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Abstract. The author shows that any family C2-closeto/Q(x) = 1 - a x 2 (2 -e < a <2)
satisfies Jakobson's theorem: For a positive measure set of a the transformation fa

has an absolutely continuous invariant measure. He also indicates some generaliz-
ations.

0. Introduction
In recent years there has been major interest in the following theorem of Jakobson:

THEOREM. Let f(x) = rx(l — x), 0< r<4, be a one parameter family of mappings of
the unit interval. There is a positive measure set of those rfor which f has an absolutely
continuous invariant measure (abbreviation: a.c.i.m).

The author of the current paper uses his earlier ideas from [5] to give another proof
of this theorem. It seems to be less technical than other existing proofs (see [2],
[1]) and therefore it yields some interesting generalizations (§ 6). In particular, any
family C2-close to the one above satisfies Jakobson's theorem. Also, the families
that contain /4(x) = 4x(l - x) and do not satisfy Jakobson's theorem form a 'set of
codimension oo' in the set of C2-families that contain/, (or any mapping C2-close
to/4 with the property that/2(critical point) = fixeo point). In particular, any analytic
family of this type satisfies Jakobson's theorem.

One reason to understand Jakobson's result is a possible generalization to higher
dimensions. Similar phenomena seem to accompany every period-doubling bifurca-
tion, when we pass the critical value of the parameter (and the 'chaos' is born!).
So far M. Rees has found an analogue for rational mappings of the Riemann sphere
[4]. (Probably our proof can be modified to work in that case also.)

Let us say a few things about our notation. The Lebesgue measure of a set A is
denoted \A\. Variables as subscripts mean differentiation. Occasionally we use prime
for the derivative over x or when the parameter is the only variable. Sometimes we
do not say explicitly that an object depends on the parameter. We also call a set
an interval, where obviously the set has two components. For technical reasons we
work with the family/(x, a) = 1 -ax2 and interval [-1,1].

The author would like to apologize if some ideas are being used without references.
It is difficult, though, to write a proof disjoint with the existing work.
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1. Sketch of the proof
For a = 2 the point /2(0) = - 1 is a repelling fixed point.

Let us define /„ = [-3~", 3~"] for n = 0, 1 , . . . . Let us fix p e (0,1) very close to
1. Let Vn=f(p~1In). It is easy to show (see Appendix) that / " + 1 |p~ ' / n \p / n + 1 is
expanding with constant Ao = fp. It is also easy to show that the set Vn+1 u / ( Vn+1) u

We will show that Wn• • • u / " (
p-^r1

Let us

K+i)c

, so Wn

x:|/ '(x)|>3}. Let
-> 0, as n-* oo.

define T: I -» / by

T(x)=/B(x),

Wn=fn(

as xe

v n + I ) .

def

Mn = \K (l.l)

for n = 1, 2 , . . . . This transformation is piecewise expanding. From [5] we know
that T has an a.c.i.m. v0 with bounded density. We can easily verify that the measure

"= I iffrolMn) (1.2)

is an a.c.i.m. f o r / It is finite, since

" U ) = I «"o(Mn)^ const. I n|Mn|<oo. (1.3)

We would like to point out that this measure is well known and has density
const.(1 — x2)~l/2. The construction we have just presented is a starting point to our
construction of a.c.i.m. for a / 2 . It also produces a.c.i.m. for families like f(x) =
1 -2x2 + £x2(l -x2), where £ is a small parameter. The author does not know any
explicit formula for the density of the a.c.i.m. in this case.

Let us start with the observation that given arbitrarily large TV e Z+ there is aN <2
such tha t /" + 1 |p~ 1 / M \p / n + 1 is an expanding for n < N and ae[aN,2]. For a =2
the set Wn contains - 1 for every n. For a ^ 2 the set Wn approaches the critical
point. The extreme case is when for some n we have/"(0) = 0. In this situation 0
attracts a.e. orbit of / and no a.c.i.m. exists. Our hope is that by varying a we can
push Wn away from 0. Actually, we will put Wn into a set p'lIk\ph+i for some k < n.

Let us fix N sufficiently large and let aN < 2 be such that for all a e [aN, 2] and
n = 0 , l , . . . , N we have Wn c {x: | / ' ( x )>3} . Let 7 ( n ) = / " + 1 | p - 7 n \ p / n + 1 for n =
0 , 1 , . . . , TV-1 and let S(n) = / " | Vn for n = 1, 2 , . . . , TV. We have

T(n) = Sin)°f and S ( n + 1 ) = Tm ° S{n) (1.4)

for n = 0 , 1 , . . . , TV-1.
We will try to extend the definition of expandings T(n) and S(n) on n > N (at

least for some parameters). We are going to use induction.
Suppose that Im, S(m) have been defined for m < n (n > TV) and let T(m) = S(m) ° f

for m<n. Let us fix r e (5,1) to the solution of the equation 4T = 3 and let a=\.
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We define

Vn+,=f(p~lIn+l).

