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Abstract
Given the assumption that weather risks affect crop yields, we designed a weather index insurance product
for soybean producers in the US state of Illinois. By separating the entire vegetation cycle into four growth
stages, we investigate whether the phase-division procedure contributes to weather–yield loss relation
estimation and, hence, to basis risk mitigation. Concretely, supposing stage-variant interaction patterns
between temperature-based weather index growing degree days and rainfall-based weather index cumula-
tive rainfall, a nonparametric weather–yield loss relation is estimated by a generalized additive model. The
model includes penalized B-spline (P-spline) approach based on nonlinear optimal indemnity solutions
under the expected utility framework. The P-spline analysis of variance (PS-ANOVA) method is used for
efficient estimation throughmixedmodel re-parameterization. The results indicate that the phase-division
models significantly outperform the benchmark whole-cycle ones either under quadratic utility or expo-
nential utility, given different levels of risk aversions. Finally, regarding hedging effectiveness, the expected
utility ratio between the phase-division contract and the whole-cycle contract, and the percentage changes
of mean root square loss and variance of revenues support the proposed phase-division contract.

Keywords: Weather index insurance; nonlinear indemnity; plant growth stages; generalized additive model; PS-ANOVA

1. Introduction
Since its introduction in the 1990s, weather index insurance and weather derivatives have been
regarded as risk management instruments offering numerous hedging possibilities to farmers
and the agricultural sector. Potential advantages attributed to weather index insurance include
the remission of loss assessment, transparency of contracts, and mitigation of moral hazard and
adverse selection (e.g., Barnett et al., 2008; Kellner & Mußhoff, 2011). However, thus far, weather
index insurance products have not met the expectations that they have raised as financial risk
management tools in the agricultural sector. As noted by Lin et al. (2015), the uptake of these
products is relatively low. Several factors have been identified in the literature that may explain
the reluctance of farmers to adopt these products, including nontransparent pricing mechanism
(e.g., Xu et al., 2008), high costs due to systemic weather risk (Okhrin et al., 2013), and, most
importantly, poor hedging effectiveness (e.g., Mußhoff et al., 2011; Pelka & Mußhoff, 2013).

Hedging effectiveness is closely related to basis risk, that is, the difference between actual yield
losses and indemnification (Woodard & Garcia, 2008). Following Dalhaus et al. (2018), basis
risk can be separated into three subcomponents: geographical basis risk, design basis risk, and
temporal basis risk. Much research has been conducted to improve the hedging effectiveness of
weather index insurance and, thus, the willingness to pay for these products by addressing the
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different components of basis risk. For example, geographic basis risk, which arises from various
weather conditions at the farm location and the reference station of the index product, can be
mitigated by regional diversification of insurance products (Ritter et al., 2014) or by spatial inter-
polation techniques (Cao et al., 2015). Design basis risk can be controlled by several parameters
andmethodological choices whenmodeling the complex weather–yield relationship. First, appro-
priate weather variables should be selected. Undoubtedly, rainfall and temperature are essential
drivers of plant growth. Still, there is no consensus on the number and exact specification of the
weather variables to be included in a yield model. Often used weather variables are growing degree
days (GDD), cumulative rainfall (CR), dry spells, and the standardized precipitation index (cf.
Turvey, 2001; Stoppa & Hess, 2003; Hill et al., 2019; Okpara et al., 2017). Moreover, although not
fully adopted, it is widely accepted that the weather–yield relation is nonlinear (e.g., Schlenker &
Roberts, 2009). However, the functional form of this relation is plant-specific. It must be adapted
to the regional production environment, which calls for a flexible modeling approach, either para-
metrically or nonparametrically (e.g., Bokusheva, 2011; Delerce et al., 2016). While early work
by Vedenov & Barnett (2004) employed traditional regression methods to model the impact of
weather variables on agricultural yields, machine learning techniques, specifically artificial neural
networks, are increasingly used to accomplish this task (cf. Schmidt et al., 2022). Most recently,
B-spline and P-spline methods have been proposed as a nonparametric alternative to model the
weather–yield relation by Tan & Zhang (2020) and Bucheli et al. (2022). An additional insertion
point for reducing design basis risk is the specification of the indemnity function. The majority
of existing empirical applications, such as Vedenov & Barnett (2004) and Okhrin et al. (2013),
assumed a stepwise linear indemnity function, in which the payoff is triggered by a threshold of
the weather index, increases linearly with the index, and is often capped at a maximum level.
However, Zhang et al. (2019) extended Raviv’s (1979) seminal work and proved that optimally
designed weather index insurance consists of a nonlinear indemnity function. Finally, temporal
basis risk can be considered as a particular aspect of design basis risk that refers to the inexpedient
choice of the insured period (Conradt et al., 2015).

Agronomy and crop science assert that the vulnerability of crops concerning drought and tem-
perature stress varies during the plant growth cycle. It is well known that the demand for water
increases with the plant and leaf area until the plant begins to mature (e.g., Jensen, 1968). Nielsen
& Nelson (1998) studied the effects of water deficit at various growth stages of black beans. They
concluded that the yield reduction is highly sensitive to limited precipitation at the flowering stage.
Moreover, exposure to temperature extremes at the reproductive stage greatly affects the produc-
tion of plants (Hatfield & Prueger, 2015). So far, agronomic knowledge has been mainly used to
determine the beginning and end dates of the accumulation period of weather indices, for exam-
ple, GDD or CR (Dalhaus et al., 2018). Schierhorn et al. (2021) implemented machine learning
techniques to explore the contribution of weather and climate to winter wheat yields during dif-
ferent plant development stages. However, only a few articles, such as Shi & Jiang (2016), explored
the effect of weather variables and their interaction in different plant growth stages in the context
of weather index insurance.

