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An approximate model for pure electron plasma compression is developed for the case
where the rotating wall (RW) electric field couples to the E × B rotation and axial
bounce motion of the electrons. The key assumption in the model is that, throughout the
compression, the plasma remains in a slowly evolving thermal equilibrium defined by the
plasma temperature and angular momentum. Linearized drift kinetic theory is employed to
derive an expression for torque exerted by the RW field on the plasma through coupling to
the resonant plasma particles, and averaging is used to find the torque that both compresses
and heats the plasma. The evolution equations for the angular velocity and temperature
of the plasma include the compression and heating from the torque and cooling from
cyclotron radiation.

Keywords: plasma dynamics, plasma confinement, plasma nonlinear phenomena

1. Introduction

Non-neutral plasmas (Malmberg & deGrassie 1975; Davidson 2001) have a wide
range of applications in basic science and technology (Davidson 2001; Danielson et al.
2015). A recent review (Fajans & Surko 2020) describes the numerous techniques,
developed over decades, for the manipulation of antimatter plasmas, with applications
to positron emission tomography, material studies, positronium atoms and molecules, and
antihydrogen formation.

Confinement of non-neutral plasmas is often realized in Penning–Malmberg (PM) traps
(Malmberg & deGrassie 1975). In a PM trap, transverse confinement is provided by
an axial magnetic field, while longitudinal confinement and transport are controlled by
manipulating the voltages on a series of cylindrical electrodes.

It was shown by O’Neil (1980) that if the canonical angular momentum of the plasma is
dominated by the magnetic field contribution, azimuthally symmetric PM traps are subject
to a confinement theorem that constrains radial particle transport. In this case, the total

† Email address for correspondence: mlazarow@berkeley.edu

https://doi.org/10.1017/S002237782300082X Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-5566-2528
mailto:mlazarow@berkeley.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S002237782300082X&domain=pdf
https://doi.org/10.1017/S002237782300082X


2 M. Lazarow and others

canonical angular momentum of the plasma is approximately given by

Pθ ∼ qB
∑

i

r2
i , (1.1)

where q is the elementary charge of the plasma species, B is the axial magnetic field
and ri is the distance of particle i from the trap axis. Azimuthal symmetry requires
that the angular momentum is conserved and thus, absent of any external torques,
the mean-squared radius of a magnetized non-neutral plasma must be conserved. This
confinement theorem predicts very long plasma lifetimes, although in experiments, slow
expansion is observed due to non-ideal trap effects. Collisions with residual background
gas particles drive radial transport and limit confinement time (deGrassie & Malmberg
1980), in agreement with theory (O’Neil 1980) at high background pressure. However,
radial expansion did not follow the expected behaviour as the background pressure was
reduced (Driscoll, Fine & Malmberg 1986); this was attributed (Driscoll et al. 1986) to
azimuthal asymmetries in the magnetic or electric confinement system.

A major advance in reaching long confinement times was achieved with the development
(Huang et al. 1997) of rotating wall (RW) compression. In the RW scheme, phased voltages
are applied to an azimuthally sectored electrode to create a rotating electric field at the
plasma. This field exerts a torque which changes the plasma angular momentum and does
work on the plasma. We consider here the case where the RW frequency exceeds the
plasma rotation frequency, corresponding to a final plasma state which is compressed.
The plasma heats and cools during the compression, with the heating provided by the
RW doing work on the plasma and the cooling provided by electron cyclotron emission.
Rotating wall compression has been developed and exploited to control ion (with buffer
gas cooling), electron and positron plasmas (Huang et al. 1998; Greaves & Surko 2000;
Hollmann, Anderegg & Driscoll 2000; Danielson & Surko 2005, 2006; Greaves & Moxom
2008; Isaac et al. 2011). It is now routinely used to both improve confinement and increase
plasma densities (Fajans & Surko 2020).