Now we can define Tln) = S(n)°f\p-lIn\pIn+l and Wn = S(n)(Vn+1).
Suppose that Wn c p~1lk\plk+l for some A: = /c(n) < n. In this case we set

(1.5)

l ( fc) •S(-)|Vn+1 (* = * (« ) ) . (1.6)

As we have already mentioned, for some parameters there is no k with the property
Wn<=- p~xIk\Ik+l. We need to discard those parameters to proceed with the next
step of our induction. Let us describe in detail how we do it.

Let (sm)"m=0 be a sequence of integers such that T(m)=fSm (on p~' Im\plm+1). We
impose an extra condition in our construction.

We fix a sufficiently small ft > 0 and require

s l ( m l<max(jSm,l) (m =0, 1 , . . . , n). (1.7)

Along with /„ and S(n) we construct families of intervals sin in the space of
parameters. This is the corresponding inductive definition:

(i) MN consists of a single interval [aN,2].
(ii) If J e stfn then for a e J all n steps of our construction work and yield the

same sequence (5m)^l'o. Let us consider intervals

Jk = {aeJ:S(n)(l,a)eIk\Ik+l}. (1.8)

The family Mn+X consists of all intervals Jk for all J e sin and k such that sk</3n.
We will show that if a e Jk then Wn c p~1lk\plk+1. This is possible because the

length of | Wn\ decays much faster than the length of Ikin).
The set of parameters / \ U h is in general nonempty, but we will see that there

is A e(0,1) such that

A U h <= {a € / : dist (S(n)(l, a ) , 0) £ aA^}. (1.9)

Let An = U -ŝ n and let Bn be the union of the sets on the right-hand side of (1.9).
The crucial part of the proof is to show that |Bn|< const. \^"\A
obtained this estimate, we can write (in view of An\An+^ Bn):

. Once we have

U
n - 1

I - I
m=N

1-const. X

(1.10)

Let °=N An. Letting HH>OO in (1.10) we get

IAJ&I/UH 1-const. I As
(1.11)

By fixing TV sufficiently large we can make the ratio |A»|/|A,v| arbitrarily close to
1, in particular |/4QO|>0.

From our estimates it easily follows that if a e Ax then / has an a.c.i.m. First we
construct a piecewise expanding T(x)=fs"(x), as xe In\In+1 (n = 0 , 1 , . . . ) which
has an a.c.i.m. v0 with bounded density. Formulas analogous to (1.2) and (1.3) yield
an a.c.i.m. v f o r /
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2. Certain consequences of the Chain Rule
Let u and v be functions of x and a, where a is a parameter. For example, w = v ° u
means that w(x, a) = v(u(x, a), a). We can easily verify

LEMMA 2.1. The following formulas hold:

(i) wx = (vx°u)ux;

wx \vx ) ux ux

..... wxx vxx / 1 \ uxx(in) — = — °M + I — »u —;
Wx v2

x \vx j u\

,. - Wax (vax \ 1 (Vxx \ Ua ( 1 \ MQX
( I V ) — 2 - = ! — ° u — + 1 — ° w — + 1 — ° u — ;

wx \vx j ux \vx j ux \vx ) ux

(v)
waa (vaa \ 1 (vax \ H O 1 (vxx \(uaV (\ \uaa

W, \ D X / Wx \ U X / Mx "x \ U X / \ W X / \UX / U~a

Let us introduce the following notation:

I = m a x i

U J — 1 ,

1

" x

1

"x

" x

2 + 2
" a

c

1

" x

+
" x

R(M) = max (Rxx(u), Rax(u), Raa(u)).

LEMMA 2.2. Let w= v ° u. Then

^ M).

(2.1)

(2.2)

Moreover, this formula holds with A(w), A(u) and /?(«) (fouf nof A(t>)) subscripted
with 'xx\ ' ax ' or ' aa ' .

Proof. By inspection of formulas (iii)-(v) of Lemma 2.1.

Remark 2.1. If | u , | > l then R ( u ) « 4 m a x (1, |5(u)|2).

D

3. Basic concepts
Let / be a C2-function of x and a. As a function of x, / is a transformation / -> /,
where / = [ - l , 1]. We will deal with transformations T=fd :3)(T)^3l{T), where
3>(T) and S?(T) are subintervals of /. The integer d> 1 is called the degree of T
and denoted by deg(7").
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Let Ao> 1. We will call T A0-expanding, if | 7 ' | > Ao.