Against this backdrop, this paper aims to investigate whether the basis risk of weather index
insurance can be further reduced by a growth-phase-dependent estimation of the weather–yield
loss relationship using a flexible statistical modeling approach. To this end, we employ a gener-
alized additive model (GAM) and several B-spline bivariate row tensor product smoothers (de
Boor, 1978; Hastie & Tibshirani, 1987), with each smooth function representing a plant growth
phase working together to fit the response variable, which is yield loss. So far, applications of B-
spline methods in agricultural insurance are rare. Price et al. (2019) used the B-spline method
to model the relationship between land quality, insurance coverage rate, and premium rate. Tan
& Zhang (2020) and Bucheli et al. (2022) propagated this method to estimate the weather–yield
relation. Although B-splines are attractive for nonparametric modeling, their specification comes
with various challenges. Specifically, complicated knot selection schemes, including numbers and
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positions, have been the subject of much research (e.g., Kooperberg & Stone, 1991; Ruppert, 2002).
In addition, to control overfitting, the penalties are pivotal, and many variations have been devel-
oped to address this issue, such as the thin plate penalty function (Wood, 2003; Eilers et al.,
2015). Among the penalty variations, the difference penalty on adjacent coefficients is a partic-
ular branch of research called penalized B-spline (P-spline) (cf. Eilers & Marx, 1996). Using the
equivalence between P-spline GAM and the mixed model, we apply a P-spline analysis of variance
(PS-ANOVA) method. By PS-ANOVA, the knot selection can be avoided, and the smoothing
parameter can be estimated in a computationally efficient manner by the decomposition of B-
spline row tensor product smoothers, as noted by Lee & Durbán (2011) and Lee et al. (2013). The
contribution of our paper is twofold. First, we explore whether breaking down the whole vegeta-
tion period into several growth stages can significantly improve the performance of weather index
insurance. Second, we investigate the application of nonparametric methods, namely GAM and
PS-ANOVA, in a nonlinear weather–yield loss relation estimation.

The remainder of this paper is organized as follows: section 2 introduces the optimal indem-
nity framework and the statistical approaches, GAM and PS-ANOVA. Section 3 describes the data,
study area, and model estimation. Moreover, this section provides results and discusses the per-
formance of a phase-division contract compared to a benchmark contract that includes the entire
vegetation period of the crop. Section 4 draws conclusions on the optimal design of weather index
insurance and evaluates the proposed statistical procedure.

2. Methodology
2.1. Optimal indemnity framework
In this paper, we take up the theoretical framework developed by Zhang et al. (2019), who
extended Raviv’s (1979) seminal work on optimal insurance design. In that framework, an opti-
mal indemnity function is derived from an expected utility maximization problem, in which a
risk-averse insurance buyer (a farmer) is exposed to (yield) loss Y and acquires insurance from an
insurer at price P that grants an indemnity payment I. Maximizing the insured’s expected utility
is carried out under a participation constraint of the insurer. Raviv (1979) proved that the optimal
indemnity function has the structure of a coinsurance above a deductible. Moreover, in the case
of a risk-neutral insurer, the optimal indemnity function is linear. This setting, however, is not
directly applicable to the design of index-based insurance, because it does not account for basis
risk. To capture this aspect, Zhang et al. (2019) modeled indemnity payments as a function of the
weather index X, that is, I = I(X). Normalizing the crop market price to one, income loss is equiv-
alent to yield loss Y . Yield loss and the weather index were assumed by Zhang et al. (2019) to have
a joint probability density function f (y, x). Further, taking a risk-neutral insurer, the optimization
problem can be stated as follows:{

maxIεI J(I) = E[U{w+ I(X) − Y − (1− τ) P}]
s.t.P = γE{I(X)}

, (1)

where I := {I|I :R2 �→ [0,M]} is the feasible set of measurable indemnity functions with an
exogenous upper limit M, E denotes the expectation, U is the concave utility function of the
insured, and w denotes initial wealth. A subsidy rate τ ∈ [0, 1] is included in the utility function
since the government often supports agricultural insurance, particularly in its pilot stage (Tadesse
et al., 2015). Due to the assumption of a risk-neutral insurer, the participation constraint takes
the form P = γE{I(X)} with a loading factor γ ≥ 1. To further simplify the application, we set
γ = 1. In contrast to damage-based insurance, the usual constraint I < Y does not apply. In fact,
an indemnity payment is possible even if no damage occurs. The insurance premium P ∈ [0, γM]
is assumed to be exogenously specified, for example, by the insurance buyer, and the indemnity
payment is optimally adjusted to this premium.
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Zhang et al. (2019) proved the existence and uniqueness of an optimal solution for the opti-
mization problem (1). They emphasize the finding that the optimal indemnity is generally a
nonlinear function of the weather index, though a linear payoff function is usually assumed
in the literature. Typically, the optimal indemnity function has to be determined numerically,
but there are closed-form solutions for particular utility functions. Specifically, for the quadratic
utility Uqua(r)= ar − br2, with revenue r ≤ a/(2b) and parameters a> 0 and b> 0, I(X) takes
the form:

I*qua(X) =
[{

E(Y|X) + η*qua

}
∨ 0

]
∧M, (2)

where E(Y|X) is the conditional expectation of Y given X.
For the exponential utility function U(r) = − 1

α
e−αr , with risk aversion parameter α > 0, the

solution is

I*exp(X) =
([

1
α
log

{
E
(
eαY |X)} + η*exp

]
∨ 0

)
∧M. (3)

The constants η∗ are determined by the constraint E[I∗(X) ]= P/γ . Equations (2) and (3)
indicate that the optimal indemnity functions under quadratic or exponential utility are affected
neither by the initial wealth w nor subsidy rate τ . Moreover, it becomes apparent that the estima-
tion of conditional expectations of yield loss, given the weather index, is pivotal to the practical
implementation of this kind of weather insurance. In our empirical application, we will focus on
the indemnity functions (2) and (3).

