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1. Introduction and statement of the theorems. We denote by F the field R of real numbers,
the field C of complex numbers, or the skew field H of real quaternions, and by F" an n-
dimensional left vector space over F. If A is a matrix with elements in F, we denote by A*
its conjugate transpose. In all three cases of F, an n x n matrix A is said to be hermitian if
A = A*, and we say that two n x n hermitian matrices A and B with elements in F can be
diagonalized simultaneously if there exists a non singular matrix U with elements in F such
that UAU* and UBU* are diagonal matrices. We shall regard a vector ueF" as a 1 x n
matrix and identify a 1 x 1 matrix with its single element, and we shall denote by diag
{A,,..., Am) a diagonal block matrix with the square matrices Ay,...,Am lying on its diagonal.

Let A = diag {Ai,...,Am} and B = diag { £ , , . . . , Bm} be any two hermitian block matrices
such that, for each k = I ,...,m, Ak and Bk are of the same size. Then it is obvious that, if
each pair Ak and Bk can be diagonalized simultaneously, so also can the pair A and B. Whether
the converse is true or not is not at all obvious. In this note the author gives a simple proof
of the converse (Theorem 2) by first proving the following theorem on a necessary and sufficient
condition for simultaneous diagonalization of two hermitian matrices.

THEOREM 1. Let A and B be two n x n hermitian matrices with elements in F. Then A and
B can be diagonalized simultaneously if and only if there exists a basis {« , , . . . , «„} of F" such
that, for each i= \,...,n, the two vectors utA and utB are linearly dependent over R.

THEOREM 2. Let A = diag {A,,..., Am} and B = diag { B t , . . . , 5m} be two hermitian
diagonal block matrices with elements in F such that, for each k = \,...,m,Ak and Bk are of the
same size. If A and B can be diagonalized simultaneously, then so also can the pair Ak and Bk

for each k.

A theorem similar to Theorem 1, on the simultaneous diagonalization of two nonde-
generate symmetric bilinear forms over a field of characteristic not equal to 2, has been
established by M. J. Wonenburger [3, Theorem 1, p. 617].

2. Proof of Theorem 1. Suppose that A and B can be diagonalized simultaneously.
Then there exists a basis {ui,...,un} such that u{ Au* = wf Bu* = 0 for all / ^ j (/, / = 1,. . . , n).
Now, for each fixed i, if utAu* = UjBu* = 0, then utA = 0 = u,B, while if utAu* and utBu*
are not both zero, then (M1J5M,*)Miy4-(M,̂ wi*)M,5 = 0. Hence in both cases utA and u,B are
linearly dependent over R.

tThe author wishes to thank Professor Y. C. Wong for his advice during the preparation of this note.
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To prove the sufficiency of the condition, suppose that there exists a basis X = {uly...,un}
of F" such that, for each i— 1 , . . . , n, utA and utB are linearly dependent over R. Then, for
each /, there exist af, PieR, not both zero, such that

<xiuiA+piuiB = 0.

Now in the set X = {ui,..., un} we define a relation ~ by setting ut ~ Uj if a,- /?7-—a,- /?, = 0.
Obviously this is an equivalence relation. Let

be the partition defined by this relation. Then, for each k = \,...,m, there exist ak,bke R, not
both zero, such that

akuA+bkuB = 0, for all ueXk; (1)

akbt-a,bk^0, for all k*l(k,l=\,...,m). (2)

From these two properties and {uAv*)* = vAu*, it follows immediately that

uAv* = uBv* = 0, for all ueXk and u e J , with k & I. (3)

Without loss of generality we may assume that u1,...,unieXl,uni + l,...,uni+nieX2,...,
M,l+B!+.. .+nm.1 + 1 M,elm. Let U be the matrix whose elements in /th row are the com-
ponents of M;. Then U is non singular and, by (3), we have

UAU* = diag{^!,. . . , Am},

UBU* = diag{B1,...,Bm},

where Ak and Bk are hermitian matrices of size nk and, by (1), we have

akuAv + bkuBv = 0 for all u,veXk.
Hence

akAk+bkBk = 0 for each k = 1 m.

Since any hermitian matrix can be diagonalized (for F = R or C, this is well-known; for F= H,
see [1] or [2]) and a*,^ are not both zero, Ak and i^ can be diagonalized simultaneously for
each k. Hence A and B can be diagonalized simultaneously.

3. Proof of Theorem 2. It suffices to prove the theorem for m = 2. Let/I = diag{/41)/i2}
and B = diag {5 t , B2), where /4t and 5 , are of size «1 and A2 and 2?2 are of size n2, and let
n = «j +n2 • If-̂

 afld ^ can be diagonalized simultaneously, then, by Theorem 1, there exists a
basis {«, ,...,»„} of F" such that, for each i = 1,...,«, w,-4 and w.-fi are linearly dependent
over R.

Let H( = (x,,ji), where Jc,eF" and y^F"1. Then (x.-^^^^j) and ( ^ . ^ . j , ^ ) are
linearly dependent over R for each i. Hence xtAx and Xji?! are linearly dependent over R
for each /. Since {«t ,...,«„} is a basis of F", there exists {xit xint} which forms a basis of
F". By Theorem 1, At and 5j can be diagonalized simultaneously. Similarly, A2 and B2

can be diagonalized simultaneously. This completes the proof.
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