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Abstract

In this paper we prove that if an oval in a finite projective plane of order n = 3 (mod 4) has
the four point Pascal property and if each of its tangents and secants has the five point Pascal
property, then the plane is Pappian and the oval is a conic.

We also establish results concerning Ostrom conies and ovals with the three point and four
point Pascal properties.

1991 Mathematics subject classification (Amer. Math. Soc): primary 51 E 15; secondary
51 A 25.

1. Introduction

Buekenhout [3] has proved that if a projective plane contains a Pascal oval
then the plane is Pappian and the oval is a conic. This has been re-proved
by Artzy [1] (for a non-central oval), Rigby [10], and others. The conclusion
of Buekenhout's result has been established with weakened hypotheses by
Korchmaros [7] (for finite planes) and by Hofmann [6].

Hofmann's assumption is that the oval has the five point Pascal property.
We weaken Hofmann's hypothesis for the case of an oval in a finite projective
plane of order n = 3 (mod 4) and prove that if an oval in such a plane has
the four point Pascal property and if each of its tangents and secants has the
five point Pascal property, then the plane is Pappian and the oval is a conic
(Theorem 4.1). This is our main result.

We also establish, in Sections 5 and 6, results concerning Ostrom conies
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and ovals with the three point and four point Pascal properties.
We assume throughout this paper that the plane is finite and of odd order.

In certain results we further assume that the plane is of order n = 3 (mod 4).

2. Background

For relevant definitions and results concerning ovals see [9, 6, 5].
If the three diagonal points [6, p. 146] of a non-degenerate hexagon in-

scribed in an oval are on a line p, then the hexagon is a Pascal hexagon and
p is its Pascal line [10, p. 1463]. A line p is a Pascal line of an oval, if, when-
ever two diagonal points of a non-degenerate hexagon inscribed in the oval
are on p then the third diagonal point of the hexagon is also on p . A line
q has the five point (four point, three point) Pascal property if, whenever
two diagonal points of a non-degenerate five point (four point, three point)
hexagon inscribed in the oval are on q then the third diagonal point of the
hexagon is also on q. An oval has the five point (four point, three point)
Pascal property if every line of the plane has the five point (four point, three
point) Pascal property.

A line is non-exterior if it is a secant or tangent of the oval.
We note some useful results. Result 2.1, on harmonic ovals, is established

at the commencement of the proof of Theorem 4.2 in [5] and is valid for all
odd orders of the plane.

2.1. An oval which has the four point Pascal property is harmonic (or has
Property Al, or satisfies Assumption Al).

For the definition of a harmonic oval see [8, pp. 190, 191].
We now coordinatize the plane with reference to an oval <9 using Artzy's

method (see [1]) and Hofmann's modification of Artzy's notation (see [6, p.
144]); except that we write the successive vertices of inscribed hexagons in
order, as in [10, 5], and use angular brackets for points on the line (oo)(0).
Thus, (m) is (l)(m) n (oo)(0).

The algebraic system (S, +, •), where Sl^oo} is the coordinatizing set, is
a double loop. If the oval has the four point Pascal property and if each of its
non-exterior lines has the five point Pascal property then it is readily observed
that the proofs of Propositions 5, 6, 8, 9 in [6] are valid. Accordingly:

2.2. The commutative loops (S, +) and (S - {0}, •) have the alterna-
tive and inversive properties [6, Propositions 5, 6, 8]. Also, they satisfy the
Moufang identities. In particular:

(i) a + (b + (a + c)) = ((a + a) + b) + c = ((a + b) + a) + c

[6, Proposition 9].
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(ii) (a + b) + {a + c) = a + {a + (b + c)) = (a + a) + (b + c)

This follows from (i) by [2, Lemma 3.1].
We re-prove (ii) in Lemma 3.2(ii).
With the same assumptions as for 2.2, the restriction of Proposition 7 of

[6] to non-exterior lines is:
2.3. If [m, k] is a non-exterior line then the point (x, y) is on it if and

only if mx + y = k .

