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TEMPERED DISTRIBUTIONS SUPPORTED ON 
A HALF-SPACE OF R^ AND THEIR FOURIER TRANSFORMS 

JEAN-PIERRE GABARDO 

Introduction. A fundamental problem in Fourier analysis is to characterize the be
haviour of a function (or distribution) whose Fourier transform vanishes in some par
ticular set. Of course, this is, in general, a very difficult question and little seems to be 
known, except in some special cases. For example, a theorem of Paley-Wiener (Theo
rem XII in [6]) characterizes exactly the behaviour of the modulus of a function in L2(R) 
whose Fourier transform vanishes on a half-line. A similar result is also available on 
the circle group for L2-functions whose Fourier coefficients corresponding to negative 
frequencies are all zero, (see [5], p. 53). Of course, in both cases, the connection with 
complex analysis is obvious, and that is, in fact, how those results were originally proved. 
A theorem of Szegô in prediction theory (see [2], [12]), related to the previous ones, is 
the following: Given a positive integrable function w on the circle group identified with 
the interval [0, 2TT), consider the Hilbert space L2 = L2(w) and the closed subspace M 
formed by the span of the set { elk9 ,k> 0} in L2, then 

inf II1+PIL2, = e x p ( ^ [l7T log w(6) d0\ . 

Again, this theorem was originally proved using methods of complex analysis, which 
make it difficult to extend to more general situations. In a 1958 paper in the Acta Math-
ematica ([4]), Helson and Lowdenslager found a method based on Hilbert spaces theory 
which enable them, among other things, to extend Szego's theorem to the /^-dimensional 
torus V1 or even any compact abelian group whose dual is ordered (see also [3], [5] and 
[7]). 

Our objective, in this paper, is to prove continuous versions on W of Szego's theorem 
(but only when the measure considered is absolutely continuous) and of the Paley-Wiener 
theorem. We will consider functions, and more generally distributions on Rn supported 
on a half-space of Rn, which is a set whose boundary is a (n — 1) dimensional hyperplace 
of Rn. An example of such hyperplane is the set of points in Rn whose first component is 
greater then or equal to zero. For simplicity, we will state most of the results in the case 
of that particular half-space and for n > 1. It will become quite clear to the reader how 
to formulate the theorems in the case of a general half-space or when n — 1. As in the 

Received by the editors April 26, 1989; revised July 27, 1990. 
AMS subject classification: Primary 42B10, Secondary 46F10. 
©Canadian Mathematical Society 1991. 
The author was supported by NSERC grant OGP0036564. 

61 

https://doi.org/10.4153/CJM-1991-005-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1991-005-6


62 JEAN-PIERRE GABARDO 

Helson-Lowdenslager paper, methods of Hilbert spaces theory are an essential ingredient 
of our proofs and the role played by complex analysis is reduced to a minimum. An 
important difference, however, is the use of techniques from the theory of distributions 
([9]). In particular, convolution equations "restricted" to a half-space play a crucial role 
in the following exposition. 

In the first section of this paper, we introduce some Hilbert spaces of tempered dis
tributions on R", whose Fourier transforms belong to a "weighted" L2-space on R", for 
a suitable weight. The existence and uniqueness of the solution of some "formal" con
volution equations restricted to a half-space are obtained in those spaces. Some density 
results are established in Section 2 and are used in Section 3 to find the explicit form 
of the solution of a particular restricted convolution equation which turns out to be the 
key ingredient for generalizing both Szego's theorem and the Paley-Wiener theorem on 
R" (see Theorem 3.5). The continuous version of Szego's theorem on Rn is established 
in section 4 (Theorem 4.3). The question of non-triviality of some spaces of tempered 
distributions is studied in section 5. In particular, a necessary and sufficient condition on 
a weight w is given for the existence of a non-trivial distribution in S'(Rn) supported in a 
half-space and whose Fourier transform belongs to the weighted L?-space corresponding 
to w (Theorem 5.3). The Rn version of the Paley-Wiener theorem is established in sec
tion 6 (Theorem 6.1) and an application to a problem of "uniqueness" is given (Corollary 
6.2). 

0. Notation. We will denote by Rn the «-dimensional euclidean space and by R" 
its dual group. If 1 < p < oo, Lp(Rn) is the usual Lebesgue space of complex-valued 
measurable functions/ on Rn such that 

fRn\f(x)\Pdx <oo9 

and L°°(Rn) is the space of complex-valued, essentially bounded, measurable function-
s on R". L1

1
0C(Rn) consists of those measurable functions on Rn whose restrictions to 

every compact set of R" are integrable. The following spaces from the theory of dis
tributions will be used here (see [9], for the precise definitions). S(Rn) is the Schwartz 
space of (complex-valued) infinitely differentiable rapidly decreasing functions on R" 
and 5'(Rn), the dual of 5(Rn), is the space of tempered distributions on Rn. If W is an 
open set of Rn, C™(W) denotes the space of infinitely differentiable functions on Rn 

with compact support contained in W. *E'(Rn) is the space of distributions on Rn hav
ing compact support. We will denote by Sa the Dirac mass concentrated at the point a of 
Rn, when a ^ 0; we will simply use the notation 8 for the Dirac mass at the origin. If 
if G 5(R) and xj; G J>(RW_1), their tensor product is the function if (g) -0 G S(Rn) defined 
by (<p (g) VOC*) = ^ (00 O0> f ° r * — (t>y) G Rn. The bracket < -, • > will always repre
sent the duality between distributions and test functions. We define the Fourier transform 
of<p G5(R")by 

0(£) = y B e-27""<*-*V(jc) dx, V£ G Rn 
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We will use the same notation for the Fourier transform in euclidean spaces of different 
dimension. This won't create any confusion since the underlying euclidean space will 
always be specified. If A is a set, will denote by %A the characteristic function of A. We 
will also use the abbreviation "a. e." for "almost everywhere". Finally, if T G 5'(Rn), the 
distribution f G 5'(Rn) is defined by 

<f(*), ¥>(*)> = {T(x),n-x))*V<peS(Rn). 

1. Some Hilbert spaces of tempered distributions and related convolution equa
tions. In this section, we will consider a tempered distribution Q on R" whose Fourier 
transform, <2, is a positive measurable function having the properties that, for some pos
itive integer m, 

(i.i) Q(oa + \z\2rmeL°°(Rn\ 
and 

(i.2) iû(or\i + \t\2rm£L\Rn). 

We can thus think of Q as a weight on R" and to each such weight we associate the 
following Hilbert space, denoted by H: 

(1.3) H= {ueS'(RnlueLlc(R
nl hH\Û(0\2Ô(0 dÇ < oo), 

with inner product given by 

(u,v)H = Jûnû(OW)Q(Od(i,Vu,v e H. 

It is easy to check that all the Hilbert space properties are satisfied by H. In particular, 
the completeness of H is a consequence of the fact that H is continuously imbedded in 
5'(Rn). Indeed, if u G //, we have, using the Cauchy-Schwarz inequality and (1.2), 

(L4) /ÉJ"(Old + l c i 2 r m / 2 ^< 

LEMMA 1.1. C£°(R") is a dense subspace ofH. 

PROOF. This result follows easily from the Riesz representation theorem. 
By Plancherel's formula, the inner product in H between two functions <p and i/> in 

S(Rn) has the form: (<£>, V> )H = ( Q * ip, t/i ). This leads us to define the following formal 
convolutions. 

/ , 
di 

& 0 ( i + lEl2> 2 y. 

'/ ' 
« H 
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DEFINITION 1.2. If u, v G H and R G T!(Rn), we define the convolutions Q * u, 

Q * u * v, or more generally, /? * Q * w, /? * Q * w * v, by the formulas: 

[Q * uf = QÛ,[Q*u* v]A = Quv 

[R * g * u]A = #(>«, [/? * Q * u * v]A = RQuv. 

Since, as it can be easily checked, all the products appearing on the right side of these 

equations define tempered functions, these formal convolutions are all well defined. It is 

also clear that such convolution products are automatically commutative and associative. 

Of course, because of the density of C^°(Rn) in / / , they can be seen as limits in S'(Rn) 

of "ordinary" convolutions, for which the "exchange" formula holds. 

In the following, we will always identify Rn with R x R"_1 and Rn with R x Rw_1. 

If x denotes a point in Rn, we will write x = (t,y), where f G R and y G R n l . Similarly, 

if £ G R n , ( = (7,r?), where 7 G R and 77 G R" - 1 . We will also denote by U the 

half-space 

(1.5) U= {x=(t,y)eRn,t> 0} . 