Definition 3.1. A sequence of expanding maps (T))"=1 is called /3-homogeneous
(0>O) if deg(T,)smax(/3i, 1) for i= 1, 2 , . . . , n.

This notion proves useful because of the following:

LEMMA 3.1. Let (T;)"=1 be a ^-homogeneous sequence of A0-expandings and let
Si = T, o 7"j_, ° • • • ° T, for i = 1, 2 , . . . , n. Suppose that /3 ^ 1. Then

|r; |oS,._i^-Ro|s;-ir, (3.1)

where Ro is a constant such that sup \f'\ < Ro and E = /3 log R0/log Ao.

Proof. in^Ri^^R^^^maxiR^Rg'). Also, K0|S«-i|e s •Ro(A^1)E =

Remark 3.1. (3.1) holds with T] replaced by any T verifying deg (T )«max ()8i, 1).

Definition 3.2. A sequence of functions (̂ >,-)"=1 is called (C, q)-stable ( C > 0 , q€
(0,1)) if

|<p,-<p,|<C<rn('J) (3.2)

for 1,7 = 1, 2 , . . . , n.

Definition 3.3. (i) We say that T has rank (JJ,, A) if

\8(T)\<A\Tx\r (3.3)

(ii) We say that T has rype (o-, B) if

(3.4)

THEOREM 3.1. Suppose (7^)"=1 is a /3-homogeneous sequence of A0-expandings and
Tj has rank (fi, A) for i = 1, 2 , . . . , « . Let S,: = Tj ° • • • ° T, / o r i < n a n d /ef S = Sn,
S0 = id. There are constants Cx and ^£(0 ,1) independent of A, n or n such that for
sufficiently small p we have:

(i) 8(S)<C) (equivalently, S has rank (0, C,)).
(ii) The sequence of functions (5(S,))"=0 is ( d , q)-stable.

Proof, (ii) From Lemma 2.1 we derive by induction the following formula (i<j)

j (3.5)

This gives

|8(Sj)-5(Sf)|< I (^(TOIoVOlSi-,!"1. (3.6)

For / == [/?"'] we have |5(r,)|</?, where R, depends on/only (note: deg(T,) = 1).
For />[/?"'] we have

\8(Tt)\° S,^< A\TT ° S,_^ ARZ\S',^

by Lemma 3.1. We always have |S i_ , |>A^ ' . Therefore,

|S(S,)-5(S,) |< X «,Ao('"1)+ I /JffAAo'1""1"1"0. (3.7)
i+isi^tp-1] [0-1]<;<;

Suppose e/n<j (i.e. /3 <log A0/3/LA log #0). Let ^ = Ao3l and let /8 be such that
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98 M. R. Rychlik

R'SA^R^'3"^. The right-hand side of (3.7) does not exceed

(the terms of the first sum are obviously <Rtq'~l and the second sum
<Rlq

2U-1)-[l3"]<Rlq'~\ since / - l> [ /3" ' ] ) . Therefore, the Lemma holds with
C, = i?j(l - q)\ We notice that (i) can be easily obtained from (ii), since S(S0) = 0.

•
THEOREM 3.2. Let v be an arbitrary positive number. Suppose that the assumptions of
Theorem 3.1 are satisfied and, in addition, Tt has type (a, B) for i = 1, 2 , . . . , n. There
is a constant C2 independent of A, B, /x, v, cr or n such that if f3 is sufficiently small
then S has type (v, C2).

Proof. Lemma 2.2, Remark 2.1 and Theorem 3.1 (i) give

A(Sn)<Ao1A(Sn_1)+C3(A(7;)°sn_1), (3.8)

where C3 = 4max (1, C2). Therefore, by induction we get

A(SJ<C 3 £ A o ^ A C r j o S - . s C j d - A o 1 ) - 1 max A(TI)°5,_1. (3.9)

We can assume that for i<[j3 '] we have A(7,)</?2 and for i>[B '] we have
S,_, < B\ T'\° ° S,-_, s fl£B|S'|e". Therefore,

• ) . (3-10)
1-Ao1

Suppose that eo-< v/2 (i.e. /3 < v log A0/2cr log Ro) and/3 is such that
i?oB- Then

We also have

Therefore

1 — A
and we can set C2 to i?2C3/(l-Ao') . •

Definition 3.4. Let F c ®(T). The number supv |T'|/infv \T'\ is called the distortion
of T on V. We omit V, if V= /.

The next lemma is well known in the theory of expandings.