2.2. Statistical approach
In the optimal indemnity equation, the conditional expectation E(Y|X) or E(eαY |X) is essentially
a regression model of Y or eαY , given weather index X. As mentioned before, we employ GAM
with B-spline row tensor product smoothers to estimate the conditional expectation and then
embed it into the optimal indemnity function. We are not restricted to B-splines as GAM allows
for flexibility in selecting smoothers, such as kernels or cubic splines (Hastie & Tibshirani, 1987).
In this work, we use splines based on our preliminary analysis. Kernel estimation provides sim-
ilar results, yet the models are often overparameterized. As introduced by Eilers & Marx (1996),
P-spline, defined as the combination of B-spline with difference penalties on the estimated coef-
ficients, has a valuable property that it shows no boundary effects, while many types of kernel
smoothers do exhibit these. Aydin (2007) also concluded that smoothing spline regression esti-
mators outperform the kernel ones. To the best of our knowledge, the applications of splines in
agricultural insurance are rare, as mentioned in the Introduction.

To investigate the interaction between weather indices X1 and X2 and their effects on the
response Y , we construct a GAM including one smoother S, that is, Y = S(X1, X2), and denote
the vectors of these three variables as y, x1, and x2, respectively. Firstly, we obtain the marginal
B-spline basis Bui,j of order j for each weather index through de-Boor recursion (de Boor, 1978):

Bi,0(u)=
{
1, if ui ≤ u< ui+1

0, otherwise
and (4)

Bi,j = u− ui
ui+j − ui

Bi,j−1(u) + ui+j+1 − u
ui+j+1 − ui+1

Bi+1,j−1(u) , (5)

where u denotes the element in the weather index vector x1 or x2, {ui} is a uniform knot vec-
tor determined by k which is the number of equally spaced knots over the domain of x1 or x2
(strictly k− 1 is the number of internal knots), and i= 0, . . . , k+ j− 1, which represents the ith
basis function (Lee et al., 2013). Throughout this study, we use cubic splines (j= 1, 2, 3), which
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lead to functions with continuous second derivatives. Secondly, the smooth function S(x1, x2) is
constructed by the B-spline tensor product B and the GAM with one smoother is given by:

y= S(x1, x2) = Bθ + ε, ε ∼N (
0, σ 2I

)
, (6)

where B and θ are the “regression basis” and vector of “regression coefficients,” respectively (cf.
Lee & Durbán, 2011) and ε is a Gaussian error term with variance σ 2I. For efficient compu-
tation, row tensor product or box product B= B2�B1 = (B2

⊗
1′
c1 ) ∗ (1′

c2
⊗

B1) instead of the
Kronecker product B2

⊗
B1 is used, where Bq for q= 1, 2 denotes the marginal B-spline basis

constructed from the weather indices xq by (4) and (5) and cq is a vector of ones of length cqwhich
is the number of columns in Bq (cf. Eilers et al., 2006; Lee et al., 2013). To control the overfitting
and overparameterization, separate difference penalties are imposed on adjacent coefficients in θ

along the two dimensions, which creates P-splines. For methodological details, we refer interested
readers to Eilers & Marx (1996), Lee & Durbán (2011), and Marx & Eilers (1998). The number of
knots k lying between 20 and 40 is considered to be moderate (Ruppert et al., 2003).

We employ the P-spline ANOVA (PS-ANOVA) method to estimate the penalty terms. The
PS-ANOVA method originated from the idea that through re-parameterizing the P-spline GAM
defined above as (6) into a mixed model that contains both fixed and random effects (e.g.,
Brumback & Rice, 1998), the smoothing parameter becomes the ratio between the variance of
the residuals and the variance of the random effect in a mixed model. Therefore, the smooth-
ing parameter can be estimated using ANOVA decomposition (Currie & Durbán, 2002; Lee &
Durbán, 2011). This transformed mixed model is

y= Fβ + Zδ + ε, ε ∼N (0, σ 2I), δ ∼N (0,G) , (7)
where “ : ” distinguishes the blocks in a matrix and the original box product B= [F : Z] becomes
a block matrix consisting of fixed effects matrix F ≡ [1d : x1 : x2 : x2�x1] and random effects
matrix Z ≡ [Z1 : Z2 : Z2�x1 : x2�Z1 : Z2�Z1]. Zq = BqUq for q= 1, 2 andUq are eigenvectors cor-
responding to the positive eigenvalues of the singular value decomposition of D′

qDq. The original
coefficient θ = (β , δ)T becomes a vector including the fixed effects coefficient β and the ran-
dom effects coefficientδ that is assumed to be Gaussian with covariance matrix G. Note that
the response variable in the mixed model is assumed to be Gaussian in this paper. Moreover,
an isotropic penalization is conducted for simplification, which means that the same amount of
smoothing is used for all covariates (Rodríguez-Álvarez et al., 2015). There are two main advan-
tages of the PS-ANOVA method. First, one penalty for each covariate is attractive for tuning
multiple penalty parameters, especially when the GAM includes several smooth functions (Lee
et al., 2013). Second, the variance components of a mixed model can be estimated based on
restricted maximum likelihood (REML), which is proved empirically to be preferable to other
selection criteria, such as generalized cross-validation (GCV) or Akaike’s information criterion
(AIC) (Schall, 1991; Reiss & Todd Ogden, 2009; Wood, 2011).1

3. Empirical Application: Designing Weather Index Insurance for Soybean Production
3.1. Data and study area
In our empirical study, we use the methodology described in section 2 to design a weather index
insurance product for soybean producers in the US state of Illinois. Over one-third of soybeans

1Moreover, we compare the PS-ANOVA approach with the benchmark method, that is, the gam( ) function in the
"mgcv" package (version 1.8-40), which is the reference R package for GAM estimation in recent years (Rodríguez-Álvarez
et al., 2015). In gam( ), we choose te( ) and set bs= “ps” for cubic second-order P-spline tensor product smoothers,
which are consistent with PS-ANOVA settings as described in the reference manual for the "mgcv" package (version 1.8-40).
In addition, we set method= “REML” in gam( ), where REML is obtained by Laplace approximation and Newton–Raphson
iteration (see Wood, 2011 for details), rather than fisher scoring, which is used in the PS-ANOVAmethod (Lee et al., 2013).
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traded on the global market are produced in the USA, and the value of US soybean exports reached
a record of $27.4 billion in 2021 (USDA, 2022). Illinois contributed more than any other US
state to soybean output in 2021 (The Illinois Soybean Association, 2022). Thus, significant disrup-
tion to soybean production in Illinois will not only affect local farmers but can also influence the
international market substantially (Boyer et al., 2013). Soybean production is sensitive to weather
conditions and specific weather events like hot-dry summer conditions, which can severely affect
US soybean yields (Hamed et al., 2021). Insurance policies are available that cover yield losses for
US soybean producers, such as the Supplemental Coverage Option (SCO) and Enhanced Coverage
Option (ECO) (Schnitkey et al., 2022). Nevertheless, it appears reasonable to design a weather
index insurance product to complement existing contracts given the current situation in which
Rainfall Index Insurance is a single-peril insurance that only covers apiculture, annual forage,
pasture, and rangeland (USDA, 2021).