3. Preliminary lemmas

Notations are as in Section 2. The letters a, b, c, x, ... denote elements
of S or 5 — {0} depending on the context. The product ab is frequently
denoted by ab or a(b). Proofs of trivial cases are omitted.

LEMMA 3.1. If an oval has the four point Pascal property then

(i) a. - b = b. — a and —a. — b = ab.
(ii) a. - 1 = -a.

(iii) ( -a)" 1 = -aTx.
(iv) a.- a - -a2.
(v) a.-a~[ = - 1 .

(vi) The point (x, 0) is on the line [m, k] if and only if m = kx~x.
(vii) The points (1), (0,x), (x,0) are collinear.

(viii) The points (—l),(0,x),(—x,Q) are collinear.

PROOF, (i) If b ^ a then, since (a)(—a), (b)(—b) are distinct secants
through (0, 0) it follows, by 2.1, that the points (a)(-b) n (-a)(b) and
(a)(b) n (-a)(-b) are on (oo)(0). Thus {a. - b) = {b. - a) and (ab) =
(-a. - b). If b = a then -a. - a = aa by [6, Proposition 4].

(ii), (iii) are readily deduced from (i).
(iv) The polar of (a2) is (a)(-a) (see [6, Proposition 4]). The point

( l ) ( - a 2 )n (a 2 ) ( - l ) isonthepolarsofboth (0,0) and (a2). Thus (-a2) =
(a.-a).

(v) follows from (iii) and the fact that the point (a)(-a l)n {-a){a l) is
on the polars of both (0, 0) and (1).

(vi) follows from the collinearity of the diagonal points of the Pascal
hexagon (OO)(OO)(0)(0)(A:)(JC"1) .

(vii), (viii) are proved by using the Pascal hexagons (oo)(oo)(0)(0)(x)(x~1)
and (oo)(oo)(0)(0)(x)(-x"') respectively.

https://doi.org/10.1017/S1446788700036971 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036971


64 Olga Fernandes [4]

In the Lemmas that follow, namely Lemmas 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, we
assume that the oval 0 has the four point Pascal property and that each of
its non-exterior lines has the five point Pascal property.

= (a+a) + (b + b);

LEMMA

(i)
(ii)

(iii)
(iv)
(v)

- (

(a
(a
a.
(a,
(X

3.2
a +

+ b]

-b

by
,0)

.
b) = -a —

) + (a + c) —
) + (a-b)
= -ab.

1 =a~lb~l

is on [m,

b.
(a+a) + (b+c); (a + b) + (
= a + a.

k] if and only if mx = k.
(vi) (a~l+b~l,0) ison (a)(b) ifandonlyif (a+b, 0) is on (aT1)^"1).

PROOF, (i) follows from the Pascal hexagon (0)(0)(a)(-a-b)(a + b)(-b).
(ii) a + b = a + ((b + c) - c) = a + ((b + c) + (a + (-a - c))) = {(a + a) +

{b + c)) + (-a - c) by 2.2(i). The proof is easily completed.
(iii) We have (-ab)a~l = (ab). - a~l = (-b. - a).(-a)~l = -b . Hence

a. - b = —ab.

The proofs of (iv), (v), (vi) are left to the reader.
In the proofs of the Lemmas that follow we frequently use Lemmas 3.1,

3.2 and the results of Section 2 without explicitly referring to them.
In Lemmas 3.3, 3.4, 3.5 we use the following notation.
NOTATION, (OO) , (0) are denoted by X, Y respectively. A, B are (not

necessarily distinct) points of & - {X, Y} . E is a point of XY such that
E ^ X, E ? Y and E / XY n AB. A' = AEntf, B' = BE n <9,

p = ABnxx, Q = ABHYY, £>' = A'B' nxx, p' = A'B' n Y Y .