The following subspace of H will play an important role. 

DEFINITION 1.3. H+ is, by definition, the closure in H of the subspace C?(U). 

Of course, H+ is itself a Hilbert space with the inner product induced by H. 

In the following lemma and the discussion that follows, we will consider a fixed func

tion Xo £ 5(R) having the property that 

(1.6) Xo{t) = e-\Vt>0 

LEMMA 1.4. Given Xo G S(R) satisfying (1.6) and I/J„ G 5(RW_1), there exists a 

unique element u() G H+ such that 

(1.7) Q * u() = Xo ® fa on U 

(in the sense of distributions). Furthermore, we have, for some G eLl(Rn~l), that 

(1.8) Q(0\uo(0\2 = 7 + ^ 7 ) 2 ® G W ' V a - e - £ = (7,r/) G Rn, 

REMARK 1.5. Of course, when n — 1, i/V; and G are simply constants. 

PROOF. We define an anti-linear form L on H+ by L(v) = < v, Xo ® ^o >» f ° r all 

v G / /+ , where the bracket < -, • > denotes the duality between distributions in S'(Rn) 
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and functions in 5(R"). Because of the following inequalities, holding for an arbitrary 
element v in H, 

\L(y)\ = l(v,x0®V>0)l = l^„(Xo®Vv)A (Ov(O^I 

< 
1/2 

llmtûiodt} U \(Xo®1>o)\0\'' 

<Co\\4 L l 
di 

1/2 

<C||v||„, 

di 
1/2 

ô(Od + ki2)" 
it follows that L is a continuous anti-linear form on H+. Therefore, by the Riesz represen
tation theorem, there exists a unique element u0 G H+ satisfying for every <p G C™{U), 
(u0, (Ç)H = (Q * u0, (p) = (xo ® i>o, $), which yields (1.7). To prove (1.8), we define 
v0 G 5'(Rn) by v0 — R * u0, where R = ^ + 6. We have, thus, using the mentioned 
properties of our convolution product, that 

Q*v0 = Q*R*u0=R*Q*u0 

= R*(Xo®iJo)onU (by 1.7) 

= 0 onU (by 1.6). 

This shows that the support of Q * v0 is contained in Rn\ U and, since the support of vQ 

is contained in that same set, it follows that the support of Q * v0 * v0 is also contained 
in Rn\ U. (We used the fact that Q * v0 * v0 = l i m ^ o ^ * v0) * ( ^ + <p*)~ in 5'(Rn), 
if { (fk}k>\ is any sequence in C™(U) converging to u0 in H+. ) Since [Q * v0 * v j ~ = 
Q * v0 * v0, it follows that supp <2 * v0 * v0 C {x = (t,y) eRn ,t — 0}. Using the fact 
that Q * v0 * v0 G 5'(Rn), it is easily seen, using this last inclusion, that 

(1.9) 
0<k<K 

where S* G ^ R " " 1 ) , for all* G { 0, . . . , K}. 
By taking the Fourier transform of both sides of (1.9), we obtain thus that 

Q(0\UO\2 (1.10) 

Since v0(7) = (1 + 27rt"7) w0(7), we have also that 

\v0(0\2Q(0 

£ (27Ti7)*<8> &(!J). 
0<t<AT 

/ , ^ = jij^«)l20(0^ < 
1+(2TT7) 2 

By looking at the expression for |v0|
2<2 in (1.10), we see that K — 0 and that So G 

Ll(Rn-ll and we obtain thus (1.8) by letting G = S0. 
The main theorem of section 3 (THEOREM 3.5) gives an explicit expression for the 

function G in (1.8) in terms of the weight Q. The following lemmas will be useful for 
reducing that problem on Rn to a one dimensional one. 

https://doi.org/10.4153/CJM-1991-005-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1991-005-6


66 JEAN-PIERRE GABARDO 

LEMMA 1.6. Let u G S'(Rn) have the property that its Fourier transform, u, is a 
tempered function, that is, for some m G N, | w(£ )| (1 +1 £ 12)~m G Ll(Rn). Define, for a.e. 
77 G Rn_1, the distribution uv G 5'(R) by uv(l) = w(7,r?) , /o r7 G R. 

Then, the following are equivalent. 

(a) supp u C {x = (t,y) G Rn, f > 0 } . 
(b) V a.e. ry G Rn_1, supp w,, C [0,00). 

PROOF. Let us assume that (a) holds. If y G C£°((-oo,0)) and V G C^R" - 1 ) , 
then supp (/? ® ̂  CRn\D and, therefore, we have, by Plancherel and Fubini's theorem, 
that 

JR""1 UR <7,y/)<£(7)rf7NH*7)<fy = 0 

Since this equality holds for arbitrary ijj G C£°(Rn_1), we conclude that there exists a set 
A = A(ip) of (n — 1) dimensional Lebesgue measure zero, such that 

Vr? JÉ A, / ^ ( 7 ) (p(l)dl = 0 
•/R 

Because of the existence of a countable set { <fk} keZ °f function in C£° ((—00,0) ) which 
is dense in C£° ((—00,0) ), the last equality holds except for a set A of (n— 1 ) dimensional 
Lebesgue measure zero, but which does not depend on tp, yielding (b). Conversely, if (b) 
holds, then, going back to the computation in the first part of the proof and applying 
Fubini's theorem, we obtain that 

y^ G c~ ((o, 00)), vv> G O R " - 1 ) , ( 11, if ® v ) = 0, 

and (a) follows since finite sums of the form YlPk^^k where (pk G C£° ((—00, 0) ) and 
*pk G C™(Rn-{) are dense in C™(Rn\ 0). 

We now return to the problem of finding an explicit expression for G in (1.8). It is 
clear from (1.8) that G > 0 a.e. on Rn_1. The next lemma reduces the problem to a 
one-dimensional one and shows also that G = |i/)0|

2G0 where G0 > 0 a.e. on Rn_1. 
Before stating the lemma, we need to introduce the following family of weights on R, 
depending upon the parameter 77 G R"_1 and defined by Q^rj) = g(7, 77), for 7 G R. 
It is clear that, for a.e. 77 G Rn_1, the weight Qv satisfies the conditions (1.1) and (1.2). 
Thus, for each of those 77 we can define the Hilbert spaces Hv and HI corresponding to 
the weight Qv. Hence, 

# „ = { « € 5'(R), û G Ll
loc(R\ J I w(7)|2Ôr7(7) d7 < 00} 

with the obvious inner product and, of course, H+ is the closure of C£° ((0,00)) in Hv. 

https://doi.org/10.4153/CJM-1991-005-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1991-005-6


TEMPERED DISTRIBUTIONS AND THEIR FOURIER TRANSFORMS 67 

LEMMA 1.7. Let u0 be the unique solution in H+ of the equation Q*u0 = Xo®^o on U 
given by Lemma 1.4 and let uv be the unique solution in H+ of the equation Q^*^ = \0 

on (0, oo), defined for a.e. 77 G Rn_1. Then, for a.e. 77 G Rn_1, we have 

(1.11) u0(7,»/) = i^(7)^(iy),V7 G R, 

and, furthermore, for a.e. 77 G Rw_1, 

(1.12) G(T7) -2 | | ^ | | 2 J^ ( 7 / ) | 2 

PROOF. TO prove (1.11), it is sufficient to show that if v̂  G S'(R) is defined by 
v^d) = #0(7,77), for a.e. 77 G Rn~\ then v̂  G //* and satisfies Qv * v̂  = ^0(ri)Xo on 
(0,00), for a.e. 77 G R"_1. Since w0 G //+, it is easily seen using Fubini's theorem, that 
v̂  G //+, for a.e. 77 G Rw_1. Now, using the definition of u0, it follows from Lemma 1.6, 
that, for a.e. 77 G R"_1, and every cp G C£°((0,00)), 

j£ ^(7)^(7)0^(7) rf7 - j£ (VU*?)) &(7)0(7) d7-

This says that v̂  satisfies Q^ * v̂  = (^0(77)) Xo on (0, oo), and, thus, (1.11) holds. Now, 
by Lemma 1.4, we have, for a.e. 77 G Rn_1, that 

(1-13) Ôr/(7)|wr7(7)|2 = . .. ,2G„, 
1 

l + ( 2 7 T 7 ) r 

where, for a fixed 77, G^ is a positive constant. By integrating on R both sides of (1.13), 
we obtain that G^ = 211 ŵ  11 # and (1.12) follows immediately from the previous equality, 
(1.8) and (1.11). 