In initial experiments, the coupling of the RW to the plasma was through Trivelpiece–
Gould modes (Soga et al. 2003). These modes, in turn, couple to the bulk plasma via
collisions and Landau damping. An alternative to the Trivelpiece–Gould coupling is
known as the strong-drive regime, which is the focus of this paper. In this regime, the
plasma rotation frequency almost catches up to the rotating wall frequency. Earlier papers
have investigated strong-drive compression (Kiwamoto, Soga & Aoki 2005; Danielson,
Surko & O’Neil 2007; van der Werf et al. 2012). The single-particle limit was explored by
van der Werf et al. (2012), a simplified torque-balance model was used to study the relation
between the initial and final plasma states by Danielson et al. (2007), and Kiwamoto
et al. (2005) developed a drift kinetic model, similar to what is used here, to evaluate
the coupling of the RW to the plasma. In this paper, we use the ansatz that the system
can be described at any time by a slowly evolving thermal equilibrium and derive a full
set of coupled equations by combining equilibrium thermodynamics with the drift kinetic
equation.

The key assumptions of our model are that: (i) the RW torque is generated by coupling
to particles that are resonant with the RW wave (i.e. the combined E × B and axial motion
of the particles allows them to remain in phase with the RW wave); (ii) the resonant
particle coupling causes a weak perturbation to the Vlasov distribution function; (iii)
the plasma evolves slowly, remaining in thermal equilibrium as the density increases
and the temperature evolves; (iv) the total potential used to find the torque is calculated
self-consistently; and (v) the particles lose energy via cyclotron emission. The assumptions
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(i) and (ii) allow us to calculate the evolution equations for the plasma temperature and
rotation frequency, and use linear kinetic theory to evaluate the torque generated by
resonant coupling. Under these assumptions, we avoid having to explicitly calculate any
collisional integrals.

2. Thermal equilibrium model for rotating wall compression

In this section, a complete derivation of our RW model is given. In § 2.1, we
derive the equations of motion (EOM) starting from thermodynamic considerations and
incorporating Vlasov dynamics. In § 2.2, we find explicit expressions for the energy and
angular momentum in terms of thermodynamic state variables (temperature and plasma
rotation frequency). In § 2.3, we use drift kinetic theory to derive the torque that the RW
imparts to the plasma. We use cgs units throughout and set kB = 1.

2.1. Thermodynamic equations for compression
In this model, we consider a cylindrical pure electron plasma in thermal equilibrium,
confined to a PM trap with an axial magnetic field B = Bẑ. The state variables of the
plasma are its temperature T and rotational (angular) velocity ωr. We neglect finite-length
effects by modelling a plasma of physical length Lp as infinite and periodic, with
periodicity length Lp = 2Lp (Eggleston & O’Neil 1999). All integrals along the z-axis
in this paper are understood to be over one periodic cell, −Lp ≤ z ≤ Lp.

Electron dynamics follows from the single-particle (sp) Hamiltonian

Hsp(r, p; T, ωr) = K + qφ0 (r; T, ωr) , (2.1)

with

K = 1
2me

(
p2

r + p2
z

)+ 1
2mer2

(
pθ − 1

2
meΩcr2

)2

, (2.2)

where me is the electron mass, q = −e is the electron charge,Ωc = qB/mec is the (signed)
cyclotron frequency, c is the speed of light and φ0(r; T, ωr) is the mean-field electrostatic
potential of the plasma. The electrostatic potential depends on the radial density profile,
which, given a fixed number of electrons in the trap, is uniquely determined, and in
equilibrium, on the plasma temperature and rotation frequency. The explicit dependence
on the thermodynamic state variables following the semicolon (e.g. φ0(r; T, ωr)) is a
reminder that we are considering equilibrium quantities that evolve by virtue of the plasma
transitioning between thermal equilibrium states during compression.

Though we consider only pure electron plasmas in this paper, our analysis naturally
extends to positron plasmas. To facilitate this extension, we use a sign convention that
readily encompasses both signs of charge. For a magnetic field pointing along +ẑ, a
positively charged plasma column will rotate in the −θ̂ direction under its E × B drift.
This makes the rotational angular velocity negative, ωr < 0, for charges with q > 0.
Other angular rotation frequencies follow the same convention. To summarize our sign
conventions, for q > 0, we have Ωc > 0, ωr < 0 and pθ > 0 (when strongly magnetized),
while for q < 0, we have Ωc < 0, ωr > 0 and pθ < 0 (when strongly magnetized).