The data used in our empirical analysis are publicly available, including yield, meteorological,
and phenological data. County-level soybean yield data from 96 counties in Illinois from 1998
to 2020 are from the National Agricultural Statistics Services (NASS) (Fig. 1, upper panel). We
detrend raw yield data by a linear time regression model to obtain detrended yields (Shi & Jiang,
2016) (Fig. 1, middle panel). Further, following Zhang et al. (2019), yield losses2 Y in each county
are calculated as the difference between the highest detrended yield during the dataset’s 23 years
and detrended yields (Fig. 1, bottom panel). The average raw yield is about 48.46 bushels/acre,
and the average detrended yield is approximately 38.46 bushels/acre. Yield losses range from 0 to
35.17, and the average yield loss amounts to 9.53 bushels/acre.

Since temperature and precipitation aremajor determinants of plant growth (e.g.,Walter, 1985;
Donoghue, 2008), we use GDD and CR as weather-related indices in our analysis. We confine our
analysis to a two-dimensional case, since this research aims to investigate the interaction between
temperature and precipitation and their co-impacts on yield losses in different growth stages. We
average the gridded daily weather data collected from the Daymet data set (Thornton et al., 2020)
for the weather indices calculation in each county. GDD and CR are defined as:

GDDm,l =
∑edm

t=sdm
max

{
0,

(
TMAm,t,l + TMIm,t,l

)
2

− TB

}
and (8)

CRm,l =
∑edm

t=sdm
Rm,t,l, (9)

wherem and l denote the years and the region (county), respectively, t is the t-th day in a year, sd
and ed denote the start and the end date of the accumulation period, respectively, and TMA, TMI,
and R are daily maximum temperature, minimum temperature, and rainfall, respectively. The
baseline temperature TB of soybean growth is defined as 10◦ Celsius (Scholtes et al., 2019). GDD
and CR indices have been criticized because they do not account for the temporal distribution
of weather events within the accumulation period. This weakness, however, is attenuated because
we divide the accumulation period into shorter periods. In addition, we implement a Rainfall
Deficit Index (RDI) that has been suggested as an alternative to CR (e.g., Odening et al., 2007). A
definition of this index as well as model results are presented in the Appendix.

Agronomic research asserts that the weather–yield relationship is time-variant, that is, meteo-
rological factors affect plant development differently during each growth stage (e.g., Delerce et al.,
2016). Thus, we divide the whole growth cycle of soybeans into four phases. According to the
terms and definitions of the NASS (2018), these four phases are described as “emerged,” “bloom-
ing,” “setting pods,” and “dropping leaves.” The phase-division procedure is based on the weekly
state-level Crop Progress Report (USDA-Economics, Statistics and Market Information System

2The definition of yield loss in this article deviates from the convention to measure losses as difference of actual yields
from the mean; see Schmidt et al. (2022).
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Figure 1. Yield (upper panel), detrended yield (middle panel), and yield loss (bottom panel) for 96 counties in Illinois. Each
line represents one county.

(ESMIS), 2022). For the first stage, “emerged,” for example, we selected the dates for which ger-
mination rates are closest to 1% and 100% as the start and end dates, respectively, for this phase.
As a result, these dates may change slightly from year to year. For example, in 2020, the begin-
ning and end dates of the first phase are May 3 and June 28, respectively, which deviate about 1
week from those in 1998. Moreover, temporal overlapping between two subsequent growth stages
can occur. For example, “blooming” started on June 28, 1998, before the complete germination of
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Figure 2. Time series of growing degree days (GDD) and cumulative rainfall (CR) in the whole cycle. Each line represents one
county.

soybeans ended. To explore the performance gain from dividing the entire vegetation period, we
also estimate a benchmark model without decomposition whose beginning and end dates of the
accumulation period are defined as the start date of the first growth phase and the end date of the
last growth phase, respectively. In our study, we obtained the stage division points from the Crop
Progress Report, which was only available after all the necessary information had been collected.
Unfortunately, this means that the direct application of insurance contracts is not feasible because
we do not know the division points for future years that will be insured. The challenge is com-
pounded by our limited understanding of the underlying mechanism behind plant phenology, as
discussed by Tang et al. (2016). Given these uncertainties, we opted to rely on ground observations
as the basis for our division procedures.

Figs. 2, 3, and 4 depict the GDD and CR values of 96 counties over the observation period for
the entire growth cycle at each growth stage. In Figs. 2, 3, and 4, the values are annual and accu-
mulative, and each line is smoothed by observation points across 23 years. Each subplot reflects
accumulative values at a particular phase.