LEMMA 3.2. Let S = Tn ° • • • ° 7",, vv/iere 7, is a A0-expanding for i = 1, 2 , . . . , n and
deg (Tj) = 1. 77ie distortion of S does not exceed C4 = exp (2R2(1 - Ao1)"1)-

Proof. In a similar way as in the proof of Theorem 3.2 we get |S"/(S')2|^ C5 =

/?2(1-Ao V1- Therefore, for y, ze3)(S) we have

S'(y)
In- f 5 " < c f '| = C5|S(>>)-S(z)|<2C5. (3.11)

S'(z)

This gives 5'(j)/5'(z) ^ exp (2C5) = C4 (note: S'(y), S'(z) have the same sign). D

Possessing type (cr, B) does not imply bounded distortion on the whole of /, though
the distortion is bounded on sufficiently small intervals.
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THEOREM 3.3. Let S be an expanding type (v, C2). For every 80> 1 there is r)0> 0 s.t.
if for some interval V c 3s(S) and yoe V we have | V|< T7O|5'(yo)|~(l"l"") then the
distortion of S on V is bounded by 80.

Proof. Let ye V. We can assume that S '>0. We have

1 1

•"L
(3.12)

(3.13)

<(l + v)C2\V\^{l + v)r]0(

Multiplying (3.13) by \S'(yo)\
1 + v yields

'S'(yo)\
i+I1 , . _ . _,

Now it's clear that the distortion is arbitrarily close to 1, if 170 is sufficiently
small. •

Now let us go back to the construction of § 1. We will apply our results to the
^-homogeneous sequence Ti=T[k(i)) (i = 1, 2 , . . . , « ) and a e / e r f , , Obviously,
Sj = T] ° • • • ° T, = S(i). From now on we will often write Sn instead of S(n), which
is consistent with the formula and simplifies our notation.

THEOREM 3.4. Suppose that S = Sn has rank (0, C,), type (v, C2) and distortion < C4.
Lef T= T(n) = S ° / | p" 1 / n \p / n + 1 . There exist constants C7, A, B, /x, a independent of
n such that T has rank (/x, A) and type (cr, B). Moreover, |7"'|> C 7 |5 ' ( l ) | l T .
Proof. Let us fix Co such that

max(R(/),A(/))<C0|xr2, (3.14)

We have \T'\ = (\S'\ « / ) | / ' | > C Z ' I ^ D l C o ' W a Cj'Co'fllS'CDI1"" (see (1.5)). We
set C7= C ^ C V a . We notice that

w h e r e C^= Cji/{l'T).

Lemma 2.2 gives

A(T)<(|S'r1°/)A(/) + (A(S)°/) • R(f)

<max(A(/), R( / ) )x( l + A(S)°/)

This yieldfe O- = (2T+I- - T) and B = C0(l + C2Cl)a-2ClT+". We have

This yields A = (1+ a~1C1)C0CJ, /X = T / ( 1 - T ) . n
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Remark3.2. We can apply the method of the proof to AXX(T), Axa(T), AQa(T)
separately. We obtain useful estimates

(3.18)

From now on we assume V<2T—1, which reduces the first exponent to 2T—1.

Remark 33. There exists do> 1 such that for sufficiently large N, ae[aN, 2] and
all n > 1 we have |SJ,(1)| > 6% and \T[n)\ >max (0O, C70Sn~T))- In particular, inf \T[n)\

grows exponentially.

Proof. Let us pick 0oe (1, fp) arbitrarily and let N be large enough, so that for all
a e A N = K 2 ] we have \T'{n)\ze0 for all n satisfying (*) C-,6n

0
{X~r)< 60. The

number of such n is bounded, so this is possible by the Appendix and C' -continuity
of our family (since aN -> 2, as N -> oo).

We will show by induction that

(i) |s;n)(i)|>0o",
(ii) |T( ' k ) |>0oforal l k<n.

This is obvious for n = 1. Using the induction hypothesis and Theorem 3.4, we get
|T(n) |> C70o(1~T\ which is a 0 o , if n does not satisfy (*). If n does satisfy (*) then
(ii) is obvious for k = n. Now we apply the definition S(n + l) = T(k) ° S(n)(k< n) and
get |S'n+1(l)| > 6o + \ which completes the proof. •

COROLLARY3.1. There exists constants C\, C2, C4, A, B, Ao, v, n (allpositive and
Ao> 1) such that for N sufficiently large and B sufficiently small and for every n > 1
and a e Amax(n_N) the mapping S(n) has rank (0, C,), type (i», C2), distortion <C 4 and
/5 Ao -expanding, and T(n) /iai ran/c (/u, A), type (cr, B) and is A0-expanding.

Proof. Induction. Suppose that T{k) has rank (/J,, A) and type (cr, B) for all k<n.
Theorems 3.1, 3.2 (applied to the sequence T,•= r(fc(0)) and Remark 3.3 imply that
S(n) has rank (0, Q ) and type (y, C2). If n s JV then Lemma 3.2 implies that the
distortion of 5( n ) does not exceed C4.