The distribution function of the plasma is (using the above sign conventions)

f0(r, p; T, ωr) = 1
Z exp

[
− 1

T

(Hsp(r, p; T, ωr)− ωrpθ
)]
. (2.3)
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The constant Z is determined by normalizing the distribution function to the total number
of electrons in a periodic cell,

1
Lp

∫
f0(r, p; T, ωr) d3r d3p = Ne, (2.4)

where Ne is the line density of electrons along the axis.
The equilibrium density n0(r; T, ωr) is given by

n0 (r; T, ωr) =
∫

f0(r, p; T, ωr) d3p = n0(0; T, ωr) exp (ψ (r; T, ωr)) , (2.5)

where n0(0; T, ωr) is the on-axis density. The functionψ(r; T) (see Dubin & O’Neil 1999)
combines the electrostatic and centrifugal potentials:

ψ(r; T, ωr) = − q
T

(
φ0(r; T, ωr)− φ0(0; T, ωr)− meωr(Ωc + ωr)

2q
r2

)
. (2.6)

The Poisson equation can then be written as

1
r
∂

∂r

(
r
∂ψ(r; T, ωr)

∂r

)
= 4πq2n0(0; T, ωr)

T
(exp (ψ(r; T, ωr))− 1 − δ) , (2.7)

with

δ = − 2meωr(Ωc + ωr)

4πq2n0(0; T, ωr)
− 1. (2.8)

The rotating wall perturbs the plasma out of equilibrium:

φ0(r; T, ωr) �→ φ0(r; T, ωr)+ δφ(t, r, θ, z), (2.9a)

f0(r, p; T, ωr) �→ f0(r, p; T, ωr)+ δf (t, r, θ, z, p). (2.9b)

Our model avoids explicit calculations involving collisional operators even though the
time scale for cooling is much longer than the collision time. This is accomplished by
assuming that thermalization via collisions occurs sufficiently rapidly so that the plasma
evolves through thermal equilibrium states defined by the average energy 〈E〉 and average
angular momentum 〈 pθ 〉. The temporal evolution of these states is found by matching the
same quantities computed for the perturbed plasma after the RW perturbation has been
active for a small time 	t.

Explicitly, consider the energy and angular momentum functionals

〈E〉[φ, f ] = 1
NeLp

∫ [
K + 1

2
qφ(r)

]
f (t, r, p) d3r d3p, (2.10a)

〈 pθ 〉[φ, f ] = 1
NeLp

∫
pθ f (t, r, p) d3r d3p, (2.10b)

where, since φ is the self-field, the factor of 1/2 in the energy is necessary to avoid
double-counting. In thermal equilibrium, these functionals become ordinary functions of
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the state variables:

〈E〉[φ0(r; T, ωr), f0(r, p; T, ωr)] ≡ 〈E〉(T, ωr), (2.11a)

〈 pθ 〉[φ0(r; T, ωr), f0(r, p; T, ωr)] ≡ 〈 pθ 〉(T, ωr). (2.11b)

Our equilibration assumption is

〈E〉(T +	T, ωr +	ωr) = 〈E〉[φ(t0 +	t), f (t0 +	t, r, p)], (2.12a)

〈 pθ 〉(T +	T, ωr +	ωr) = 〈 pθ 〉[φ(t0 +	t), f (t0 +	t, r, p)], (2.12b)

where f (t0 +	t) is the equilibrium distribution at t0, f (t0) ≡ f0, evolved with the Vlasov
equation to time t = t0 +	t and φ(t0 +	t) is the corresponding total self-consistent
potential. Expanding to linear order and dividing through by 	t gives

d〈E〉
dt

= 1
NeLp

∫ {[
K + 1

2
qφ0(r; T, ωr)

]
∂f
∂t

+ 1
2

q
∂φ

∂t
f0

}
d3r d3p, (2.13a)

d〈 pθ 〉
dt

= 1
NeLp

∫
pθ
∂f
∂t

d3r d3p, (2.13b)

where, on the left-hand side, d/dt = Ṫ(∂/∂T)+ ω̇r(∂/∂ωr).
Integrals of the form ∫

g(r, p)
∂f
∂t

d3r d3p (2.14)

can be simplified with the Vlasov equation,

∂f
∂t

= −∂f
∂r

· ∂H
∂p

+ ∂f
∂p

· ∂H
∂r
, (2.15)

where

H = K + qφ0(r; T, ω)+ qδφ (2.16)

is the full Hamiltonian. Inserting (2.15) into (2.14) and integrating by parts to pull
derivatives off of f yields:

∫
g(r, p)

∂f
∂t

d3r d3p =
∫

f
(
∂g
∂r

· ∂H
∂p

+ g
∂2H
∂r · ∂p

− ∂g
∂p

· ∂H
∂r

− g
∂2H
∂r · ∂p

)
d3r d3p.