2. Density Properties. In order to give an explicit expression for the function G 
appearing in (1.8), some density properties in various spaces will need to be established. 
If u0 G H+ is the unique solution of the equation (1.7) in Lemma 1.4, we define v0 G 
5'(Rn), by 

(2.1) v0 = ( ^ + < M *"o-

The following facts follow immediately from Lemma 1.4 and Lemma 1.8: supp v0 C Û, 
supp Q * v0 C Rn\ *7, and Ô(Ol<WO|2 = G0(77) |^(T7) |2 , where G0 > 0 a.e. on Ê""1. 
We now consider the following closed subspace M of L2(Rn) defined as M = { /G 
L2(R"), supp/ C £/}. We define also the distribution K G S\Rn) by 

(2.2) ff(0=G(Ov*(0>V£ e r 
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The right side of (2.2) defines a tempered function, since by (1.1) and (2.1), we have 

f \K(Q\2
 = r Ô(0 2 | ^ (Q| 2 (1+(27T7) 2 )^ 

Jfr (l + | ^ | 2 ) m + l ^ ten ( 1 + | £ | 2 ) m + l 

(2.3) <Cj^ B Ô(0 |û 0 (0 | 2 ^<cx) . 

Since K = Q * v0, it is clear that supp K C Û and, if ip G C£(U), it follows from 
(2.3) that tp * K G L2(Rn) and thus (p * K e M. The following theorem establishes the 
density of functions of the form <p * K, where ip G C™(U), in M, when \xj}0\ > 0. 

It is interesting to notice the connection between this result, Beurling's characteriza
tion of outer functions in [1] and its generalization by Helson and Lowdenslager (theorem 
6 in [4]; see also [3], [5], and [7]). 

THEOREM 2.1. Let ^0 G 5(Rn_1) have the property that \ip0(r])\ ^ 0, for all rj G 
R"_1. If u0 is the unique solution in H+ of the equation (1.7) in Lemma 1.4 and if K is 
defined by (2.1) and (2.2), then the subspace {(p * K, (p G C™(U) } of M is dense in M. 

PROOF. By the Riesz representation theorem, we have to show that, if g G M is 
orthogonal (with respect to the L2 inner product) to every function of the form ip * K, 
where (p G C™(U), then g = 0. So let us assume the existence of such a function. We 
have thus, using Plancherel's theorem, that 

j * 8(t ) UÇ )&OW)dt= 0, V<p G C?(U) 

This implies that supp g * v0 * Q C R"\ [/, and, using LEMMA 1.6, that, for a. e. 77 GR""1, 

(2.4) ^2(7,77) v0(7,77) g ( 7 , 7 7 ) ^ ^ / 7 = 0, Vp G C? ((0, 00)). 

If the weight Qv on R and the Hilbert spaces H^ and H+ are defined as in section one, 
for a.e. 77 G Rn_1, we let uv be the unique solution in H+ of the equation g^ * un = \() 

on (0, 00), and we define vv G 5'(R) by v̂  = vl + uv and g^ by g^l) — g(7, 77). It is 
clear, from LEMMA 1.7, and (2.1) that v0(7,77) = ^(7)1/^(77), and, from LEMMA 1.6 that 
grj G L2(R) and supp g^ C [0,00), for a.e. 77 G Rn-1 . Since |i/50| > 0, it follows from 
(2.4) that 

j A Ùn(V v,(7) ênWW) dl = 0, Vp G C£° ((0, 00)), 

and, thus, the theorem will be proved if we can prove it for n = 1. So, let g be a weight 
on R satisfying (1.1) and (1.2), let H and H+ the Hilbert spaces corresponding to Q as 
defined in section 1, and let u0 G H+ be the unique solution of Q * u0 = \o on (0, 00). 
Let us assume that g G L2(R) is supported in [0,00) and satisfies 

(2. 5) J g(7) v0(7) |(7) W) dl = 0, Vp G C£° ((0, 00)), 
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where v0 is defined by v0 = u'0 + u0. We let h — g * v0 and we will show that h G H+. To 
see this, we remark that if tp G C£° ((0, oo)), then p * v0 G //+. Indeed, if { P/t}^>0 i

s a 

sequence in C£° ((0, oo)) converging to u0 in H+ as & —> oo, then (p *(pf
k + pk) converges 

to (p * v0 in / / since 

\\<p* (p'k + pk - v0) ||2 = j A Ô(7)| #(7)(1 +27rr7) [û„(7) - ft(7)] |2</7 

< C ^ | w o ( 7 ) - ^ ( 7 ) | 2 G ( 7 ) ^ 7 - ^ 0 , a s / c ^ o o . 

Now, if {ipk} k>0 is a sequence in C£° ((0, oo)) converging to g in L2, then ^ * v0 G //+ 

and (/?jfc * v0 converges to g * v0 in H as & —> oo, since, using (1.8) in LEMMA 1.4, 

j£ ll(7)Vo(7) - ^(7)Vo(7)|2Ô(7)J7 = G ^ |g(7) - &(7)|2rf7 — 0,* — oo. 

This shows that /z G # + . It follows from (2.5) that h is orthogonal in H+ to C °̂ ((0, oo)) 
and thus h = 0. Since, by (1.8), | v0\ > 0 a.e., we conclude that g = 0 a. e., which proves 
the assertion. 

The next theorem gives another description of the space H+ which is going to be very 
useful later on. Before stating it, we need the following lemma. 

LEMMA 2.2. Suppose that T and S are two distributions in S'(R) supported in [0, oo), 
with the properties that, f(7)(l + |7 |2)"m G Ll(R), and §(7X1 + |7|2)~m G L°°(R),for 
some integer m > 0. Then T * S is supported in [0, oo), where this last convolution is 
formally defined by (T * S)A — TS. 

PROOF. We consider first the case m = 0. We choose a function p> in C£°(R) with 
the properties that p > 0 and (p(0) = 1. We define, for k > 1, pk(t) = ^ ( [ ) , V / € R . 
Obviously, the distribution (ipkT) * S is supported in [0, oo). (This last convolution is a 
"usual" convolution between a distribution in 5'(R) and a distribution having compact 
support). By the "exchange" formula, we have that [(pkT) * S]A = (<£* * r ) 5, and, 
since {<£*}*>! is a mollifying sequence, (f>k * T —+ T in L*(R), as & —• oo. Thus 75 = 
lim^^oo (<p>k *T)S in 5'(R), which shows that T * S is supported in [0, oo). If ra ŷ  0, we 
define/ and g by/(7) = f(7)(l + 27r/7)~2m and g(7) = 5(7)(1 + liril)-2"1. Clearly, 
we have that/ G L!(R) and g G L°°(R). Furthermore,/ and g satisfy the differential 
equations: (6' + <5)*(2m) * / = 7 and (8' + <5)*(2m) * g = 5. Now, if /? G 5'(R) satisfies 
the differential equation (6f + 6) * R = Oon (—oo,0), then # = C r f on (—oo,0) 
and thus R = 0 on (—oo, 0), since it belongs to 5'(R). This shows, using an induction 
argument, that supp / and supp g are both contained in [0, oo). Therefore, it follows 
from the case m = 0, that the support of / * g is contained in [0, oo), and, thus, since 
T*S=(6'+6 )*(2m) *(f*g), we conclude that supp (T * S) C [0, oo). 

We have the following theorem. 
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THEOREM2.3. H+ = {u£H, suppuCU} . 

PROOF. Let N be the closed subspace of H defined by N = {u G H, supp u C Û }. 
Clearly, C£(U) is contained in N and we have thus to prove that it is dense in N. Let us use 
the Riesz representation theorem again and assume the existence of an element vEiV, 
orthogonal to C™(U) in //, which is equivalent to supp Q * v C Rn\ U. If the weight Qv 

and the Hilbert spaces H^ and H+ are defined as in section 1, for a.e. r\ G Rn_1, and if 
we define N^ — {u G Hv, supp u C [0,oo) } and v̂  by ^ ( 7 ) = v(7,ry), for 7 G R, it 
follows, from LEMMA 1.6, that vv G N^, and that 

/ , ft
 0,(7) v,(7) p(7) dl = 0, Vp G C ((0, oo)), 

for a.e. 77 G Rn_1. Hence, the proof can be obviously be reduced to the case n = 1. So 
let Q be a weight on R satisfying (1.1) and (1.2) and let H and H+ be the Hilbert spaces 
corresponding to Q, as defined in section 1. Let u0 be the unique element in H+ satisfying 
Q * u0 = Xo on (0,00), and let v0 = w'0 + u0. By LEMMA 1.4, we have that 

(2.6) Ô(7)|vo(7)|2 = G 

where G > 0 is a constant. Let v G H have the property that supp v C [0, 00). If 
p G C£° ((0,00)), we compute, using (2.2), (2.6) and Plancherel's theorem, 

(2.7) /É |v(7)- /5(7) | 2Ô(7) J7 = ^ |G(7)^(7)v(7) - G(7)^(7)p(7)|2 d7 

1 /" 1 .? 

