. This completes the proof. •

We say that an ideal N of L is supersolvably immersed in L if every chief factor of
L below N is one dimensional.

Corollary 2.5. Let U be a proper modular* subalgebra of L. Then the following
holds:

(i) UL + ((>0) is quasi-abelian for every y e L.
(ii) UL is supersolvably immersed in L.
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3. The solvable case

In this section we determine modular and modular* subalgebras in solvable Lie
algebras L over any field. First we consider the case when L is supersolvable. In this case
we obtain that if a non-ideal of L is modular* then L is almost-abelian. Then, by using
results of the previous section we will be able to prove that if a solvable Lie algebra L
has a non-ideal, modular and modular* subalgebra then it is almost-abelian. From this
it is easy to obtain that if a maximal subalgebra of L satisfies the modular* identities
then L is almost-abelian and that every modular* subalgebra of any solvable Lie algebra
is quasi-abelian. The results in this section will be used in the next section.

We begin with the following

Lemma 3.1. Let L be any Lie algebra and let U be modular* in L. Then for every
x e L— U and 0 / u e U. the subalgebra ((x)) is maximal in (u, x).

Proof. Let M be a maximal subalgebra of (u, x) containing ((x)). By using the
second modular* identity, we obtain

This yields, UnM <UD(u,x) - ((x)). Since M ^ (u, x), it follows u&M. Hence,
U H M — 0. Now, by using the first modular* identity, we obtain

(U,x)DM = M = {x,UHM) = ((x)).

Hence, ((x)) is maximal in {u, x). •

Theorem 3.2. Let L be supersolvable over any field and let U be a proper modular*
subalgebra of L. Then, either U is a strong ideal of L or L is almost-abelian.

Proof. We want to prove that U is a quasi-ideal of L. First take u e U and
x e L — U. By Lemma 3.1, ((x)) is maximal in (u, x). As (u, x) is supersolvable, we have
that ((x)) has codimension one in (u, x). Therefore [u, x] e ((")) +((x)). Therefore U is
a quasi-ideal of L by Lemma 1.2. Then the result follows from Proposition 2.3. •

Now we can determine the solvable Lie algebras having a modular and modular*
subalgebra.

Theorem 3.3. Let L be solvable over any field F. Let U be a proper subalgebra of L
which is modular and modular* in L. Then either U is a strong ideal or L is almost-
abelian.

Proof. If U<L, then U is a strong ideal by Proposition 2.4. Suppose then U is
not an ideal of L. Since U is modular in L, by Corollary 1.2 of [14] it follows that
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L/UL is almost-abelian. As U is modular* in L, by Corollary 2.5(ii) it follows that
UL is supersolvably immersed in L. Then we have that every chief factor of L has
dimension one. So, L is supersolvable. Therefore, by Theorem 3.2 it follows that L is
almost-abelian. •

Next we determine the solvable Lie algebras having a maximal subalgebra which is
modular*.

Corollary 3.4. Let L be solvable over any field. Then the following are equivalent:
(i) L has a maximal subalgebra which is modular* in L.

(ii) The lattice £(L) of all subalgebras of L is modular.
(iii) L is quasi-abelian.

Proof, (i) implies (iii): Suppose that M is maximal and modular* in L. Then, we
have that M is also modular in L. Therefore, by Theorem 3.3, either M is a strong
ideal or L is almost-abelian. In the former case, we have dim L/M = 1 and by
Corollary 2.5 it follows that L must be quasi-abelian. Clearly, (iii) implies (ii). If £(L)
is modular, then every subalgebra of L is modular and modular* in L. So, (ii) implies
(i). The proof is complete. •

As an immediate consequence of the above corollary we have

Corollary 3.5. Let L be solvable over any field. Then every proper subalgebra of L
which is modular* in L is quasi-abelian.

Proof. Suppose that U < L is modular* in L. Take a subalgebra M of L containing
U such that U is maximal in M. Then, by Corollary 3.4, M is quasi-abelian. Therefore,
U is quasi-abelian too. •

4. The non-solvable case

In this section we consider the case when the Lie algebra L is nonsolvable over a
field F with char(F) ^ 2, 3. We obtain that if L has a non-ideal, modular and modular*
subalgebra then every proper subalgebra of L is one dimensional (such a Lie algebra
is called a fi-algebra). Then, by using results of the previous sections, it is easy to prove
that if L has a maximal subalgebra satisfying the modular* identities then L must be
a //-algebra and that every modular* subalgebra of any Lie algebra is quasi-abelian.