(2.17)

The second derivatives of H cancel and we proceed to evaluate the remaining expressions
with g = pθ and g = K + 1

2 qφ0.
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For g = pθ , we have∫
pθ
∂f
∂t

d3rd3p

=
∫

f
(

−∂pθ
∂p

· ∂H
∂r

)
d3r d3p = −

∫
f
∂H
∂θ

d3rd3p = −
∫

f
∂(qδφ)
∂θ

d3r d3p. (2.18)

For g = K + 1
2 qφ0, the terms ∂K/∂r · ∂K/∂p cancel. Furthermore, none of the potential

terms depend on p, so that only remaining terms are∫
f
(

1
2
∂(qφ0)

∂r
· ∂K
∂p

− ∂K
∂p

· ∂(qφ0 + qδφ)
∂r

)
d3r d3p. (2.19)

Since φ0 only has radial dependence, we find∫ (
K + 1

2
qφ0

)
∂f
∂t

d3r d3p = −
∫

f
(

pr

2me

∂(qφ0)

∂r
+ ∂K
∂p

· ∂(qδφ)
∂r

)
d3r d3p. (2.20)

To find a closed set of equations, we use linear theory to approximate the evolution
of f and δφ. With f = f0 + δf in (2.20), terms with only a single perturbed quantity
vanish upon azimuthal integration because the equilibrium is azimuthally symmetric
and the perturbations are linear combinations of non-zero azimuthal modes. The same
argument applies to the (∂φ/∂t)f0 = (∂(δφ)/∂t)f0 term in (2.13a), which thus also
vanishes. Terms that are the product of two perturbations (i.e. both δφ and δf ) can be
non-zero after azimuthal integration. There is also one term without any perturbations:∫

f0((pr/2me)(∂(qφ0)/∂r)) d3r d3p; this terms vanishes because f0 is Gaussian in pr,
making the full integrand odd in pr.

Putting everything together, we have

d〈E〉
dt

= − 1
NeLp

∫
δf
∂K
∂p

· ∂(qδφ)
∂r

d3r d3p, (2.21a)

d〈 pθ 〉
dt

= − 1
NeLp

∫
δf
∂(qδφ)
∂θ

d3r d3p. (2.21b)

Note that ∂K/∂p = ∂Hsp/∂p = ṙ since the potential term has no momentum
dependence. Thus, ∂K/∂p · ∂(qδφ)/∂r = ṙ(∂(qδφ)/∂r)+ ż(∂(qδφ)/∂z)+ θ̇ (∂(qδφ)/∂θ).
We neglect the first term because it is proportional to the inverse of the compression time
scale (ṙ∂δφ/∂r ∼ δφ/τcomp 	 θ̇∂δφ/∂θ ∼ ωrδφ). We neglect the second term because
it describes the heating of particles resonant with the RW wave as their distribution
flattens in a process akin to nonlinear Landau damping, which will not occur assuming
that thermalization is rapid enough to maintain thermal equilibrium during compression.
Since the plasma rotates coherently in equilibrium, we have θ̇ = ωr = const. and we can
move ωr outside the integral.

Electrons cool via cyclotron emission and are heated by a thermal reservoir at
temperature Tres.. We account for this by subtracting the term (1/τR)(T − Tres.) in the EOM
for 〈E〉, where τR = 9mec3/8q2Ω2

c is the time scale for cyclotron radiation (Beck, Fajans
& Malmberg 1996).

Lastly, we add a phenomenological drag torque τdr and its corresponding heating or
cooling term Pdr. If the drag torque can be modelled with a potential perturbation in a
manner similar to the RW torque, then Pdr = τdrωr, but in more general cases (such as
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collisions with background gas particles deGrassie & Malmberg 1980), the two quantities
are independent.