= 7 ; / | G * V o * V - 2 * V 0 * p | /̂X 

1 r 
12 JJC 

Because of (1.1) and (2.6), we have that (G* v0)A(7)(l +17 \2)~m e L°°(R), and from the 
fact that v G //, it follows from (1.4) that | v(7)| (1 +1712Ym G L1 (R). Since supp (Q * v0) 
and supp v are both contained in [0,00), LEMMA 2.2 shows that supp Q * v0 * v C [0,00), 
and, thus, g* v0 * v G M. By THEOREM 2.1, the last integral in (2.7) can be made arbitrarily 
small, by choosing p appropriately, and the conclusion follows. 

3. An explicit formula for G. The main goal in this section is to find an explicit 
expression for the function G, which appear in (1.8) of LEMMA 1.4, in terms of the weight 
Q. In view of LEMMA 1.7, it will be sufficient to consider the case n = 1. We will thus 
assume that we are given a weight Q on R which satisfies the condition (1.1) and also, 
for the time being, the condition 

(3.1) f -J— dl < 00, 
h g(7) 
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stronger than (1.2). We will show that in fact, when n = 1 and xjj0 — 1, the constant G 
in LEMMA 1.4 is 

(3.2) G = *y(-2f l 0 g Ô ( V V 
X J F \ ^ R 1 + (2TT7)2 / 

To obtain this result, our plan is, in a first step, to approximate the weight Q by weight-
s which are periodic, and, in a second step, to approximate those periodic weights by 
positive trigonometric polynomials bounded away from zero. For each of these approx
imating weights, we will consider the corresponding Hilbert spaces H and H+ and the 
corresponding solution in H+ of equation (1.7). It turns out that an explicit expression 
for the solution of this equation can be found when the weight is a positive trigonometric 
polynomial bounded away from zero, and the expression (3.2) for G will follow easily in 
that case. To obtain the result in the general case, one needs to show that the expression 
(3.2) for G is preserved when passing to the limit in each of the approximating steps. 

Now, if Q is a weight on R satisfying (1.1) an (3.1), we associate with Q the sequence 
of weights {QN}N>0, defined by 

(3. 3) 1/ QN(V = £ [1/ 0(7 +fiN)], V7 G R 

It is easily checked that the sequence { QN}N>O is an increasing sequence converging 
a.e. to Q. Furthermore, QN is periodic of period 2N, 1/ QN is locally integrable and, 
using (1.1), QN is bounded. (We used the fact that the integer m in (1.1) must be strictly 
greater than 0). It is thus clear that each weight QN satisfies the condition (1.1) and (1.2) 
(with m = 1) and we can, therefore, consider for each N > 0, the Hilbert space HN 
and H^j associated with QN as in Section 1. Of course, from THEOREM 2.3, we have that 
Hfj = {u G HN, supp u C [0, oo) }. We have the following lemmas. 

LEMMA 3.1. Let u0 be the unique solution in H+ of the equation Q * u0 = \0 on 
(0, oo), and, for N > 0, let u^ be the unique solution in H^ of the equation QN * u^ = \o 
on (0, oo). Then lim^oo || UN\\HN = || u0\\H. 

PROOF. If M > N > 0, we have the continuous imbeddings H+ C H^ c H^ C HQ . 
The anti-linear form L, defined by L(u) = ( w, \Q ), is continuous on each of the space H^, 
for N > 0 and on H+ (see LEMMA 1.4). Therefore, the sets A and AN, for TV > 0, defined 
as A = { u G H+, L(u) = 1 }, and AN = { u G HN, L(u) — 1 }, are closed convex sets 
in H+ and H^, respectively. In particular, there exists a unique element v0 G H+ such that 
|| v0 \\H = infwG4 \\U\\H- Because of the following inequality, holding for arbitrary u G A, 

1 = \L(u)\ = \(u,uo)H\ < \\U\\H\\U0\\H, 

it follows that v0 = u0\\ w0||^
2. Of course, this argument remains valid for each of the 

weights QN, for N >0. Thus, if vN G HN is the unique element in AN with the property 
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that Hvjvll//̂  = infMG4n llMIU/v then, v# = «w||M#||/fy- Because of the inclusions A C 
AM C Ayv, if M > Af > 0 and since the sequence { QN}N>O is increasing, we have the 
inequalities 

(3-4) IMk, < \\VM\\HM < IK||//, 

which show, in particular, that the sequence {vyv}̂ v>o is bounded in H+. Therefore, it 
has a subsequence { v#} Ner, T C N, which is weakly convergent in JJJ to some element 
z G J/J. It is clear that L(z) — 1. Now, if M > 0, the sequence { VM} N>M is bounded in HM, 
by (3.4). It has, therefore, a subsequence converging weakly in HM to some element ZM £ 
J/^. Since HM is continuously imbedded in J/J and since this subsequence converges also 
weakly to z in J/J, we must have that ZM — z. It follows thus that z G J/^, for all M > 0, 
and, using (3.4), that 

(3-5) Nk# < l im IMI/fr < IK||//. 
TV—>oo 

By Lebesgue's monotone convergence theorem, we deduce that 

lim \\Z\\2
HN= Hm / . |£(7)|2âv(7) ^7 

= fA |z(7)|2Q(7M7 < «) (by (3.5)). 

This shows that z £. H, and that 

(3-6) lim||Z |k = |Wltf<lklk 

Since the support of z is contained in [0, oo), THEOREM 2.3 implies that z G J/+, and, 
thus, z G A, since L(z) = 1. It follows from (3.6) and from the unicity of the minimizer 
v0 that z = v0, and, therefore, (3.5) implies that lim^^oo || VN\\HN = \\V0\\H which yields 
the desired result since || UN\\HN = 1/ || v^H^ and \\u0\\H = l/||v0 | |//. 

LEMMA 3.2. 

(3.7) lim / . ° ë ^ rfr = I ' ° g f 7
 2 rfy 

N-^OOJR 1 + (2TT7)2 R̂ 1 + (2TT7)2 (2TT7)2 ^ R 1 + (2TT7)2 

iQO) PROOF. It is clear from (1.1), (3.1) and (3.3) that the functions j^§^ and ^ ^ 

are absolutely integrable on R. Furthermore, we have the inequality 

llogôvl < |logG| + I log Gol, 
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for all N > 0. Thus, (3.7) follows from Lebesgue's dominated convergence theorem, 

since QN converges to Q a. e. on R, as TV —• oo. 

It is now clear from LEMMA 3.1 and LEMMA 3.2 that the expression (3.2) for G will 

be established for a weight Q satisfying (1.1) and (3.1), if we can show that (3.2) holds 

for the associated periodic weights QN. Let us consider, more generally, a weight R on 

R, periodic with period £2_1, having the properties that 1/ R is locally integrable and that 

R e L°°(R). Let t/> be a function in C£°(R), supported in [-1, 1] such that $ > 0 and 

satisfying i/;(0) = 1. We let, for e > 0, <p£(7) = e _ 1 ^ ( 7 e)"1 , for 7 G R. Of course, 

{(fe}e>o is a regularizing family on R and each of the functions ipe has the property 

that (fe > 0 a.e. since it is the Fourier transform of a function with compact support. 

We define the weight, R€9 for e > 0, by Re = R * (pe. It is clear that Re e L°°(R). In 

fact, since the support of R is contained in the set { k Q, k G Z } , Re is a trigonometric 

polynomial. Furthermore, since, for every 7 G R, Re (7 ) > 0 and Re is periodic, Re must 

be bounded away from zero. As we did before, we define Hilbert spaces V, V+ and Ve, 

V+ associated with the weights R and Rt respectively. We have the following lemmas. 

LEMMA 3.3. Let u0 be the unique solution in V+ of the equation R * u0 — \ 0 on 

(0, oo), and let ue be the unique solution in V* of the equation Re * ue = \ 0 on (0, oo). 