Let us notice that S(S ( n ) )= Vn and | Vn|<iCop-2 | /n | 2siCop-2(2a)2 |S( ' n ) r
2 T. This

means that Theorem 3.3 applies to S(n) for n > N with 0O= C4, if N is large enough
(note: 2 r > l + f).

Eventually from Theorem 3.4 we get that T(n) has rank (n, A) and type (cr, B).
This ends the proof. •

4. Families with a prerepelling critical point
Here we consider families a little more general than f(x, a) = 1 — ax2.

Suppose that / has a critical point c(a) for a close to a0 and suppose that for
a = a0 and some m e Z + the point / m ( c ( a 0 ) , a0) = x0 is a repelling point of period
K. We consider the following nondegeneracy condition (cf. [4]). Let x(a) =fm(c(a))
be a differentiable function and let

da
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Let us define a sequence of functions

PROPOSITION 4.1. 77ie //'m/'t ^ = l im n ^^^ n (a 0 ) exi-sfs. It is ^0 iff (4.\) is satisfied.

Proof. Let T=fK. Let « = /« + /,, where 0 < / , < / < - l . We have by Lemma 2.1(ii):

(4.3)
Substituting (x0, a0) and letting /-»oo yields:

lim S(f)(xo,ao) = S(T)(xo,ao)(\-r(xorTi = X- (4.4)
n-*oc

Condition (4.1) is equivalent to

{Tx(x0,a0)-l)x'(a0)*-Ta(x0,a0) (4.5)

or x'(a0) T̂  —%• On the other hand,

(xo,ao)-*x'(ao) + X = A', as n -* oo. (4.6)

This completes the proof. •

THEOREM 4.1. Let \ ^ 0. For every 17 > 0 f/iere is n0 e Z
+ and 5 > 0 such that for every

n > n0 and a 6 ( a 0 - 5, ao+ 5): i//or some interval U <=• I, / ( • , a) | t/ is A0-expanding
and {x(a), /(x(a), a ) , . . . , / " (x(a) , a)}c= Lr f/ien

| ^ B (a ) / ^ - l |<T , . (4.7)

Proo/ First, we choose n0 large enough, so that

(we applied Theorem 3.1).
We pick 5 such that if \a - ao\ < S then

ao)\ <h\X\

\x'(a)-x'{ao)\<kV\x\.

We get Theorem 4.1 by the triangle inequality. •

Remark 4.1. We will not dwell on the general case, leaving the details to the reader.
We notice that in the case of/(o, x) = 1 — ax2 we have Xn(a) = ~~2aS(S(n+1))(l, a).
It is easy to see that condition (4.1) holds for this family.

COROLLARY 4.1. Let D = \x/(2aQ)\. For every 6> 1 we can choose sufficiently large
nx such that for every n>n^ and every a, a,, a2e An

H.

where h = 6~lD, H = 0D (see Remark 4.1 and Theorem 3.1(ii)).
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102 M. R. Rychlik

Let us finish this section with one more distortion estimate, this time over a.

L E M M A 4 . 1 . For every 6X> 1 there is rji>0 such that j / | a 2 - a , | < i7, |Sn(l, a1)\~
(>+"\

a , , a 2 e An, then

Proof. We notice that

(Sn)a I-(2+i/) n̂ /aa } C 2 .

Integrating over a, we get

1

(4.11)

Multiplying by | (SJ(1 , ax)\
l + v leads to:

- 1 (4.12)

•

(4.13)

(S n ) a ( l , a 2 )

If 17, is sufficiently small, (4.12) yields the lemma.

COROLLARY 4.2. Using the assumptions and notation of Lemma 4.1 we have

0-i0-j~
(-S"M1>aJ-00

1 ( S n ) , ( l , a , ) ~ ' '

Remark 4.2. The sets Jk have not more components than Ik\Ik+i, since by simple

differentiation we can see that the absolute value of the derivative of S(B)(1, a) over

a is > absolute value of the derivative of the ends of Ik\Ik+l.

Proof. Indeed, we ask if

d
-HS'fc(l,a)raa

= ar\(Sk)ax(l,a)\-\S'k(l,a)\-

<\(Sn)a(l,a)\.
This is equivalent to

aAax(Sk)-r\S'k\-
{r-u<\8(Sn)\\S'n

and because of AQX(Sfc)< C2|Sk|" we need

arC2\S'k\'-
T+1 <\S'n\\8(SB)\.

(4.14)

(4.15)

(4.16)

We have \S'k\ < \S'n\. Also \S(Sn)\ > h > 0 for large «. Therefore (4.16) holds for large
n, since i' < T (note: Ĵ  < 2T — 1 < T).

5. 77ie measure of Ax

We use the notation of § 1.