The proof of the main result depends heavily on results on supersimple Lie algebras
which appear in [12] and [18]. A Lie algebra L is said to be supersimple if every
subalgebra of L of dimension greater than one is simple. Every /z-algebra is
supersimple. More generally, a Lie algebra of dimension greater than one is
supersimple if and only if it has no two dimensional subalgebras (Proposition 3.2 of
[12]). If char(F) ^ 2, 3 and if L is supersimple, then for each O ^ x e L there exists
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y e L such that L = (x, y) (Theorem 4 of [18]). We recall that for perfect fields of
characteristic different from two or three, the only supersimple Lie algebras are the
three dimensional non-split simple (it follows from Proposition 1 of [6]).

First we consider core-free, modular and modular* subalgebras of a nonsolvable
Lie algebra L. More generally, we give the following

Lemma 4.1. Let L be a Lie algebra over an arbitrary field F. Let U be a core-free
subalgebra of L such that (u, z) is either two dimensional or a \i-algebra for every
0 ^ w e U and z e L— U. Then one of the following holds:

(i) L is almost-abelian.
(ii) (u, z) is a ^-algebra for every O ^ u s U and z e L- U.

Proof. Pick 0 ^ u e U. Suppose that (u, z) is two dimensional for every z e L — U.
Then [u, z] e ((u)) + ((z)). Hence ((u)) is a quasi-ideal of L by Lemma 1.2. As U is core-
free, ((u)) is not an ideal of L. So, by [1] it follows that L is almost-abelian. Now
suppose that there exist x, z e L — U such that (x, u) is two dimensional and (u, z)
is a //-algebra. Write Q = (x,u) and T-(u,z). We have QnT = ((u)). Let us first
suppose ((u)) < Q. Then [x, u] — txu where a e F. Since [x + z, u] = aw + [z, u] and since
[x 4-z, u] e (x + z, "), we have [z, M] e (x 4-z, u). So, (u,[z,u\) — T < (x +z,u). This
yields that (x + z, u) has dimension greater than two. Then, (x + z, u) must be a
//-algebra. Therefore, T = (x + z, u). But then we have x e T and so Q < T, which
is a contradiction. Now suppose that ((u)) is not an ideal of Q. Let q 6 Q
such that ((<?)) < Q. Then [<?, u] = 0q where /? € F and ((«)) # ((<?)). We have
[q + z,u] = Pq + [z, u] e {q 4- z, u). This yields

-0z - [u, z] = -jSz + [z, u] = /?g + [z, u] - 0(g + z) e (q + z, u).

So that, 0^/?z + [u, z] 6 (q + z, u>. Since 0z + [u, z] £ ((«)), we have T=(Pz+ [u, z], u) <
(q + z, u). Therefore, {q + z,u) has dimension greater than 2. It follows that (q + z,u)
must be a /i-algebra. Hence T = (<? + z, «)• This yields, qe 7"ng = ((u)), which is a
contradiction. We deduce that either L is almost-abelian or (u, z) is a //-algebra for
every 0 ^ u e U and z e L— U. •

Proposition 4.2. Le/ F 6e any field of characteristic different from two or three and
let L be a non-solvable Lie algebra. Assume that U is a proper core-free, modular and
modular* subalgebra of L. Then L is a \i-algebra.

Proof. Let us first suppose dim [7 = 1. Write U — ((")). In the case when F is
perfect, then Theorem 2.2 of [13] applies and L is three dimensional non-split. In the
case when F is not perfect we need to make a slight variation of the proof of that
theorem by using results of [17] and [18]. In the proof of Theorem 2.2 of [13] it is
proved that L has no two dimensional abelian subalgebras. Now we prove that L has
no two dimensional nonabelian subalgebras either. Before that we claim that U
satisfies the conditions in Lemma 4.1. Let Q^ueU and zeL—U. Since U is
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modular in L we have that U is maximal and modular in (u, z) (see [2]). Then we get
that (w, Z) is either two dimensional or a /i-subalgebra (see the proof of Theorem 2.2 of
[13]). Thus Lemma 4.1 applies and (u, z) is a //-algebra for every O^ueU and
z e L — U. Suppose that S is a two dimensional nonabelian subalgebra of L. Let x e S
such that ((x)) < S. Since £/ is self-normalizing, U ^ ((x)). Then (u, x) is a //-algebra
and U < (u, x) < (u, S). We can suppose without loss of generality that (M, S) = L. Let
0 ^ AT be an ideal of L. Pick 0 / y £ JV. We have that (U, y) f~l iV is a nonzero ideal of
([/, _y>. Since (C/,y) is simple, it follows U<N. But since U is self-normalizing in L
(see [2]), we get N — L. Therefore, L is simple. By the modularity of U it follows that S
is maximal in L. Since {u, x) is a //-algebra we have that x is not ad-nilpotent. This
yields that S coincides with the Fitting null component of ad x, which contradicts
Proposition 1.9 of [17]. Therefore L has no two dimensional subalgebras and hence L
is supersimple (Proposition 3.2 of [12]). As char(F) ^ 2, 3, by Theorem 4 of [18] there
exists z e L such that L = (u, z). We conclude that L is a //-algebra.