Then\ime-M)+ \\ue\\Ve = \\u0\\v-

PROOF. We first notice that, for every e > 0, we have the inequality 

(3.8) 
J*Re 

1 

( 7 ) ( 1 + ( 2 T T 7 ) 2 ) 

r 1 
dl <CQ i ^ — di [o^-1] R{1) 

where C Q is a positive constant. Indeed, it follows from Jensen's inequality (see [8], 

p. 62), that 1/Re = 1/ (R * <pe) < (1/R) * <pe. Therefore, we compute 

h  (7)( l+(27r7) 2 ) 
dl 

< 

J*R(1) 

* ^ e j ( 7 ) 

1 

1 

1 + ( 2 T T 7 ) 2 d7 

1 + ( 2 T T 7 ) 2 * </>£ (7)d7 

•W1] fl(7) [ V/5 1 + [M7 +7^)]2j 

<CQ / ^ d7, 

* V ? e (7)</7 

to,"-1] /J(7) 

where CQ = sup7 €£ E/ez 1+^(7+-fl)p • Now, since the weight Re is bounded from above 

and from below, Ve = L2(R) as a set and, thus, if u G V*, we have, by Plancherel's 

theorem that 
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|(He,n)v€| = \(û,Xo)\ = \Jte 'u(t)dt\ = | j ^ 1 + 2 7 r / 7 " ( 7 ) J 7 l 

This shows that 

< « 

< « 

( 7 ) ( 1 + ( 2 T T 7 ) 2 ) hRe(l)d + 

c4 

dl 
1/2 

[o,n->] /?(7) 
rfY 

1/2 

, (by 3.8). 

(3.9) «£ Vt < c4 1 

[O.Q- 1 ]^! ) 
rfr 

1/2 

Furthermore, it follows from (1.8) that (l +(2irl)2)Rt\ûe\
2 = 2||w£||^, 

and, thus, we have, using (3.9), that 

f \ûe(l)\
2 dl = 2\\ue\\

2 f -, 
JR] "eJ*RJi)(l + (7)(l+(2^7)2) 

dl <2 CQ f 
J[0,Q- R(l) 

dl 

Hence, we conclude, using PlanchereFs theorem, that the family { u€}e>o is uniformly 
bounded in L2(R). Since R G L°°(R), the family { ue }e>o is also uniformly bounded in V 
and thus in V+, since each ue e V+, by THEOREM 2.3. If y e C£°((0, oo)), we compute: 

(we, ip)v = (R * ue,ip) — (Re * we, (p) +((/? — /?e) * we, (p) 

= (u,<p)v + ((R-Re)*ue,<p). 

Furthermore, using the boundedness of the family { we}e>o in L2(R), we have 

\{{R-Re)*ut,y) = \fjiR(l)-Re(l))ûe(l)<P(l)dl\ 

< iy |ûc(7)rd7 ]
1 / 2[^|^(7)-^(7)|2 | (^(7)|2^7]1 / 2 

-C[JR l^(7) " (* * ^)(7)|2! 0C»l 2^] , / 2 — °-e — 0 + > 

since {(pe}e>o is a regularizing family. This shows that, for every (p G C£°((0, oo)), 
(we, (p)v converges to (w, </?)V as e —• 0+. Hence, using the density of C£°(0, oo) in V+ 

and the boundedness of the family { we}e>o in V+, it follows that ue converges weakly to 
u in V+ as e —» 0+. We have thus 

II "e II Ve = (We,We)v/£ = ( " c X o ) = ( W , " e ) v -

which proves the lemma. 

o+, 
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LEMMA 3.4. Let R and Re, e > 0, be the weights in Lemma 3.3. Then we have 

e^O+jR 1+(27T7) 2 

PROOF. Using the notation ( 1 / R)e — ( 1 / R) * <pe, we compute 

r |10g/ t e -10gfC| 
k l+(27r7)2 

log [&(!/&]+log[l/A]-log [(l/£)e]|d7 
1+(2TT7) 2 = r-

7R 

< r \\og[Re(l/R)e}\dl | r 1 log [ l / * ] - log [(l/*)e] | d 7 

- k 1 + (2TT7)2 + A 1 + (2TT7)2 = A e +£ e . 

-l If M = ||/?||LOO, we have (l//?)£ > AT1, and, therefore, if we let GQ(7) = 

E/6Z [l + (2?r(7 +7^ -1))2] , we obtain that 

Be < M f ^{R~}l/^d^ =M f \\/R- (l/R)e\GQ dl 

<C f \l/R-(l/R)e\ dl -^0, e ->0 + , 

since { (fe}e>o is a regularizing family. By Jensen's inequality we have that Re(l/R)e > 
1. Hence, using now Jensen's inequality with the probability measure 2/ 1 + (27r7)2, we 
obtain that 

1 f \og[Re(l/R)e}2 l f Re(l/R)e2d, 
Ae~2h 1+(2TT7) 2 7 S 2 1 0 g i R 1 + (2TT7) 2 " 

The integral on the right side of this inequality converges to l as e —-> 0+. Indeed, 

r Re(l/R)€-l < r (Re-R)dl [ r |(l/fl)e - 1/fl £ <*7 

' A (1+2TT7) 2 ' ~ ' A ^ ( 1 + (2TT7)2 ^ 1 + (2TT7)2 

(3.10) = Ce+De> 

Each term of (3.10) goes to 0 as e —» 0+. Indeed, h=l/ [R(l + (2?r7)2]e L^R) and thus 

Ce = | [R[h*<p€ -h]dl\ < \\R\\L<» f~ \h*<pe -h\dy -+0,6 -+0+ , 

since { <£c} is also a regularizing family. Moreover, 

| A | < C | | ^ | | O o j f a o _ 1 ] | ( l / ^ ) c - l / ^ | r f Y - 0 , e ^ 0 + . 
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This shows that lim€^o+ Ae = 0 and concludes the proof. 
We now have all the ingredients to give an explicit expression for the function G 

appearing in (1.8). 

THEOREM 3.5. Let Q be a weight on Rn satisfying (1.1) and (1.2) and consider the 
Hilbert space H+ associated to Q as in DEFINITION 1.2. If\0^ *5(R) satisfies (1.6) and 
ifipo £ 5(Rn_1), then the unique solution u0 in H+ of the equation Q * u0 = \0 0 ipo on 
U satisfies, for a.e. £ = (7, rj ) G Rn, 

PROOF. AS mentioned before, by LEMMA 1.7, we need only to consider the case 
n = 1. We will assume first that Q is a weight on R which satisfies (1.1) and (3.1). We 
can thus approximate first Q by the sequence {UN} defined in (3.3) and then approximate 
each of the weights QN by the weights R^,e — QN * V̂ o which are positive trigonometric 
polynomials bounded from below. It is clear from LEMMA 3.1, LEMMA 3.2, LEMMA 3.3 
and LEMMA 3.4 that we need only to prove (3.11) for a weight R on R which is a positive 
trigonometric polynomial bounded away from 0, of the form 

£ ( 7 ) = £ c r a f t y > V y E R , 

A theorem of L. Fejér and F. Riesz (see [3], p. 20) states that any such polynomial has 
the form. 

K 
R(y) = C [J 11 - ake~27tiQrf |2, 7 G R, 

*=o 

where C > 0 and | ak\ < 1, for all k G { 0 , . . . , K}. We will first compute the expression 
on the right side of (3.2) in that case. We will use the following known Fourier series 
representation 

oo nk oo fik 

(3.12) log (| 1 - a e-2***1 \~2) = £ f^-2**"» + £ a
 e ^ ^ , 

k=l * k=\ * 

if a G C, \a\ < 1. The function GQ defined by 

^-guctr'+jo-r"6*-
is periodic with period Q _ 1 and its 1âh Fourier coefficient is 

(3. 13) Q. [ Gçk{l)e-2ltiak1 dj = af 1 e-1***1 dl = -e~Q^, 
7[0,Q-M h 1+(2TT7) 2 2 
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since 
l A 

(7) = t+eUp' f o r 7 G R. We obtain thus, from (3.12) and (3.13), using 

Parse val's identity, that, if \a\ < 1, 

£1 L - ^ 0
 7 dl =Q log(\l-ae- 27T/Q7 I - 2 )GQ(7)rf7 

ft 

2~ E T ^ + E 
(5)* -H2 

*>1 *>1 

l o g ( | l - a e - " | - 2 ) , 

and, therefore, that 

(3.14) 

Now, let us define u0 by 

Lms-^-H^pj'-"-12|-2 

(3.15) 

We have thus that 

C-i * (l-ake-2**»Y 
ûoO) = ^WZTZ n 1 + 2 ^ / 7 ^ ( l - â * * - ° ) 

(3.16) #(7)|w0(7)| 
l + ( 2 7 r 7 ) 2 ^ 0 

and, clearly, u0 G //. Since, for all 7 G R, we have 

JJ 11 - ake - Q | - 2 

1 
1 +2?r/7 

[ ^ X ( 0 , o o ) ] A ( 7 ) a n d ( l - ^ - 2 ^ ) " 1 

L/>o 
(7), 

it follows easily from (3.15) that supp u0 C [0, oo), and, thus, u0 G //+, by THEOREM 
2.3. We will show that u0 satisfies the equation 

(3.17) R * u0 = Xo = e~l on (0, oo). 