LEMMA 3.3. Let the plane be of order n = 3 (mod 4) . Then (0)(0) n

(a)(b) = (a"1 + b~l, 0), equivalently (a"1 + b~l, 0) is on (a)(b), for all
a,beS-{0}.

PROOF. If b = a~l this follows from the collinearity of (1), (0, a+a~l),
(a + a~l, 0) . If b ^ a~l, let (1) = E, (a) = A, (b) = B. Then P =
(0, a + b), A = (a~ ) , B — (b~ ) , Q = (0, a + b ) .

CASE (1). Suppose EP or EQ is a non-exterior line and b / a"1 . If ££?
is non-exterior then, because it is the Pascal line of {0)(0)(oo)(b)(a)(a~l)
and consequently of (oo)(oo)(0)(a"1)(Z7~1)(Z?), it follows that Q,E,Q' are
collinear. Thus Q = (0)(0) n (a)(6) = (a"1 + b~x, 0) by Lemma 3.1 (vii). If

https://doi.org/10.1017/S1446788700036971 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036971


[5] Pascal ovals 65

EP is non-exterior then the required result follows from the Pascal hexagons
(oo)(oo){0)(b)(a)(a~l),(0)(0)(oo)(a~l)(b~l){b) and Lemmas 3.1 (vii), 3.2(vi).

CASE (2). Suppose both EP and EQ are exterior lines and b ^ a~x.
Since E is an exterior point, the line through E and XX n KF is ex-
terior [9, Lemma 2.1]. There are \{n - 1) exterior lines through E and
j(« + 3) non-exterior lines through P. Furthermore, EP is an exterior
line and EY, PY are secants. It follows that there exist at least two
points Qt ^ Y, i = 1,2 of YY such that EQ{, PQt are non-exterior
lines. Let PQ^t? = {(*), (y)}. By Case (1), Qx = (0)(0) n (x){y) =
( J T ' + J T 1 , 0). Thus, by Lemma 3.2(vi), (0){Q)r\{x~l)[y~l) = (x + y,0) =
(a + b, 0). Let m = xy. Now PQX = [m, a + b] is the Pascal line
of the hexagons (oc)(oo)(0)(b)(a)(ma~l) and (0)(0)(oo)(ma~l)(mb~l)(b).
Hence, by Case (1), the point Qx = (0)(0) n (ma~l)(mb~l) = (m~la +
m~1b, 0) = (x~l +y~l, 0) . Now consider the line [m~l, m~la + m~lb] =
[x~ly~l, x~x + y~l] = (x~l)(y~l). It is the Pascal line of the hexagons
(oo)(oo)(0)(w~16)(/n"1a)(fl"1) and (0)(0)(oo)(a~1)(JT1)(»r1&). Thus
{0)(0)D(a~l)(b~l) is on ( x " 1 ) ^ " 1 ) . Since (a + b,0) is on (x" 1 )^" 1 ) it
follows that (0)(0) n (a~l)(b~l) = (a + b,0) and hence, by Lemma 3.2(vi),
that (0)(0) n (a){b) = (a"1 + b'x, 0) .

LEMMA 3.4. Let the plane be of order n = 3 (mod 4). Then, for any choice
of A, B, E, the points P, E, P' are collinear.

PROOF. The point (-1) in which the polar (1)(-1) of (1) meets (oo)(0)
is interior [9, Theorem 2.2]. Since the point (1) of <? has been selected
arbitrarily we can take E = (I) if E is an exterior point and E = (-1) if
E is an interior point. Let A = {a), B = (b). Then, according as E = (±1),
we have A' = (±a~l), B' = (±b~l); so that, by Lemmas 3.1(iii), 3.2(i) and
3.3, the point P' = (±(a+b), 0) . The collinearity of P, E, P' is immediate.

LEMMA 3.5. Let the plane be of order n = 3 (mod 4). Then (S, +, •) is
distributive.