Next we prove that U must be one dimensional. Assume dim U > 1. Let L be a
counterexample of minimal dimension. By Proposition 2.3 and Lemma 2.1, U is self-
normalizing. So, by the minimality of L we have that U is a maximal subalgebra of L.
Now we claim that U is supersimple. To do that we prove that U has no two
dimensional subalgebras. Suppose that S is a two dimensional subalgebra of U and let
u, u be a basis for 5 with [u, u'] = <xu where tx e F. Let z e L- U. By the second
modular* identity we have ((«)) = U n (u, z). Now from the modularity of U it follows
that ((«)) is modular in (u, z). So, by Theorem 2.2 of [13] it follows that (u, z) is two
dimensional or a //-algebra. So, by Lemma 4.1, (u, z) is a /^-algebra for every 0 ^ u e U
and z e L — t/. On the other hand, we have

[u, u' + z] = [u, u'] + [u, z] = <xu + [u, z] e (u, u' + z).

This yields (u, [u, z\) < (u, u' + z). As (u, z) and (w, u + z) are both //-algebras, we have
(w, z) = (M, [U, Z]> = (u, u' + z). This yields u e (u, z) n U = ((«)), which is a contra-
diction. Therefore, U has no two dimensional subalgebras. The claim is proved.

For perfect fields of characteristic different from two or three, every supersimple
subalgebra is three dimensional non-split simple. So by Theorem 1.5 of [15] we have
U < L which is a contradiction. For arbitrary fields, we need to work more.

Next we prove that L is also supersimple. Assume not. Then by [12], L has a
subalgebra Q of dimension two. Since U is supersimple, S is not contained in U. Since
U is maximal and modular, we have [ / n g ^ O . Take O ^ u e U n Q and
x e Q, x g U. We have that (u, x) is two dimensional. By Lemma 1, it follows that L is
almost-abelian which is a contradiction. Now take any 0 ^ u e U. As char(F) = 2, 3
and L is supersimple, Theorem 4 of [18] applies and there exist an element v e L— U
such that L = («, v). But then we have (U n ((u)), u) = ((«)) whereas (u, u) n [/ = L and
so the second modular* identity does not hold for U. This contradiction shows that
dim U = 1 and hence the result. •

Theorem 4.3. Let F be any field of characteristic different from two or three. Let U
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be a proper modular and modular* subalgebra of a non-solvable Lie algebra L. Then
either U is a strong ideal or L is a ^-algebra.

Proof. If U is an ideal of L, then U is a strong ideal of L by Proposition 2.4. Then
suppose that U is not an ideal of L. We have that U/UL is a core-free, modular and
modular* subalgebra of L/UL. Then, by Proposition 4.2, it follows that L/UL is a
//-algebra. Assume UL / 0. By Corollary 2.5, UL is abelian and it is supersolvably
immersed in L. Thus we may suppose without loss of generality that dim U, — 1. Put
UL = ((a)). Let u e U - ((a)) and z e L — U. By the second modular* identity we have
((u)) = U d (u, z). This yields UL£(u, z). Since L/UL has no proper subalgebras of
dimension greater than one, L = UL + (u, z). Therefore, (u, z) is a //-algebra for every
u e U — ((a)) and z e L— U. On the other hand, we have that u, z and [u, z] act as
scalars on UL by Proposition 2.4 and Lemma 2.1. Thus [u, a] = ).a, [z, a] = 6a and
[[u, z], a] = pa where /, 0, p e F. By the Jacobi identity, we have pa — [[u, z], a] —
[u, [z, a]] + [[u, a], z] = 9[u, a] + )\a, z] = 0. Put y = [u, z]. We see that (u, z) = (u, y) and
that (a + u,y) is a //-algebra. Moreover we have [u, y] — [a + u, y] e (y, a + u). This
yields, {u, y) = (y, [y, u]} < (a + u, y) and hence (a + u, y) = (M, y). So, a e (u, y) = (u, z),
which is a contradiction. Thus UL = 0 and L is a /i-algebra. The proof is complete. •

Corollary 4.4. Let F be a perfect field of characteristic ^ 2, 3. Let U be a modular
and modular* subalgebra of a non-solvable Lie algebra L. Then either U is a strong ideal
or L is three dimensional non-split simple.