P R O P O S I T I O N 5.1. (i) Suppose that N> 2/3"'. The numbers sm, m = N, N+\,..., n

satisfy the inequality

sm<?/n2+l. (5.1)
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(ii) IfaeJkesin+l then Wn <= p'lIk\pIk+,.
(iii) There is A e (0,1) such that (1.9) is satisfied.

Proof, (i) Induction. We notice that sN = N + l <(/3/2)iV2+l, if iV>2//3. The
induction step:

(ii) We notice that since S( n )( l)e Ik\Ik+l:

dist (S(B)(1), p/k + 1)&Kl p) | / k + , |

disKS^D.p'/ja&r'-DIU
It suffices to show that

1|. (5.3)

Obviously, we have

| Wn\ < sup \S[J • | Vn+1| < C4|S(n)(l)| • ^T 2 C 0 | Jn+1|2

= |C0p-2C4a-2 |S;n ) ( l )r"2 TsiCop-2C4a-2AS< 1-2 T ) . (5.4)

On the other hand, | 4 + , | = 2a\S'(k)(\)\~
T>2aRoTSk, since deg (S(k)) = sk - 1 < sk.

Because sk< fin for n > N , we get /?o"fc s -RoT0" = Ao"". Suppose that ST<2T-1.

For sufficiently large n we have

op-2C4a-2Ao"(2T-1) (5.5)

and (ii) holds if N is sufficiently large,
(iii) Suppose that S(n)(l, a ) 6 4 and deg (T( k ) )> fin. Then

dist (S(B)(1, « ) , 0 ) < i | 4 l = a\S[k)(l)\-^ a^k\

From (i) we now have that deg (T(k)) = sk< (/3/2)k2+1. Hence, ^n <()3/2)fc2+l
or k>y/2n-2//3>\fn, since n>N>2//3. This yields (iii) with A = A Q T . •

Let us consider the transformation \fin defined on every J e s>#n by iAn(a) = Sn(l, a ) .
We assume N>2j8~1.

THEOREM 5.1. 77jere is a constant C10 SMC/J that for every n > ]V

I sup — < C 1 0 | A N | . (5.6)

Proo/ Let TT be the partition of / into intervals of equal length d ( d " ' e Z ) . Let d'n
be the family of intervals defined in a similar way to sdn, except we replace the
definition of Jk with

Jk(P) = {aeJ: S n ( l , a)e (Ik\Ik+x) n P } , (5.7)

where P 6 77. Since every J e ^ n is a union of elements of ^'n , it is sufficient to prove
(5.6) for s£'n instead of s&n. We will be able to do it, if d is sufficiently small.
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Let us introduce two sequences

y,= I

= I SUp

(5.8)

We are going to derive estimates of (yn+l, rjn+1) in terms of (%,, r)n).
We fix an arbitrary 0> 1. First, by Corollary 4.1 we have for n large enough

1 1 1
sup
AC)

1< —
h

1

A C )

sup

= 02sup

\S'n+

1

T'(k)

1
T

\T[k

i(l)l

1
SUP i c / i M
AC) P u l l /

1

ACP»I<A:.
)|~' sup \\ji'n

AC)
(5.9)

The first supremum is over a eJk{P) and x e Pn(Ik\Ik+i) (note: 4 depends on a) .
There is /c, e Z+ such that

I suplry-'sAo1 (5.10)
/car*:,

(see Remark 3.3).
Let us choose d small enough, so that for every Pe TT one of the two alternatives

holds: either (1°)P<= /fci or (2°)P intersects not more than two of the sets Ik\Ik+l.
We get:

f ^ ' ^ - , (5.11)

where J(P) = J nip~\P).
We notice that ij/n(J(P))7i P for at most two Pen, namely those for which

(*)Pnd<J/n{J)9i0. Summing up over these P, we get

1 . . , . _ , 1
X * Sup — : < 4 0
k,P AC) I'/'n + ll

For those P that (**)i//n(7(P)) = P we have

1 if 1 ° (//„'+ sup

(5.12)

(5.13)
a<=J(P)

according to the rule 'maximum < average + max. of derivative x length of the inter-
val' applied to (1/|<AI,|)° (A-1 on P = 4in(J(P)); we notice that the average is just
d~' | / (P) | . Totalling over P satisfying (**) we get

(5.14)
P,k AC)IV« + ll \ a J

Inequalities (5.12) and (5.14) and summation over / yield

(5.15)

https://doi.org/10.1017/S014338570000434X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570000434X


A proof of Jakobson''s Theorem 105

Now we intend to estimate 17,,+,. We have 4in+l(a)= T(k)(ipn{a), a) and this yields

+ 2(T(k))ax(tlfn(a),a)if,'n(a)