Indeed, we have the identity 

(R* W O ) A ( 7 ) = ^(7)^(7) = — — - n v _ _Q/ 
1 + 27ri7 =̂0 (1 -ake ") 

and, thus, 
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R* U0 = n(i-^-y' [(S - aoè-n) * • • • * (6 - aKë-o) * e X(0,oo) 
[*=o * 

Now, it is easily seen, by induction on K, that the right side of the previous expression 
coincides with e~* on (0, oo) which proves (3.17). It follows then from (3.14) and (3.16) 
that (3.11) holds and the theorem is thus proved in the case where 1/ Q is integrable. If 
Q satisfies the weaker condition (1.2), we can write Q as G(7) = ôi(7) (l + (27r7)2) ™, 

for some m > 0, where Q\ satisfies (1.1) and 1/ Q\ is integrable. Let u\ be the unique 
solution in the space H+ corresponding to Q\ of the equation Q\*u\ — e~l on (0, oo). We 
will show that the unique solution u0 in the space H+ corresponding to Q of the equation 
Q * u0 = e~l on (0, oo) can be defined by 

(3.18) û0(n) = 2m(l +27r/7)mwi(7) 

Indeed, if u0 is defined by (3.18), we have that 

(G * u0t{l) = (Gi * wi)A (7)(1 - 27r/7rm2m, 7 e R. 

This shows that Q * u0 satisfies the equation 

(3.19) 2~m (6 - <5')*(m) * (G * u0) = e~l on (0, oo). 

Now, if S G 5'(R) satisfies the differential equation 2 _ 1 (5 — 6f) * 5 = e - f on (0, oo), 
then 5 = e~l on (0, oo), since any other solution of that equation would be of the form 
e~l + c e\c ^ 0 (on (0, oo)), which would prevent S from being in 5'(R). This shows, by 
an induction argument using (3.19), that G*uQ — e~l on (0, oo). It is also quite clear from 
(3.18) that u0 is supported in [0, oo) and thus u0 belongs to the space H+ corresponding to 
Q. In order to show that (3.11) holds for u0, we notice that for the weight R — 1 +(27r7 )2, 
the unique solution in the space H+ corresponding to R of the equation 7?*v = v—v" = e~l 

on (0, oo) is given by 

(3'20) < ™ = 2 Ô T W 7 € É -
as it can be easily checked. Since 1/ R is integrable, we deduce from the first part of the 
proof and (3.20), that 

- , ,9 1 I r log(l+(27r7)2) \ 
R<n) v(7) 2 = 7 -v exp - 2 / , ^ J dl 

1 1 ( 1 + ( 2 T T 7 ) 2 ) \ J* 1+(2TT7) 2 / 
which shows that, for every m > 0, 

1 _ ( r log[(l+(27T7)2)" 

4(l + (27r7)2)' 

(3-21) — =exp - 2 / " . , m x, 
A m y \ M 1+(2TT7) 2 

The desired result follows now easily from (3.18) and (3.21). 

dl 
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COROLLARY 3.6. Let L be the anti-linear form defined on H+ by L(v) — {v,x0®il)0)> 
for all v G H+, and let A C H+ be defined by A = { v G H+, L(v) = 1 }. Then, 

(3.22) inf||v||* = 

PROOF. It is clear that infvS41| v\\H = [sup^vy=l |L(v)| ] = || u0\\^\ and the norm 

of u0 in H can be computed by integrating both sides of (3.11) over R", yielding (3.22). 

4. A generalization on Rn of Szegô's theorem. . The purpose of this section is 
to extend to Rn Szegô's theorem ([12]; [2], p. 44). In order to do so, we will need the 
following lemma. 

LEMMA 4.1. Let Q be a weight on Rn which satisfies (1.1) and (1.2) and consider 
the Hilbert spaces H and H+ associated with Q defined in section 1. Let P be the closed 
sub space of H defined by P = {v€H,Q*v = 0onU}, and let Po be the sub space 
of P defined by P0 = {v € H, Q * v = <p, where tp G C™(Rn) and supp y C Rn\ V }. 
Then, P0 is dense in P. 

PROOF. We use the Riesz representation theorem again. Suppose u € Pis orthogo
nal (in H) to P0. We have thus (w, v)# = 0, for all v G P0, or, equivalently, 

for every (f G C£°(R") for which supp if C Rn\ 0. This shows that supp u C Û and, 
thus, that u G H+, by THEOREM 2.3. Since u G P, we have that Q * u — 0 on U, and, 
therefore, u is orthogonal to C™(U), which shows that u = 0. 

The following lemma is a generalization of Szegô's theorem for a weight w — 1/ Q 
on R", where Q satisfies (1.1) and (1.2). We will use the notation V for the open set 

V= { ^ y d " , K 0}. 

LEMMA 4.2. Let Q be a weight on Rn satisfying (1.1) and (1.2) and let H and H+ 

the Hilbert spaces associated with Q as defined in section 1. Let I)J0 G J>(Rn-1) and let 
B CHbe defined by B= {v G H, Q *v = \o® ^o on U } . Then, 

PROOF. The set B is a closed, convex set in H and therefore, there exists a unique 
element v0 in H having the property that || V0\\H = infves || V\\H- Since B consists of all 

-2IJMV)\ ™Pl-2j. 1+(2?r7)2 jdr, 
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those elements in H whose orthogonal projection to H+ coincide with v0, we must have 
that || u0\\H < || v||#, for all v G B and thus v0 = u0. Now, since Q * u0 — \0 ® x/j0 + 5, 
where 5 G 5'(R") and supp S C R"\ £/, it follows that 

(4.1) ^ ( 0 = X . ( 7 ) ^ ) + 5(Q ^ 

Let g be defined by g(£ ) - S(£ ) / QH ), for £ G RMt is clear, from (4.1), that g G //, 
and, furthermore, since 2 * g = S, g G P. By LEMMA 4.1, g is the limit in H of a sequence 
{gk}k>\ where Q * gk = <Pk € C^°(V), and, thus, w0 is the limit in / / of the sequence 
{ Uk}k>\ where wfc(£ ) = [XoOOVUr/) + <£*(£ )] / OH )• Therefore, we have that 

"O\\H= *im £ |û*(OI2Ô(0<*É 
k-^oo JRn 

1 
= lim [ \Xo(VTpo(7l) + MO\2

7—-d£ 

and the result follows from THEOREM 3.5. 
We can now state our extension of Szëgo's theorem, which holds for weights on Rn 

which are "tempered functions". 

THEOREM 4.3. Let w > 0 be a weight on Rn satisfying 

for some m G N, let \0 G 5(R) satisfy (1.6) and let ip0 G 5(R"~'). Then, 

^ LIxo(v4o(v) - m)\2Hi) di 
(pEC??(V)JKn 

(we use the convention that exp(—oo) = 0. ) 

PROOF. For a weight w satisfying (4.2), we define 

O(w) = inf [ Ixoi^od) - 0 ( O | V O dZ. 

We choose a decreasing sequence of weights { w^} N>0 converging a.e. to w and having 
the property that, for all N > 0, QN — l /w# satisfies (1.1) and (1.2) (with constant m 
depending upon N). Obviously, we have, for all TV > 0, that 
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<4.3> * M < * w = [ L M M ^ L ' ^ ^ f ) * , 
Therefore, by letting N —• oo in (4.3) and using Lebesgue's monotone convergence 
theorem, it follows that 

<4.4, ^U.J«rfe4/BSf^)., 
On the other hand, if we had a strict inequality in (4.4), there would exist <p G C™(V) 
such that 

^ J X o ( 7 ) ^ ( r / ) - ( ^ ( 0 | 2 w ( 0 ^ 

and thus, if N is large enough, we would have that 

Jtn\xo(i)î>o(v)-ê(0\2™N(i)dt 

which contradicts Lemma 4.2. We have thus an equality in (4.4) and the result follows. 