For example, in Fig. 3, upper left plot, each line represents the GDD values in the “Emerged”
stage across 23 years of one specific county, where stage 1 of the first year is immediately fol-
lowed by stage 1 of the second year. Some facts are notable. First, both weather indices show a
considerable variation over time, reflecting the prevalence of weather risk. Second, the graphs
reveal spatial heterogeneity of weather conditions across Illinois, though all counties follow sim-
ilar patterns. Third, unsurprisingly, spatial correlation is less pronounced for rainfall than for
temperature. Fourth, the patterns for the two weather indices differ across the four growth stages,
which motivates our proposed division. Actually, though the observation period is rather short,
some changes in weather patterns can be observed which may be interpreted as a manifestation of
climate change. There a several aspects to be mentioned in this context. First of all, it is essential to
distinguish between changes in levels (e.g., “global warming”) and changes in weather variability.
From an insurance perspective, the latter is more important. The question of whether weather
becomes more volatile over time has been intensively discussed in the literature (e.g., Wang et al.,
2013). Accordingly, models have been developed that capture time-varying volatility of tempera-
ture and rainfall processes (e.g., Okhrin et al., 2013). A related question is whether yields become
more volatile due to climate change and what amount of historical data should be used to esti-
mate models (e.g., Shen et al., 2018). Admittedly, our modeling approach does not account for
changing parameters of the stochastic weather processes. However, this seems acceptable, because
our paper focuses on the optimal design insurance contract that depends on the weather–yield
relationship and this relationship is not directly affected by climate change.
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Figure 3. Time series of growing degree days (GDD) in separate phases. Each line represents one county.

3.2. Model estimation
We determine the optimal indemnity function under quadratic and exponential utility functions,
which requires estimating conditional expectations of yield loss Y and eαY , respectively, given
the weather indices X and a specific combination of P andM according to equations (2) and (3),
respectively. The estimation of the conditional expectation is conducted for two settings. First,
we estimate conditional yield loss based on the weather–yield loss relation for the entire growth
period, for example, Ym,l = S0(GDDm,0,l, CRm,0,l)+ εm,0,l in the quadratic utility case, where the
subscript zero denotes the entire growth cycle. This GAM serves as a benchmark in our analysis.
Second, we divide the whole growth period into four phases and estimate the weather–yield loss
relation for the phase-division GAM consisting of four interaction smoothers, namely:

Ym,l = S1
(
GDDm,1,l, CRm,1,l

) + S2
(
GDDm,2,l, CRm,2,l

) + S3
(
GDDm,3,l, CRm,3,l

)
+ S4

(
GDDm,4,l, CRm,4,l

) + ε′
m,s,l, (10)

where the subscripts 1, 2, 3, and 4 represent the phases of “emerged,” “blooming,” “setting pods,”
and “dropping leaves,” respectively, and s is an overall symbol denoting phase division. Moreover,
to consider interactions among weather variables within different stages, we attempted to model
the interactions between all four phases (one eight-dimensional smoother). Unfortunately, it was
computationally highly demanding. Therefore, we allow for interactions within the four variables
of the first two phases, and within the four variables of the third and the fourth phase, that is, a
two-segment model containing two four-dimensional smoothers as a benchmark model:
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Figure 4. Time series of cumulative rainfall (CR) in separate phases. Each line represents one county.

Ym,l = SI
(
GDDm,1,l, CRm,1,l,GDDm,2,l, CRm,2,l

) + SII
(
GDDm,3,l, CRm,3,l,GDDm,4,l, CRm,4,l

)
+ ε′′

m,s,l. (11)

Only the benchmark method mgcv::gam( ) is used for the estimation of the model (11)
due to computational burden. There might be more efficient ways to handle high-dimensional
weather variables, such as neural network models (Crane-Droesch, 2018; Chen et al., 2020)
or regression tree-based models. However, in our research, we specifically chose the GAM to
prioritize interpretability for each separate growth phase. While neural networks may offer poten-
tial improvements in model performance, the relatively small dimensions of our study (only
eight variables) suggest that nonparametric regression, as employed in the components of GAM,
provides qualitatively similar results. Additionally, neural networks often require extensive hyper-
parameter tuning, which can be time-consuming and challenging. Thus, the investigation of the
performance of other methods in phase-division crop yield modeling is beyond the scope of this
study.

In the case of exponential utility, the response variable of GAM is eαY , where α− is the (abso-
lute) risk aversion coefficient. In our analysis, we consider three levels of risk aversion for US
soybean farmers: low-, moderate-, and high-risk aversion. To determine appropriate levels for the
risk aversion coefficient, we follow Tan & Zhang (2020), who derived α− by dividing a relative
risk aversion coefficient of 2, 3, and 4, respectively, by an estimate of the initial wealth of corn
producers in Illinois. This results in the following absolute risk aversion coefficients α− = 0.0052
(low), 0.008 (moderate), and 0.0103 (high).
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Table 1. RMSE and adjusted R2 of GDD-CR GAMs estimated by PS-ANOVA & mgcv::gam( ).

PS-ANOVA

Whole-cycle RMSE Adj.R2 Phase-division RMSE Adj.R2

Quadratic 5.14 0.27 Quadratic 4.04 0.55
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exp-low 5.14 0.27 Exp-low 4.04 0.55
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exp-moderate 5.10 0.29 Exp-moderate 4.04 0.55
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exp-high 5.10 0.29 Exp-high 4.04 0.55

gam( ) in "mgcv"

Whole-cycle RMSE Adj.R2 Phase-division RMSE Adj.R2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Quadratic 5.24 0.24 Quadratic 4.40 0.46
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exp-low 5.24 0.24 Exp-low 4.39 0.47
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exp-moderate 5.24 0.25 Exp-moderate 4.39 0.47
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exp-high 5.24 0.25 Exp-high 4.39 0.47

Notes: RMSE is the root mean squared error.

To circumvent potential overfitting, cross-validation is conducted to select the hyperparam-
eter k, that is, the number of knots. To this end, the entire data set was divided into three. The
training data set contains data from 1998 to 2013, and the validation data set includes data from
2014 to 2017, while the test data set contains data from 2018 to 2020. For computational sta-
bility, we normalize the values of all variables into the range [0, 1]. After estimation, we convert
the fitted values back to the original scale to obtain the scale-dependent root mean squared error:

RMSE=
√∑n

m=1
∑96

l=1(ŷm,l−ym,l)
2

96∗n , where n is the time series length of each county in the data set, for
example, n= 16 for the training set. RMSEmeasures the average deviation between predicted and
observed values and serves as our study’s model evaluation criterion (Schmidt et al., 2022). We
select the appropriate k values in the range [20, 40] by cross-validation. For whole-cycle models,
cross-validation resulted in k= 21 for the one under quadratic utility and the one under exponen-
tial utility given α− = 0.0052; k= 30 for the models under exponential utility given α− = 0.008
and α− = 0.0103. For all phase-division models, cross-validation resulted in k= 39. After cross-
validation, we estimate the models with the full sample size from 1998 to 2020 using selected
k values.

