A NECESSARY AND SUFFICIENT CONDITION FOR SIMULTANEOUS DIAGONALIZATION OF TWO HERMITIAN MATRICES AND ITS APPLICATION

by YIK-HOI AU-YEUNG†

(Received 4 February, 1969)

1. Introduction and statement of the theorems. We denote by F the field R of real numbers, the field C of complex numbers, or the skew field H of real quaternions, and by F^n an n-dimensional left vector space over F. If A is a matrix with elements in F, we denote by A^* its conjugate transpose. In all three cases of F, an $n \times n$ matrix A is said to be hermitian if $A = A^*$, and we say that two $n \times n$ hermitian matrices A and B with elements in F can be diagonalized simultaneously if there exists a non singular matrix U with elements in F such that UAU^* and UBU^* are diagonal matrices. We shall regard a vector $u \in F^n$ as a $1 \times n$ matrix and identify a 1×1 matrix with its single element, and we shall denote by diag $\{A_1, \ldots , A_m\}$ a diagonal block matrix with the square matrices A_1, \ldots , A_m lying on its diagonal.

Let $A = \text{diag} \{A_1, \ldots , A_m\}$ and $B = \text{diag} \{B_1, \ldots , B_m\}$ be any two hermitian block matrices such that, for each $k = 1, \ldots , m$, A_k and B_k are of the same size. Then it is obvious that, if each pair A_k and B_k can be diagonalized simultaneously, so also can the pair A and B. Whether the converse is true or not is not at all obvious. In this note the author gives a simple proof of the converse (Theorem 2) by first proving the following theorem on a necessary and sufficient condition for simultaneous diagonalization of two hermitian matrices.

Theorem 1. Let A and B be two $n \times n$ hermitian matrices with elements in F. Then A and B can be diagonalized simultaneously if and only if there exists a basis $\{\mathbf{u}_1, \ldots , \mathbf{u}_n\}$ of F^n such that, for each $i = 1, \ldots , n$, the two vectors u_iA and u_iB are linearly dependent over R.

Theorem 2. Let $A = \text{diag} \{A_1, \ldots , A_m\}$ and $B = \text{diag} \{B_1, \ldots , B_m\}$ be two hermitian diagonal block matrices with elements in F such that, for each $k = 1, \ldots , m$, A_k and B_k are of the same size. If A and B can be diagonalized simultaneously, then so also can the pair A_k and B_k for each k.

A theorem similar to Theorem 1, on the simultaneous diagonalization of two nondegenerate symmetric bilinear forms over a field of characteristic not equal to 2, has been established by M. J. Wonenburger [3, Theorem 1, p. 617].

2. Proof of Theorem 1. Suppose that A and B can be diagonalized simultaneously. Then there exists a basis $\{\mathbf{u}_1, \ldots , \mathbf{u}_n\}$ such that $u_iA_j^* = u_jB_i^* = 0$ for all $i \neq j$ $(i, j = 1, \ldots , n)$. Now, for each fixed i, if $u_iA_i^* = u_iB_i^* = 0$, then $u_iA = 0 = u_iB$, while if $u_iA_i^*$ and $u_iB_i^*$ are not both zero, then $(u_iB_i^*)u_iA - (u_iA_i^*)u_iB = 0$. Hence in both cases u_iA and u_iB are linearly dependent over R.

† The author wishes to thank Professor Y. C. Wong for his advice during the preparation of this note.
To prove the sufficiency of the condition, suppose that there exists a basis \(X = \{u_1, \ldots, u_n\} \) of \(F^n \) such that, for each \(i = 1, \ldots, n, u_i A \) and \(u_i B \) are linearly dependent over \(R \). Then, for each \(i \), there exist \(\alpha_i, \beta_i \in R \), not both zero, such that
\[
\alpha_i u_i A + \beta_i u_i B = 0.
\]

Now in the set \(X = \{u_1, \ldots, u_n\} \) we define a relation \(\sim \) by setting \(u_i \sim u_j \) if \(\alpha_i \beta_j - \alpha_j \beta_i = 0 \). Obviously this is an equivalence relation. Let

\[
X = X_1 \cup X_2 \cup \ldots \cup X_m
\]

be the partition defined by this relation. Then, for each \(k = 1, \ldots, m \), there exist \(a_k, b_k \in R \), not both zero, such that
\[
a_k u A + b_k u B = 0, \quad \text{for all } u \in X_k; \tag{1}
\]
\[
a_k b_l - a_l b_k \neq 0, \quad \text{for all } k \neq l (k, l = 1, \ldots, m). \tag{2}
\]

From these two properties and \((u A v^*)_* = v A u^* \), it follows immediately that
\[
u A v^* = u B v^* = 0, \quad \text{for all } u \in X_k \text{ and } v \in X_l \text{ with } k \neq l. \tag{3}
\]

Without loss of generality we may assume that \(u_1, \ldots, u_{n_1} \in X_1, u_{n_1} + 1, \ldots, u_{n_1 + n_2} \in X_2, \ldots, u_{n_1 + n_2 + \ldots + n_{m-1} + 1}, \ldots, u_n \in X_m \). Let \(U \) be the matrix whose elements in \(i \)th row are the components of \(u_i \). Then \(U \) is non singular and, by (3), we have
\[
U A U^* = \text{diag} \{A_1, \ldots, A_m\},
\]
\[
U B U^* = \text{diag} \{B_1, \ldots, B_m\},
\]
where \(A_k \) and \(B_k \) are hermitian matrices of size \(n_k \) and, by (1), we have
\[
a_k u A v + b_k u B v = 0 \quad \text{for all } u, v \in X_k.
\]

Hence
\[
a_k A_k + b_k B_k = 0 \quad \text{for each } k = 1, \ldots, m.
\]

Since any hermitian matrix can be diagonalized (for \(F = R \) or \(C \), this is well-known; for \(F = H \), see [1] or [2]) and \(a_k, b_k \) are not both zero, \(A_k \) and \(B_k \) can be diagonalized simultaneously for each \(k \). Hence \(A \) and \(B \) can be diagonalized simultaneously.

3. Proof of Theorem 2. It suffices to prove the theorem for \(m = 2 \). Let \(A = \text{diag} \{A_1, A_2\} \) and \(B = \text{diag} \{B_1, B_2\} \), where \(A_1 \) and \(B_1 \) are of size \(n_1 \) and \(A_2 \) and \(B_2 \) are of size \(n_2 \), and let \(n = n_1 + n_2 \). If \(A \) and \(B \) can be diagonalized simultaneously, then, by Theorem 1, there exists a basis \(\{u_1, \ldots, u_n\} \) of \(F^n \) such that, for each \(i = 1, \ldots, n \), \(u_i A \) and \(u_i B \) are linearly dependent over \(R \).

Let \(u_i = (x_i, y_i) \), where \(x_i \in F^{n_1} \) and \(y_i \in F^{n_2} \). Then \((x_i A_1, y_i A_2) \) and \((x_i B_1, y_i B_2) \) are linearly dependent over \(R \) for each \(i \). Hence \(x_i A_1 \) and \(x_i B_1 \) are linearly dependent over \(R \) for each \(i \). Since \(\{u_1, \ldots, u_n\} \) is a basis of \(F^n \), there exists \(\{x_{i_1}, \ldots, x_{i_{n_1}}\} \) which forms a basis of \(F^{n_1} \). By Theorem 1, \(A_1 \) and \(B_1 \) can be diagonalized simultaneously. Similarly, \(A_2 \) and \(B_2 \) can be diagonalized simultaneously. This completes the proof.
REFERENCES