We also have <K(«) = (Sn)a( l , a ) . Therefore

^ \ 2
'n + ll

T(( k ) ) x

where we omitted the arguments for simplicity. This yields

where 02 comes from Corollary 4.1 and

= S(Sn + iy
2\ ^xx(

L

Therefore, we can write

T?n+1= I SUP
J,k,P Jk{P)

Because of the obvious inequality

we get

where

J,k,P

Jk(P) Wn

r = sup max X sup <t>n( Tik))

(5.16)

(5.17)

(5.18)

']•
(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

We shall soon see that r is finite and even arbitrarily small. Inequalities (5.15) and
(5.22) imply the theorem, if the eigenvalues of the matrix

r ^ A o 1 202Ao1l

L r 02Ao-J
(5.24)

have modulus <1 . As a matter of fact, we can write (5.15) and (5.22) as a single
matrix inequality

| n + , < P | n + c (n<JV), (5.25)

where ijn = (yn, rjn). Here c is a constant vector and ||c|| =sconst. \AN\. Here and in
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what follows, const, means an unspecified constant independent of N. Also we can
easily see that ||£N|| < const. \AN\. In fact, it is sufficient to show that TJN < const. \AN\.
The inequality y N < const. |AN| will follow by the same principle we used to prove
(5.13). First, we notice that

VN S sup \AN

(by definition of § 1, siN has only one element). Let us fix n, such that (4.10) hold
for n a n , . We can apply (5.18) for a e AN and n = n,, n, 4- 1 , . . . , N. For these n
we have k = \ and $ n ( r ( 1 ) ) < h \R2H

2 + 2R2H + R2) = Cu. If A O ' 0 2 < 1 , (5.18)
yields

K
sup
AN

sup
(tfn,

(5.26)

Therefore (5.25) yields the Theorem if the spectral radius of P is <1 . We recall that
6 is arbitrarily close to 1, as /3 is sufficiently small. Also, we will see that r is
arbitrarily small, as d is sufficiently small.

By Remark 3.2 we can check that 4>n(r(fc))<const. |5^(1)|2"~' (note: K 2 T - 1 ) .

We also have |4 |«cons t . |St_,(l)|~T, where a on both sides may be different (see
Corollary 4.2). Also, const. • | S ^ , ( l ) | a | S U l ) |
T(k)° Sfc_, and
const. |SJc|~

x/(I+

U{l+e} by Lemma 3.1 (indeed, Sk =
So,

\ Hence,

< const. |S'k (5.27)

where £ = T / ( 1 + E) + 1 - 2 T > 0 , if/3 is sufficiently small. We also have \S'k(l)\~
ls

Aokc- So, the sum in (5.23) has uniformly exponentially decreasing terms. By fixing
sufficiently small d we can make it arbitrarily close to 0.

This proves the theorem, if 4Ao' < 1. When this condition is not satisfied, we pick
peZ+ such that Ao>4 and examine the relation between (yn+p, Vn+P) and (%,, r/n).
The corresponding matrix, as r-»0, looks like

(5.28)

contained in a

L 0 Ao

where M is an integer which is the maximal number of J'es£'n+P

fixed J e si'n and such that there is ie{n, n + l,..., n+p — 1} with the property:
there is fc< fc, such that <//,(/')e h\h+t- This number can be made =2, if we slightly
perturb intervals / , , . . . , Ikl. •

COROLLARY5.1. We have |Bn|<2C,oaAv/"|/lN|.

Proof. Clearly, Bn <= <j/-\[-ak^", ak^"]). Theorem 5.1 gives

1

Jesl,

for an arbitrary measurable set E <= /.

\E\sC10\E\\A, (5.29)

•
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Remark 5.1. The existence of an a.c.i.m. for T follows directly from [5], since the
function

{l/ l r ' (x) | , where Tcontinuous,
" V " ' (5.30)

0 on discontinuities
verifies Varg<+oo and s u p g < l (a sufficient condition for the existence of an
a.c.i.m.). One can obtain another proof (and make this paper self-contained) by
imitating the proof of Theorem 5.1 for the sequence of mappings i//n(x) = T"(x)
{sin becomes the partition into the pieces of continuity of i//n). These new functions
satisfy the recursive formula <]/n+i(x) = T(k)(4rn(x)) (if tAn(x) e Ik\Ik+l). This formula
is much easier to differentiate, since x is the only variable.
Proof. We have

;k)r+XAXX(T(M)|4|. (5.31)

The first sum converges by Remark 3.3. The second sum converges by an argument
similar to the proof of (5.27). •

In view of § 1, Proposition 5.1 (iii), Corollary 5.1 and Remark 5.1 the main theorem
is proved.