PROOF. We show that c(a+b) = ca+cb for all a, b, c, e S-{0} . If c =
a'xb~l this is Lemma 3.3. If c ^ a~lb'x let E = (c~l), A = (a), B = (b).
Thus P = {0,a + b), A' = {c~la~{), B' = ( c ~ V ) , P' = (ca + cb, 0).
S ince P, E, P' a r e co l l i nea r it fo l lows t h a t c~x{ca + cb) = a + b ; a n d h e n c e
that c(a + b) = ca + cb.

NOTATION. In Lemmas 3.6, 3.7 we denote ((a + b) + 1) - (b + (a + 1)) by
f(a,b).
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LEMMA 3.6.

(i) / / f(a,b) = 0 then f(b,a) = 0.
(ii) / / f(a,bl) = 0 and f{a,b2) = 0 then f{a, ft, + ft2) = 0 .

PROOF, (i) We use 2.2. Assume f(a, b) = 0. Let a + b = k. Then
fc + 1 = ft + (a + 1). Hence

(a + (k + 1)) + (b + 1) = (a + (b + (a + 1))) + {b + 1)

= {k + l) + (k+l) = {a + {k+l)) + (-a + {k+ 1)).

It follows that b + 1 = -a + (k + 1). Hence a + {b + 1) = {a + b) + 1. The
proof of (ii) is left to the reader.

LEMMA 3.7. Let the plane be of order n = 3 (mod 4). Then (S, +) is
associative.

PROOF. It suffices to prove that f(a, b) = 0 for all a, b e S. That
f{a, 0) = 0 and / ( 0 , b) = 0 is obvious. Pick a e S - {0}. Let P =
( 0 , a ~ ' ) . Let [m,a~l] be a non-exterior line through P. Define b~{ —
m—a~l for m ^ a~ . Since m has (n+l) /2 values it follows that there are
at least (« - l)/2 values of b~l corresponding to a~x. Now f(a, -1) = 0
and f{a, -a) = 0. If b ^ - 1 and 6 / - a then ) ( ) (
b~l)(l) and (oo)(oo)(-6~1)(0)(a~1)(l) are Pascal hexagons with diagonal
points on [m, a~1]. Thus (oo)(-6~1) n (a~1)(l) = {-b, y), say, is on both
[a~l ,a~l + l] and [a~x+b~x, a~x]. Hence, by 2.3, y = a"16+(a"1 + l) and

b{a~l+b~1). T h u s , b y us ing L e m m a 3.5, b + {a+\)= l + {b + a);
that is, f(a, b) — 0. These values of b, together with 0, - 1 , -a, constitute
a set {bt} , say, which contains at least (n + l)/2 elements. It remains to
prove that f(a, b') = 0 for b' $ {bt} .Let (0, b') be on the tangent to &
at (b"). If b" G {b{} , t h e n , because b' = b" + b" , we have f(a ,b') = 0 by
Lemma 3.6(ii). Suppose b" £ {b(} . Since the number of points of the set
& ~ {(*,-)} - {(°°) > (*")} is a t m o s t (« - 3 ) / 2 ^ follows that there is at least
one secant through (0,b') intersecting & in points (6j),(ft2) of {(&,)}.
Thus, by Lemma 3.6(ii), f(a, b') = / ( a , ft, + 62) = 0.
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4. The main theorem

THEOREM 4.1. Let the projective plane be of order n = 3 (mod 4). If an
oval has the four point Pascal property and if each of its tangents and secants
has the five point Pascal property then the plane is Pappian and the oval is a
conic.

PROOF. It is immediate from 2.2 and Lemmas 3.7, 3.5 that (S, + , •) is a
finite alternative division ring. It is thus a field. Since (S, +) and (5 -{0} , •)
are Abelian groups it is readily deduced, (e.g. by reversing the argument in
the latter part of the proof of Lemma 2 in [1]), that (oo)(oo) and (oo)(0)
are Pascal lines of the oval. Since (oo), (0) have been selected arbitrarily it
follows that every tangent and every secant of the oval is a Pascal line. That
the plane is Pappian and the oval a conic is immediate from [7].