5. Non-triviality of some weighted spaces. In this section, we will consider more 
general weighted spaces than those studied in sections 1, 2 and 3. In particular, those 
weights are not assumed to satisfy (1.1). We will only assume that the weights w consid
ered are positive measurable function on R" taking on, possibly, the value oo and having 
the property that, for some m G N, 

(5-1} iv,(0(iiim^< 0°-
Since the condition (1.1) is not satisfied in general, the space C™(Rn) is not necessarily 
dense in the space H corresponding to w and defined by 

(5.2) H - {u e S'(Rn) , û G L}oc(R
n), Jûn \û(0\Mi) di < oo } . 

In fact, H might not contain any non-trivial function with compact support. We define 
the corresponding space H+ by 

(5.3) H+ = [u e H, supp u C U). 
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Thus, if w satisfies the condition (1.1), this definition coincide with DEFINITION 1.3, by 
THEOREM 2.3. We remark that the space H (and also H+) is continuously imbedded in 
5'(Rn) since, the inequality (1.4) still applies. Our goal, in this section, is to characterize 
those weights w which give rise to non-trivial spaces H+. We will need the following 
lemmas. 

LEMMA 5.1. Let w > 0 be a measurable function on R satisfying (5.1). Ifu G H+, 
where H+ is defined in (5.3), we define F(z) — ( u(t), e~zt p0(i)), for any complex number 
z, with Re z > 0, where p0 G C°°(R) has the property that p0 is identically 1 on a 
neighborhood of [0, oo) and p0(t) — 0, ift < t0, for some t0 < 0. Then, F is holomorphic 
in the set {z G C, Re z > 0} . Furthermore, ifF(l) = DF(l) = . . . = DkF(\) = 0, the 
distribution v G S'(R) defined by v(7) = û(7)/ ( -1 + 27ri7)*+1, for 7 G R, belongs to 
H+, and if G is defined by G(z) = (v(t), e~zt p0(t)), for all z G C, with Re z > 0, then 
F(z) = (z-l)k+lG(z). In particular, (D(*+1)F)(1) = (Jfc+ 1)!G(1). 

PROOF. By induction, the case k > 0, follows immediately from the case k = 0. If 
k = 0, we have that 

(5.4) F(l) = (n(0,e-W0>^=0. 

Let v G 5'(R) be defined as above. Obviously, v G H. We will show that, in fact, v G H+. 
Indeed, if <p G C£°(R) is supported in (—oo, -a), where a > 0, we have that 

(v,if) = ( l < * [Vx( -oo ,0 ) ],</?) = ( " , [e~'X(0,oo)]*<y?) = 0 , 

since the function [e~rX(0,oo)l * <P — c e~l on the interval [-a, oo), and u satisfies (5.4). 
This shows that the support of v is contained in [0, oo) and thus v G H+. We compute, 
for z G C, Re z > 0, using the definition of v: 

F(z) = (u(tle-ztp0(t)) - ( -v(0 + i/(0,*-zW0> 

= < v(0,*r*po(0 - e-*Po(0 - ^Po(0> 
- (v(r),(z- \)e~ztp0(t)) = ( z - l)G(z). 

Since F is clearly holomorphic on the set { z G C, Re z > 0} , the proof is thus completed. 
Now, given a weight w on Rn which satisfies (5.1), we define, for ry G Rn_1, the 

one-dimensional weights wv, by wr/(7) = w(7, rç), for 7 G R. Since, for a.e. r\ G Rrt_1, 
the weight w^ satisfies (5.1) on R, by Fubini's theorem, we can define the corresponding 
spaces //rç and H+ for the weight w^, using (5.2) and (5.3). We need the following lemma. 

LEMMA 5.2. Suppose that the space H+ corresponding to a weight w > 0 on Rn 

satisfying (5.1) is non-trivial. If '(p0 G 5(Rn_1) has the property that 

[rj G Rn~\ (fo(ri) = 0} C {rj G Rn_1, H+ is trivial), 
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then, there exists v G H+ such that {v,Xo®^o) ^ 0, where \o satisfies (1.6). 

PROOF. Let u G H+ be such that u ^ 0. We define, for a.e. 77 G Rn_1, uv G //+ 
by M^(7) = w(7,77), for 7 G R, (see Lemma 1.6), and the function F^, holomorphic in 
{ z G C, Re z > 0} by Fv(z) = ( u^t), e~ztp0(t)). We notice that the set 

A= {77 G É H , F , = 0 } 

has non-zero (n— 1 ) dimensional Lebesgue measure. Indeed, if for some 77 G Rn_1, F^ = 
0, then ( uv(t), e~'eT27rmpo(0) = 0, for 7 G R. But, this implies that (u^'po) = 0 and 
thus that ŵ  = 0. Since, u ^ 0, the set (77 G Rw_1, uv = 0 } cannot have zero (n — 1) 
dimensional Lebesgue measure, and thus \A\ > 0. Now, we can write A = UA^OA*, 

where Ak = {77 G R""1, / f }(1) 7̂  0, /*>">( 1) = 0, if 0 <j < k } . Therefore, there exists 
K G N, such that \Ako\ > 0. If 77 G Ako, we define v̂  G ̂  by v^(7) = ^ ( 7 ) / ( -1 + 
27r/7)*°, for 7 G R. By Lemma 5.1, we have, in fact, that v^ G H+, if 77 G A*o, and also 
that 

(5.5) (v , (0 ,^V. (0) = <VX*> 7^0. 

We remark also that, 1/̂ (77 ) ^ 0 if 77 G A*o, since, by (5.5), //+ is non-trivial. 
We define v G //, by v(7,77) = ^(7)^(77) for 77 G A 0̂ and 0 for 77 £ A ô, where 

Vr7 G A*O, S(77) = —^ - T - — . 

It follows, from LEMMA 1.6, that v G //+, and, furthermore, 

( v , X o 0 ^ ) = J JA v^(7) x0(7) rf7 g(rj) ^(77) J77 

= A (v^,Xo)^)'0o(r7)âf77(since(v^,Xo) = (VX*)) 

= L \{vr),Xo)\\$o(ri)\ dr] > 0, 
JA-kn 

which proves the lemma. 
The following theorem provides a necessary and sufficient condition for the non-

triviality of H+. 

THEOREM 5.3. Let w >0bea weight on Rn satisfying (5.1) and let H+ be the Hilbert 
space associated with w, defined in (5.3). Then H+ is non-trivial if and only if, 

(5.6) 77 G R - \ A 1 ^ ^ ^ 7 < o o ) | > 0 , 
' JR I + 7 2 I 

where, \ • \ denotes the (n — 1)-dimensional Lebesgue measure ifn> 1. When n = 1, 
(5.6) has to be replaced by 

log w(7) f log H -dn < 00. 
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PROOF. Let xjj0 G 5(Rn_1) be such that 1/̂ (77) 4 0, Vr/ G Rn_1, and let us choose an 
increasing sequence of weights { w^} k>Q, each satisfying (1.1) and ( 1.2), converging to w 
a.e. on R". For each k > 0 we define, the Hilbert spaces H^ and //£, corresponding to the 
weights Wk (as in (5.2) and (5.3)), and the sets A^ by A* = { v G / / j f , ( v , x 0 ® ^ ) = 1 }. 
It follows from COROLLARY 3.6 that 

Ck= M \\v\\2
Hk 

veAk 

(5.7) \U^M-*i*Wwd-<)d« 
If 7/+ is non-trivial, L E M M A 5.2 shows that the set A = { v G / /+ , ( v, \Q <g> V^) = 1 } 
is non-empty. Since this set is closed and convex in //+, there exists a unique element 
v0 G H+ such that || v0 | |# = infvG4 || v||//. It is clear that, for every k > 0, v0 G A^, and 
thus, 

V * > 0 , C t = i n f | | v | | â i < | | v o | | â t < l | v o | | â -

The sequence { C*} A:>0 is thus bounded, and, therefore, it follows, by letting k —> oo 
in (5.7) and using Lebesgue's monotone convergence theorem, that 

which is equivalent to (5.6). Conversely, if (5.6) holds, then, by (5.7), the sequence 
{ C*} jt>o *s bounded. Let v^ be the unique element in A* having the property that 

I N U = inf \\v\\Hk = Ck. 

The sequence {v/c} k>0 is bounded in HQ since ||v*||//0 < 11 v>t 11 //̂  < C, for k > 0. It 
has, thus, a subsequence {vk} keT, V C N, converging weakly in //0 to some v G//J , 
as A: —* oo. By an argument used in the proof of LEMMA 3.1, one can show that, in 
fact, v G //£, for every k > 0 and also that || v\\Hk < C. Hence, v G //, by Lebesgue's 
monotone convergence theorem. It is clear that v G //+, since v E / / J , and, v ^ 0, since 

(v, Xo®^o) = lim (v*, Xo^^o) = 1. /:—>oo,Â:er 

This shows that //+ is non-trivial and concludes the proof. 