3.3. Results from the weather–yield loss relation
Table 1 shows that in all cases, the models based on phase division significantly outperform the
whole-cycle models in terms of RMSE and adjusted R2.3

Compared with the benchmark method mgcv::gam( ), PS-ANOVA shows a slightly better
fit. RMSE of the two-segment model (11) is 3.79 bushels/acre, and the Adj.R2 is 0.60, indicating
performance gain compared to the original four-phase-division model (10). There is clearly a
trade-off between model performance and model parsimony. Despite this, model (10) effectively
isolates the impact of each phase on yield losses, as we will see later. In contrast, the interpretability
of the two-segment model (11) is limited not only by the arbitrary nature of segment numbers
– as we could theoretically conduct a three-segment model containing two three-dimensional
and one two-dimensional tensor products – but also by the challenges of visualizing interactions
between more than three variables. As a result, the specific effects of each phase may not be clear.
Through our analysis and the results presented in the figures and the discussion that we will see in

3The adjusted R2 is calculated by the classical Ezekiel estimator (Ezekiel, 1930).
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Figure 5. Whole-cycle weather–yield loss relation.
Notes: CR is cumulative rainfall and is given in millimeters (mm). GDD is growing degree days and is given in degrees Celsius.
The subscript 0 after CR and GDD indicates that the whole-cycle model is utilized rather than the models that separate the
four growing phases.

section 3.3, we could clearly separate and quantify the contributions of each phase to yield losses.
This interpretability is crucial for understanding the underlying factors affecting crop yield and
designing effective index insurance.

A contour plot of the weather–yield loss relation is shown in Fig. 5 for the whole-cycle model.
It visualizes the complex interaction of variables GDD and CR as determinants of yield losses in
soybean production. Overall, soybean yield loss decreases with increasing GDD because higher
temperatures induce a faster crop development provided that a sufficient amount of rainfall is
available, in this case, more than 500 mm (Peiris et al., 1996). When the GDD is as high as 2,200◦
Celsius and the CR amounts to approximately 600mm, yield loss is at its minimum (about four
bushels/acre), which is less than half of the average yield loss (9.53 bushels/acre). However, when
the CR is below 500mm, the contour lines appear symmetric. It means that under a deficit in
rainfall, both insufficient and excessive GDD cause yield losses. Specifically, when GDD exceeds
the threshold of 1,800◦ Celsius, the joint occurrence of rainfall deficiency and heat stress causes
significant yield loss. Thus, our analysis confirms the negative impact of hot-dry conditions on
US soybean, which has been found in previous studies (e.g., Hamed et al., 2021). Furthermore,
Fig. 5 depicts that excessive rainfall also induces yield losses, particularly under cold conditions.
However, soybean yield losses are less sensitive to excessive rainfall than drought.

Fig. 6 depicts the impact of temperature and rainfall on soybean yield losses in each growth
phase. In each subplot, the displayed values measure the contribution to total yield loss, where
negative values indicate a reduction of yield losses. Comparing the four subplots reveals that the
weather–yield loss relation differs significantly between the four growth phases. The level of the
loss contribution, sensitivity to weather events, and the interaction between temperature and pre-
cipitation show pronounced differences. In the first phase (“emerged”), small losses occur at the
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Figure 6. Phase-division weather–yield loss relation.
Notes: Each subplot represents the yield loss contribution from the interaction between growing degree days (GDD) and
cumulative rainfall (CR) at the corresponding growth phase. The four growing phases are shown in the subscripts on the
labels of the axes: 1 indicates emerged, 2 blooming, 3 setting pods, and 4 dropping leaves. CR is inmm and GDD is in degrees
Celsius.

GDD-CR combination of around (650◦ Celsius, 200 mm), whereas large losses take place when
CR is lower than 100mm, and GDD is below 550◦ Celsius. Both CR and GDD influence yield
production positively within some range but result in a negative impact after exceeding a certain
level. In 2012, for example, the CR of 32 counties added up to less than 50mm in this develop-
ment phase. As a result of this countrywide drought, a considerable production disruption was
reported, with an estimated soybean yield loss of around 170 million bushels (Boyer et al., 2013;
Rippey, 2015). The contour plots of the second phase (“blooming”) show that potential yield losses
are comparably large, that is, soybean plants are vulnerable in this growth phase. Minimal yield
losses are realized at 650◦ Celsius and 150mm. Notably, plants are more sensitive to excessive
rainfall than drought in this phase. High temperatures advance blooming (Cooper, 2003), and
more precipitation will likely cause a longer blooming period and high outcrossing rate (Qu et al.,
2020). Another possible explanation is that under persistent wet weather, the disease sclerotinia
stem rot could attack soybeans during reproductive stages and, in turn, cause yield loss (Wrather
& Koenning, 2009).

The subplot of the third stage (“setting pods”) suggests a pattern that can be summarized as
“the warmer and wetter, the better.” When GDD is in the range [400, 650], yield loss remains
unchanged if the CR level exceeds 125mm. This indicates that temperature conditions restrict
the soybean growth rate. Once GDD exceeds 650◦ Celsius, more rainfall means higher yield gain.
The plot also shows that GDD affects yield loss only slightly under rainfall deficit conditions. This
can be explained by pods’ abortion under drought stress, since sufficient water is critical to fill
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the soybean pods (Liu et al., 2004). In the fourth phase (“dropping leaves”), the soybean yield
is relatively robust against varying rainfall. For instance, when GDD lies in the range [175, 500]
and CR is above 150mm, the contour lines are approximately vertical, which implies that rainfall
increments have little impact on yield loss. This result reflects the fact that the plant’s demand for
water declines when reaching maturity (Jensen, 1968). On the other hand, soybean’s temperature
demand seems to be relatively strong until GDD achieves 500◦ Celsius. The bottom right area
of the plot visualizes that yield losses begin to increase under the hot-dry weather. One possible
interpretation for this phenomenon is that drought stress increases crop vulnerability to aphids, a
transmitter of the Soybean Mosaic Virus, and further suppresses soybean yields (Rice et al., 2007;
van Munster et al., 2017).