5. The Ostrom conic

The definition of an Ostrom conic (see [9, p. 425] and [4, p. 272]) can be
abbreviated thus:

THEOREM 5.1. An oval <f in a finite projective plane of odd order is an
Ostrom conic if each of its exterior and interior points is harmonic.

PROOF. For the definition and some properties of harmonic points and
lines see [4]. Define a 1 — 1 correspondence a between the points and lines
of the plane by associating each point of <f with the tangent at the point,
and each exterior and interior point with its harmonic line. Let points P, Q
be such that Q is on a(P). That P is on a(Q) is obvious if P or Q is
on <9; and is immediate from [4, Theorem 3.1, (iv), (v)] if P and Q are
not on <f and at least one of them is exterior. If P, Q are interior points
then pick a point A which is on (f but not on PQ. Let QA n <f = B,
PAnif = A', PB n<f = B'. Since P is harmonic, A'B' goes through Q;
and consequently P = AA1 n BB' is on a{Q). Thus a is a polarity of the
plane. By [4, Corollary, p. 273] its only absolute points are the points of <f.
Therefore (f is an Ostrom conic (see [4, p. 272]).

REMARK. Theorem 5.1 was motivated by Ostrom's Theorem 2.8 in [9].

THEOREM 5.2. An Ostrom conic in a finite projective plane of odd order has
the first type of four point Pascal property.
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PROOF. For the definition of an oval which has the first type of four point
Pascal property see [5, p. 299]. Let AAA'BBB' be a four point hexagon
inscribed in the Ostrom conic. The points AA1 n BB', AB1 n A'B are on
the harmonic line of AB n A'B'. Furthermore, by [4, Theorem 3.1(iv)], the
point AA D BB is also on this line. The required result is immediate.

THEOREM 5.3. If an oval in a projective plane of order n = 3 (mod 4) has
the four point Pascal property then it is an Ostrom conic.

PROOF. In the proof of Theorem 4.2 in [5] it is shown that the oval satisfies
the hypothesis of [9, Lemma 2.2]. Therefore the poles of secants through
an interior point are collinear. Hence, by considering the Pascal hexagons
AAA'BBB', A'A'AB'B'B, where AB, A'B' are secants through an interior
point, it is easy to prove that each interior point is harmonic. Furthermore,
since the oval is harmonic (2.1), each exterior point is harmonic [4, p. 272].
It follows, by Theorem 5.1, that the oval is an Ostrom conic.

6. Inscribed and circumscribed triangles

THEOREM 6.1. Let A, B, C be distinct points of an oval in a projective
plane of odd order n . Let BBnCC = A', CCnAA = B', AAnBB = C'.

(i) If the oval has the three point Pascal property then the triangles ABC,
A'B'C' are axially perspective.

(ii) If n = 3 (mod 4) and the oval has the four point Pascal property then
the triangles ABC, A'B'C' are centrally perspective.

PROOF. The triangles are axially perspective if A A n BC, BB n CA,
CC n AB are collinear; and centrally perspective if AA', BB', CC' are
concurrent. Hence (i) follows from the collinearity of the diagonal points of
the Pascal hexagon AABBCC. (ii) is proved by using (i) (because an oval
which has the four point Pascal property also has the three point Pascal prop-
erty); Theorem 5.3; and the fact that A, B, C, A', B', C' are the images
of AA, BB, CC, BC, CA, AB respectively under the polarity described in
Theorem 5.1.

REMARK. Segre [11, p. 414] has proved the concurrence of AA', BB', CC',
for the case of an oval in a finite Desarguesian plane of odd order, as a
preliminary to establishing his well-known theorem that such an oval is a
conic.
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