Now we are able to determine the nonsolvable Lie algebras having a maximal
subalgebra which is modular*.

Corollary 4.5. Let F be of characteristic ^ 2, 3. For a nonsolvable Lie algebra L the
following are equivalent:

(i) L has a maximal subalgebra which is modular * in L.
(ii) L is a ^.-algebra.

Proof, (i) implies (ii): Suppose M is a maximal subalgebra of L which is modular*
in L. We have that M is also modular in L.. So, by Theorem 4.3 it follows that either
Af is a strong ideal, or L is a //-algebra. In the former case, since M is maximal we
have that L is quasi-abelian by Corollary 2.5, which is a contradiction.

Clearly, (ii) implies (i). •

As an immediate consequence of the above corollary and Corollary 3.5 we have

Corollary 4.6. Let F be of characteristic / 2, 3. Then every proper subalgebra of a
Lie algebra L which is modular* must be quasi-abelian.

Proof. Let U < L be modular* in L. Take a subalgebra S of L containing U such
that U is maximal in S. If S is solvable, then by Corollary 3.5 we have that U is
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quasi-abelian. If S is nonsolvable, then by Corollary 4.5 it follows that S is a ^-algebra
and so dim U = 1. The proof is complete. •

5. Lie Algebras all of whose maximal subalgebras are modular*

In this section the ground field is an arbitrary field.

Theorem 5.1. Let L be a Lie algebra over any field. The following are equivalent:
(i) every maximal subalgebra of L is modular* in L,

(ii) every subalgebra of L is modular* in L,
(iii) every subalgebra of L is modular in L,
(iv) the lattice C(L) of all subalgebras of L is modular.

Proof, (i) implies (ii): By hypothesis, every maximal subalgebra of L is modular*
in L. By the height h(S) of a subalgebra S of L, we mean the minimum length h of
chains

S = Mh < Mh_, < . . . < M, < Mo — L

such that Mj is maximal in M,_, for every 1 < / < h. If h(S) = 1, then U is maximal
in L. So U is modular* in L. We proceed by induction on h. Then suppose that every
subalgebra of L having height less than or equal to h — 1 is modular* in L and let S be
a subalgebra of L such that h(S) = h. Pick x e M ^ . x ^ M j . , . Put B = ((x)),C = S
and U = Mh_]. We have U n B = 0 and so (U n B,C) = C = S. Also, we have
h(t/) < h — 1 and so U is modular* in L, by the inductive hypothesis. By the second
modular* identity, it follows that {B, C) C\U = S. Now take a maximal subalgebra T
of Mh_2 containing (B, C). We see that h(T) < h — 1 and so T is modular* in L.
Moreover, we have S < T P\Mh_x < Mfc_,. Since S is maximal in Mh_t, this yields either
S = T n Mh_t or MA_, < T < Mfc_2. In the former case, we find that S is modular* in
L since so are T and Mh_t ([3, Lemma 2.3]). In the latter case, we have T — Mh_} since
Mh_t is maximal in Mh_2 and T ^ M^_2. But then we get x e T < Mh_t, which is a
contradiction.

(ii) implies (iii): Let U < L. To show that U is modular in L, we only need to prove
that the second modular identity for U holds. To do that, take a subalgebra C of L
containing U and any subalgebra B of L. By hypothesis, C is modular* in L. By the
second modular* identity for C, it follows

(C nB,U) = (B, U) n c.

This is just what we needed to prove.
(iii) implies (ii): It is the dual of (ii) implies (iii). Obviously, (iii) and (iv) are

equivalent and (ii) implies (i). The proof is complete. •
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6. Lie Algebras all of whose minimal subalgebras are modular*

We recall that in lattice £ it said that Y covers X if X < Y and moreover
X < Z < Y is not satisfied by any Z. A lattice C is called upper semimodular if X
covers X n Y then X v Y covers Y.

By Lemma 2.12 of [3], a minimal subalgebra A of L is modular* if and only if S is
maximal in (S, A) for every subalgebra S of L such that A n S = 0. It follows that if
every minimal subalgebra of L is modular* the the lattice £(L) is upper semimodular,
by a known result of lattice theory (see [10]).

When char(F) ^ 2, 3, the subalgebra lattice of a Lie algebra is upper semimodular
if and only if it is modular (see [18]). For fields of characteristic three, the above result
is not true in general. Indeed, the example given by Gein in [6, Example 2] shows a
Lie algebra over a certain perfect field of characteristic three whose subalgebra lattice
is upper semimodular but not modular.
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