3.4. Hedging effectiveness
Though estimating the conditional loss expectation for different plant growth phases provides
exciting insights into the weather–yield relationship, it is not yet clear if the suggested proce-
dure can improve the design of weather index insurance. To answer this question, we calculate
the hedging effectiveness of a phase-division contract and a standard contract based on the entire
vegetation period. Hedging effectiveness is defined in terms of the expected utility of the insurance
contract. We determine the optimal indemnity functions under the assumption of an exponen-
tial utility function and parametrize the level of risk aversion. Under exponential utility, EU is
E
(− 1

α
e−αr) and revenue is r =w+ I∗(X)− Y − (1− τ )P after the indemnity payment. As we are

interested in the relative performance of the phase-division contract compared with the standard
contract, we determine the ratio of the expected utility of the two contracts. Thus, the initial wealth
w, premium P, and subsidy rate τ are canceled out, and the expectation of the response variable
eαY is equivalent to the product of the fixed effects matrix and fixed effects coefficient, that is,
E(eαY )= Fβ given the zero-mean assumption of the random effect δ and the model error term
ε in the mixed model (7). We conduct the calculation for each county, that is, we consider each
county as a representative farmer in Illinois.

Up to this point, estimating a distribution of weather variables was not required since cal-
culating the optimal indemnity function is based on the conditional loss expectation given the
weather conditions. To arrive at the expected utility, we simply average the observed realiza-
tions of weather variables in the 23 years in the observation period. With this simplified historical
simulation, the EU ratio under exponential utility takes the following form:

ÊUs,l

ÊU0,l
= 1

23
∑23

m=1

e−αÎ*m,s,l(Xm,s,l)Fm,s,lβ̂m,s,l

e−αÎ*m,0,l(Xm,0,l)Fm,0,lβ̂m,0,l

, (12)

where the subscripts s and zero denote “phase-division” and “whole-cycle,” respectively, as defined
in section 3.2, and m and l are year and county indices, respectively. Considering that the aver-
age yield loss is about 9.53 bushels/acre and the maximum yield loss is approximately 35.17
bushels/acre, we assume that the premium P is 9 $/acre and the maximum indemnity M is $35
per acre, which normalizes the soybean price to $1/bushel without the loss of generality. Under
these assumptions, the optimal indemnities I∗(X) of phase-division and whole-cycle contracts are
obtained according to equation (3). The 96 counties are clustered into nine groups according to
the agricultural district attributes defined by the NASS (2022). The nine groups are “Northwest”
(10), “Northeast” (20), “West” (30), “Central” (40), “East” (50), “West Southwest” (60), “East
Southeast” (70), “Southwest” (80), and “Southeast” (90). Fig. 7 depicts which counties are included
in these groups and where they are located.

https://doi.org/10.1017/S1748499523000167 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499523000167


452 Jing Zou et al.

Figure 7. County-level agricultural district classification in Illinois.
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Figure 8. EU ratio under three levels of risk aversion.

Fig. 8 presents the results of the hedging effectiveness calculation. We find that the EU ratios
are above one across all nine regions, which indicates that the phase-division contract outper-
forms the whole-cycle one. However, the gain is modest. For instance, when α = 0.008, the mean
of all the 96 EU ratios is about 1.017, that is, on average, the expected utility of the phase-division
contract is only 1.7% higher compared to the whole-cycle contract. For more risk-averse policy-
holders (α = 0.0103), the relative superiority of the phase-division contract increases: the mean
of the EU ratios is about 1.022. Furthermore, we observe that EU ratios vary across agricultural
districts. For example, in the East District (50), the EU ratio is considerably lower than in the
Southwest district (80) for all three levels of risk aversion. In addition, we implement the mean
root square loss (MRSL) (e.g., Vedenov & Barnett, 2004) and variance of revenue (VAR) as alter-
native performance measures and calculate its percentage change with and without insurance for
both the whole-cycle and the phase-division contract.

For each county, the MRSL, VAR, and the percentage changes of MRSL and VAR after
insurance contract purchasing are defined as:

MRSL=
√

1
23

∑23

m=1

{
max

(
0, price ∗ yield− rm

)}2
, (13)

VAR=
√

1
23

∑23

m=1

(
price ∗ yield− rm

)2
, (14)

MRSLPC= MRSLwith −MRSLwithout
MRSLwith

, (15)

VARPC= VARwith −VARwithout
VARwith

, (16)

where price is set to be $1/bushel to represent the soybean price; average yield across 23 years is
yield;m is the year, and rm is the yearly revenue of each county. In the case of “with” contract,
the revenue rm = price ∗ dyieldm, where dyieldm is detrended yield in each year. In the case of
“without” contract, the revenue rm = price ∗ dyieldm + I∗exp,m(Xm)− P, where the premium P =
9$/acre is equivalent to expected payoff in this paper.

Averages of the MRSLPC and VARPC of GDD-CRI models are provided in Table 2. The results
show a significantly better performance of the phase-division contracts. For example, given α− =
0.0103, the average decrease inMRSL after purchasing the whole-cycle contract is 18.4%, while the
average decline in MRSL for a phase-division contract is as much as 41.9%. Moreover, the average
decrease in variance after purchasing the whole-cycle contract is 16.6% given α− = 0.0103, and
the average decrease of the phase-division one is 37.8%.
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Table 2. AverageMRSLPC and VARPC of GDD-CRI models.