COROLLARY 5.4. Letw >0bea weight on Rn satisfying (5.1) and let H+ be defined 
by (5.3). IfQC Rn~l is defined by 
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and, if u G H+, then û = 0 a.e. on the set R x Q. 

PROOF. Consider the weight w\ on Rn defined by w\(£ ) = w(£ ) for £ G R x Q, and 

Wl(£ ) = ^M for £ £ R x Q. If v is defined by v{£ ) = «(£ )xn(r/), for £ = (7, r/) G Rn, 
it follows from LEMMA 1.6 that supp v C Û, and, furthermore, v belongs to the weighted 
L2-space corresponding to the weight w\. Thus, by THEOREM 5.3, we obtain that v = 0 
a.e., or, equivalently, that û — 0 a.e. on the set R x Q . 

6. A generalization on Rn of a theorem of Paley-Wiener. The purpose of this 
section is to generalize to Rn a theorem of Paley-Wiener (Theorem XII in [6]) on the 
real line, which characterizes the behaviour of the modulus of a function in L2(R) which 
is the Fourier transform of a function in L2(R) supported on the half-line [0, oo). More 
precisely, it states that if O > 0 is a function in L2(R) such that O ^ 0 , then O = | / | , 
where/ G L2(R) and/ is supported on [0, oo) if and only if 

L 
log 0(7) . ^ 

R 1+7 2 

In the following, we will characterize the behaviour of the modulus of the Fourier trans
form of functions or distributions supported on a half-space of Rn, which is a set whose 
boundary is a hyperplane of R" (we will assure, for convenience, that the origin belongs 
to that hyperplane). In the particular case where this half-space is the set A = Û, we 
notice, that if/ G L2(R) is supported on the half-line [0, oo) and if g is any function in 
L2(Rn~!), then the function F G L2(R"), defined by F(x) = f(t)g(y), for JC = (f,y) G R", 
is supported in A and it is easy to check, using the Paley-Wiener theorem above, that it 
satisfies, for a.e. rj G Rn_1, that F(7, //) = 0, for a.e. 7 G R or 

/ , .. " ' e l ^ : , " U > -oo. 
R 1 + 7 

2 

It turns out that this last property characterizes the behaviour of the modulus of the Fouri
er transform of any function in L2(R") supported in A. The proof that we will give is valid 
for more general classes of functions on R" and it also offers an alternative, in the case 
n — 1, for the proof given in [6] which was based mainly on complex analysis. We in
troduce the following notations. If v G R" has length 1, we define the hyperplane Mu by 
Mv — | aGR w , ( c r , i / ) = 0 } where (-, •) denotes the usual scalar product on Rn. We 
will identify Mv with Rn_1 and we will denote by dmv the (n — l)-dimensional Lebesgue 
measure on Mv. We have the following theorem. 

THEOREM 6.1. Let v G Rn have length 1 and let <ï> > 0 be a measurable function 
on Rn which satisfies 

*(0 
/ , Muitpr*^ 

for some m G N. Then the following are equivalent. 
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(a) There exists a distribution F G ̂ (R") supported in the set { x G Rn, (x, v) > 0 } 
which satisfies <£> = |F | 2 a.e. on Rn. 

(b) Except for a set of dmv measure zero, each a G Mv satisfies: 

L fe dt > - o o 
\+t2 

or for a.e. f G R, 0 (a + ft/) = 0. 

PROOF. By considering a rotation of Rn which brings the vector v to the vector 
(1,0,...,0) and using the fact that the Fourier transformation commutes with rotations, it 
is easily seen that the proof can be reduced to the case where v — (1 ,0 , . . . , 0). To prove 
the implication (a) => (b), it is sufficient, by LEMMA 1.6, to consider the case n = 1. 
Let us thus assume the existence of a distribution F G 5'(R), supported in [0, oo) which 
satisfies | F |2 = O a.e. on R. We define the weight w on R by w(7 ) = (0(7 )( 1 +1712))~*, 
for 7 G R, where 1/ 0 = oo, by definition. It is clear that F belongs to the weighted L2-
space corresponding to w and thus, if F ^ 0, we must have that 

/ . 
log w(7) . ^ 

d7 < oo, JR 1 + 7 2 

by THEOREM 5.3, which is equivalent to (b). Conversely, let us assume that (b) holds. 
We choose, then, an increasing sequence {QN}N>() of weights on R" satisfying (1.1) and 
(1.2) (for some m G N which depends upon N), with the property that 1/ QN converges 
to O a.e. on Rn as N —-* oo. We let HN and H^ be the Hilbert spaces associated with the 
weight QN (as in section 1). We let \j;0 G 5(Rn_1) have the property that |V>0(7/)| > 0> 
for every 77 G Rn_1, and we consider the unique solution u^ G H^ of the equation 
QN * UN = Xo ® ̂ o on U. Then, by THEOREM 3.5, we obtain the following identity, valid 
for a.e. £ G Rn 

(6..) &«>|*«>l' = T ^ I « r f « P (-2Jt '^0 * ) • 

On the other hand, since the sequence {|| w/vll//̂  }j/v>o ^ decreasing, the sequence { wyv} /y>o 
must be bounded in H+ and, thus, we can assume that it is weakly convergent in W0 to 
some element w, by passing to a subsequence if necessary. By the same argument, the 
sequence { u^} N>M is bounded in //^, for each M > 0 and has therefore a subsequence 
{uN}Ner converging weakly in FtM to some element VM- Since H^ is continuously 
imbedded in //+, we have vM — u, for all M > 0. Hence, w G //^, for all M > 0, and 
furthermore 

(6-2) \\U\\HM < Jim inf Hwyvll//̂  < Jim \\UN\\HN-
N£TM N — • O O 

Let us show that u^ converges to u in //+, as n —• 00. Indeed, we have 
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(6.3) \\U-UN\\HO < Hw-MArlIâjv = \\u\\HN-2Rel.(uN >MH ] + (UN,UN)HN. 

Since (uN, U)HN — ( w, X<? ® V>o) and, by the continuous embedding of //+ in 5'(R), 

lim («ASUN)HN = lim {aN,\0^^0) = (w,Xo ® $o), 
N—>oo N—+00 

it follows from (6.2) and (6.3) that lim ŷ—^ || w — w#||//0 < 0 and thus that 

lim | | M - I I ^ | | / / 0 = 0 
N—KX> 

. This shows, in particular, using the estimate (1.4) that UN converges to u in Ll
loc(R

n), as 
TV —• oo. Since, from (6.1), w/v satisfies a.e. on Rn 

it follows, by letting N —• oo in (6.4), that 

(6-5) l̂ >l2= Î T ^ I ^ I ^ ^ ^ ^ K 1 ^ ^ ^ ) ' 
where Q = {r; G R""1, JÉ %ffffi<*7 > -oo }. If we let, for 77 G R""1, 

XQOJX 

and F(£ ) = ( 1 + 27T/7 )w(£ )//(r/), for £ E R", we see, from LEMMA 1.6, that supp F C D 
and since, from the assumption (b), 0 = 0 a.e. on R x Q,c, it follows from (6.5) that 
| F\2 = O a.e. on Rn which concludes the proof. 

It is clear from the previous theorem that, when n > 1, the Fourier transform of 
a function supported on a half-space of the form { I G R " , ( J C , I / ) > 0 } can certainly 
vanish on a set of positive measure. However, modulo a set of measure zero, the set 
where it vanishes must be of the form {£ E Rrt, £ = a + ft/, f G R, a E A } where 
A C Mv. In particular, we have the following corollary which extend some results of 
H.S. Shapiro (see [10] and [11]) about functions and distributions with spectral gaps. 

COROLLARY 6.2. Suppose that v\,..., vn are n linearly independent vectors in Rn 

and that F E 5'(R") is supported in the set rç=1 {x E Rn, (x, vt) > 0 }. Then, 
(a) If F satisfies 

for some m E N and if F vanishes on a set of positive measure, F = 0 a.e. on Rn. 

H(v) = |VUr/)|2exp U log Q(7,T/) 

1+(2TT7) 2 rf7 
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(b) If F vanishes on some open ball on R", F is the zero distribution. 

PROOF, (a) follows immediately from the remark above and (b) follows from (a) by 

considering the sequence JF * </?„} where {ipn}n>0 is a "regularizing" sequence on 

Rn. 
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