6. Some generalizations and final remarks
Our method applies without any changes to families f{x) = I-a\x\$, where £ is
sufficiently close to 2. For f < 2 w e get an example of a family which is not C2. It
is easy to get examples of families with singularities like \x\( with any £ > 1.

Another class of examples would be families with a finite or infinite number of
singularities like

(I-ax2 for-l<x<0

l[10/]-l forl>x>0.

Let us discuss a little different result now. Let/0(x) = 1 — 2x2 and let for every rj > 0
X(rj) be the 17-neighborhood of/0 in the C2-topology. If 77 is sufficiently small
then there is a C1 function c:X(r))-> I such that c ( / ) is the only critical point of
fe X. Let M e X(T; ) be a submanifold of codimension 1 defined as follows:

M = {fe X(v):f(c(f)) =/2(c(/))}. (6.1)

def

For /e M, x(f) = / (c(/)) is a hyperbolic fixed point.

THEOREM 6.1. Suppose that a path a>-+fa intersects M transversally for some a0.
Then a0 is a one-sided Lebesgue density point in the set of those a thatfa has an a.c.i.m.

COROLLARY 6.1. There is an open set of C2-families satisfying Jakobson's Theorem.

One can consider a transversality condition in higher jets

dk

dak

where k > 1 is arbitrary.

(6-2)
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THEOREM 6.2. Theorem 6.1 remains true if transversality to M is replaced with
condition (6.2).

The idea of the proof. Let G: X{r))-*R be defined by

G(f)=f{x(f))-x(f). (6.3)

It is easy to check that dG(f) ¥=• 0 f o r / e X{-q), if 17 is sufficiently small. Therefore,
there is a mapping p:X(r))-*M such that X3f<->(p(f),G(f))eMxR is a
diffeomorphism (one can write down suitable formulas explicitly).

For every fe M we have a standard family / 7 corresponding to the fiber {/} x U,
so that p(fy) =f and G(fy) = y for \y\ < y0. We repeat our proof simultaneously
for all families fy. We obtain a family 3> of submanifolds F<= X(r\) such that if
g e F e !F then g has an a.c.i.m. Moreover, there is a constant K with the following
property

(i) Every Fe SF corresponds to a graph of a Lipschitz function hF: M->R with
a Lipschitz constant < X ( M e f ; V = 0).

(ii) Let A K ( / ) = { y ; / T £ F for some FeS?}. The family ^defines a measurable
mapping Ax(f,)-> AO0(f2). This mapping has a measure theoretic Jacobiane
[K\K] a.e.

From our estimates it follows easily that for every feM and h > 0

l \ 1 / 2M / ) n [ 0 , f t ] | / / l \ \
> l - c , e x p l -c2 l log—) I, (6.4)

where cly c2>0.
These estimates are sufficient to show that every family gQ such that G(gao) = O

and (dk/dak)G(ga)\a = ao7
t0 for some fc intersects the leaves of 9 for a positive

measure set of parameters o. •

COROLLARY 6.2. Any analytic family which contains f0, satisfies Jakobson' s theorem.

Let us list two more facts concerning our construction.
(1) The density of an a.c.i.m. we constructede LP(I) for every pe[l,2). This

result is analogous to one of Carleson's results.
(2) If a0 is sufficiently close to 2 and infn2l |/"0(0)| > 0 then aQ is also a density

point for the set of a such that fa has an a.c.i.m. The condition that a0 is close to
2 can be replaced with the conditions given in [3].

Appendix
In this Appendix f(x) = 1 -2x2 .

THEOREM A.I. Let In = [ - 3 " , 3 " ] for n e Z+. Let Vn =/( /„) . Then for every n and
p s ( 0 , l ) :

(i) | ( / T | Vn|>(3|)n and ~4" for large n,
(ii) | ( /"+ I ) ' | / n \p/n + , | s :A = 4p/3 and >const, p(I)",
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Proof, (i) We have Vn = / ( /„ ) = [1 - 2 • 9~", 1]. We have | / ' | < 4 . By the Mean Value
Theorem we have for k < n

|/fc( Vn)|<2 • 9"1 • 4
fc =4- ("- f c -1 ) - ( |)"- ' | V j s (I)""1! V,|. (A.I)

This implies /*( V J c ± V, for « > 2 . We also have \f'\± V,|>4(1 - | V,|) = f = 3 | .
We can write

n/(i/k(vn)
Clearly, it is a(3 | )" and also ~4" for large n. Indeed, the product is >

Hence,

Using | ( / n ) ' | Vn|> const. -4" we also get | ( / " + 1 ) ' | / n \p / B + 1 | a const. p(f)n.

(A.2)

(A.3)

(A.4)

•
If p> 27/28 one gets the same inequalities on p~lln\pln with 3̂  replaced by 3.
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