Whole-cycle MRSLPCmean Phase-division MRSLPCmean

Exp-low −17.9% Exp-low −41.9%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exp-moderate −18.3% Exp-moderate −41.9%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exp-high −18.4% Exp-high −41.9%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Whole-cycle VARPCmean Phase-division VARPCmean
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exp-low −16.2% Exp-low −37.8%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exp-moderate −16.6% Exp-moderate −37.8%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exp-high −16.6% Exp-high −37.8%

4. Conclusions
This paper utilizes a nonlinear indemnity function framework to optimize weather index insur-
ance. We suggest a GAM with P-splines box product smoothers to estimate conditional yield
loss functions as a flexible alternative to commonly used regression models or neural networks
that recently became popular for modeling weather–yield relations. The statistical framework is
applied to the case study of soybean production in the US state of Illinois. Rainfall and temper-
ature and their complex interaction are the main drivers of soybean yield losses. Our analysis
contributes to decomposing the whole growth cycle into four stages. Our results indicate that the
proposed phase-division contract outperforms the whole-cycle one regarding model fit and hedg-
ing effectiveness. This finding is in line with earlier studies emphasizing informational gains from
disaggregated weather data (e.g., Schmidt et al., 2022). The division of the growth cycle allows a
state-dependent analysis of the collective impact of temperature and rainfall on crop yields. This
is not only beneficial for the design of weather index insurance, but it may also support man-
agerial decisions, such as the timing of irrigation measures (Katyal & Pandian, 2019). Moreover,
the model performance gain is significant in terms of the percentage change of mean root square
loss and VARs despite the relatively minor outperformance in EU ratio. The extent to which our
results can be generalized to other regions, crops, and weather variables is suggested for future
research.

We must address some limitations of our analysis. First, aggregated county-level soybean yield
data are used instead of individual farm-level yield data due to data availability, which inevitably
underestimates yield variability and basis risk of weather index insurance (Popp et al., 2005). We
conjecture that the relative advantage of the proposed statistical procedure will increase if it were
applied to farm-level data with higher variability. Second, weekly state-level data from the Crop
Progress Report cause temporal overlapping of plant growth phases. This dilutes the phase division
and may result in an estimation error. Finally, the distribution of weather variables and the joint
density of yield losses and weather indices have not been estimated, and thus the random nature
of weather perils has not been explicitly considered. While this is not necessary for calculating
the indemnity payments in our setting, it is essential for evaluating weather-related insurance
products. Linking the proposed P-spline method with a parametric or nonparametric estimate of
the density of weather indices would be an exciting direction for future research.
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Appendix A
A.1. Results for the Rainfall Deficit Index (RDI)
For each phase, RDI is calculated as:

RDIm,l =
∑π

ϕ=1
min

{
0,

∑7∗ϕ

t=(ϕ−1)∗7+1
Rm,l,t − Rmin

m,l,ϕ

}
where m and l represent the year and location, ϕ is the ordinal number of week at certain growth
stage of Illinois soybeans, π is the total number of weeks within a certain growth phase, t is the
t-th day in a year, and Rmin

m,l,ϕ represents the desired rainfall amount (“strike level”). We take the
average rainfall amount per week in 2018 to determine this strike level, since the 96 counties reach
the highest overall yield level in that year (cf. Fig. 1). The four stages include 7, 8, 8, and 7 weeks
in 2018.

https://doi.org/10.1017/S1748499523000167 Published online by Cambridge University Press

https://www.ilsoy.org/faq-items/how-much-soy-does-illinois-produce/
https://www.rma.usda.gov/-/media/RMA/Handbooks/Coverage-Plans---18000/Rainfall-and-Vegetation-Index---18150/2022-18150-Rainfall-Index-Handbook.ashx?la$=$\gdef  \ignorespaces {$=$}\gdef no{no}\gdef yes{yes}en
https://www.rma.usda.gov/-/media/RMA/Handbooks/Coverage-Plans---18000/Rainfall-and-Vegetation-Index---18150/2022-18150-Rainfall-Index-Handbook.ashx?la$=$\gdef  \ignorespaces {$=$}\gdef no{no}\gdef yes{yes}en
https://www.fas.usda.gov/commodities/soybeans
https://www.nass.usda.gov/Publications/National_Crop_Progress/Terms_and_Definitions/index.php
https://www.nass.usda.gov/Publications/National_Crop_Progress/Terms_and_Definitions/index.php
https://quickstats.nass.usda.gov/
https://doi.org/10.1017/S1748499523000167


458 Jing Zou et al.

Table A.1. RMSE and adjusted R2 of GDD-RDI GAMs estimated by PS-ANOVA & mgcv::gam( ).

PS-ANOVA

Whole-cycle RMSE Adj.R2 Phase-division RMSE Adj.R2

Quadratic 5.58 0.24 Quadratic 4.16 0.52
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exp-low 5.24 0.24 Exp-low 4.16 0.52
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exp-moderate 5.25 0.24 Exp-moderate 4.16 0.53
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exp-high 5.24 0.24 Exp-high 4.16 0.53

gam( ) in "mgcv"

Whole-cycle RMSE Adj.R2 Phase-division RMSE Adj.R2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Quadratic 5.34 0.21 Quadratic 4.49 0.44
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exp-low 5.34 0.21 Exp-low 4.49 0.45
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exp-moderate 5.34 0.22 Exp-moderate 4.49 0.45
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exp-high 5.34 0.22 Exp-high 4.49 0.45

For the GDD-RDI models, we again split the data set into three parts and select the suitable
k values in the range [20, 40] by cross-validation. For the whole-cycle models, cross-validation
resulted in k= 36 for the one under quadratic utility and the one under exponential utility given
α− = 0.0052; k= 39 for the models under exponential utility given α− = 0.008 and α− = 0.0103.
For all phase-division models, cross-validation resulted in k= 33. Comparing Table A.1 with
Table 1, similar results indicate model robustness, which is again reflected in the comparison
between EU ratio means in Table A.2.

A.2. EU ratio results comparison

Table A.2. Average EU ratios of GDD-CR
and GDD-RDI contracts.

GDD-CR EU ratio mean

Exp-low 1.007
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exp-moderate 1.017
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exp-high 1.022

GDD-RDI EU ratio mean

Exp-low 1.013
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exp-moderate 1.021
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exp-high 1.026
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