Our full system of equations is then

d〈E〉
dt

= 〈τ 〉ωr − 1
τR
(T − Tres.)+ Pdr, (2.22a)

d〈 pθ 〉
dt

= 〈τ 〉 + τdr, (2.22b)

〈τ 〉 = − 1
NeLp

∫
δf
∂(qδφ)
∂θ

d3r d3p, (2.22c)

where the last line introduces the average torque acting on the plasma.
We pause here to remark about the signs of various terms. Recall from our sign

conventions in § 2.1 that electrons (q < 0) have ωr > 0 and 〈 pθ 〉 ∼ qB
∑

i r2
i < 0. For the

plasma to compress, we need 〈 pθ 〉 to become less negative (smaller
∑

i r2
i ), which requires

a positive torque according to (2.22b). A positive torque and rotation frequency in turn
means the first term of (2.22a) is positive, leading to energy gain and heating. This is
the expected behaviour since the RW torque does work on the plasma to compress it. For
q > 0 (e.g. positrons), the signs are reversed: ωr < 0, 〈 pθ 〉 > 0, 〈τ 〉 < 0, but as expected,
the first term of (2.22a) remains positive since the RW still does work to compress the
plasma.

Next, we rewrite (2.22a) and (2.22b) using the dimensionless variables

D = 1 − ωr

ωRW
, (2.23a)

Θ = T
mev

2
φ,0
, (2.23b)

t̂ = 1
τR

t, (2.23c)

where ωRW is the angular rotation frequency of the rotating wall (the sign of ωRW will
depend on the direction of rotation, but to compress electrons, we need ωRW > 0), vφ,0 =
|ωRW|/k0 is the phase velocity of the fundamental axial RW mode and

k0 = 2π

Lp
(2.24)

is the wavenumber of the fundamental mode. The variable D is a normalized detuning
between the plasma rotation and RW frequencies. Variable D is bounded above by unity so
long as angular velocity of the plasma is parallel to that of the RW. Variable D is bounded
below by 0 so long as |ωr| < |ωRW|, which is the case analysed here. When D ≈ 0, the
plasma has (practically) fully compressed because ωr ≈ ωRW. The variableΘ = T/mev

2
φ,0

is the ratio between the thermal energy of an electron and the kinetic energy of an electron
that is in-phase with the fundamental RW mode. The variables D and Θ are in bijective
correspondence with 〈H〉 and 〈 pθ 〉 as we show in the next section. Hereafter, we take D
and Θ to be the state variables.
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In terms of these dimensionless variables, our EOM governing the energy and angular
momentum dynamics of the plasma are

[
Θ̇

Ḋ

]
= M−1

[
(1 − D)τ̂ (D,Θ)− (Θ −Θres.)+ P̂dr

τ̂ + τ̂dr

]
, (2.25)

where

Θres. = Tres.

mev
2
φ,0
, (2.26)

P̂dr = τR

mev
2
φ,0

Pdr, (2.27)

τ̂ =
(
τRωRW

mev
2
φ,0

)
〈τ 〉, (2.28)

with the last line defining the dimensionless torque (and a similar relation holds between
τ̂dr and τdr). The partial derivative matrix needed to change variables is

M =

⎡
⎢⎢⎣
∂Ê
∂Θ

∂Ê
∂D

∂ p̂θ
∂Θ

∂ p̂θ
∂D

⎤
⎥⎥⎦ , (2.29)

where

Ê = 〈E〉
mev

2
φ,0
, (2.30)

p̂θ = 〈 pθ 〉ωRW

mev
2
φ,0

. (2.31)

To arrive at a closed set of equations, we (i) express Ê, p̂θ and their partial derivatives
in terms ofΘ and D, and (ii) explicitly evaluate the perturbations δφ and δf and substitute
them into the torque (2.22c).

2.2. Expressions for the energy and angular momentum
We begin with the expression for energy in equilibrium:

〈E〉(T, ωr) = 1
NeLp

∫ [
K + 1

2
qφ0(r)

]
f0(r, p) d3r d3p. (2.32)

Completing the square on pθ in the exponent of f0, (2.3) allows us to perform the
momentum integrals as simple Gaussian expectations. We take advantage of the usual
Gaussian expectation results 〈 p2

r 〉G/2me = 〈 p2
z 〉G/2me = 〈( pθ − 〈 pθ 〉)2〉G/2mer2 = T/2

and 〈 pθ 〉G = 1
2 me(Ωc + 2ωr)r2, where the G subscript reminds us that we average over

https://doi.org/10.1017/S002237782300082X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782300082X


A kinetic model of rotating wall compression 9

a Gaussian distribution here. Simplifying the resulting expression leaves

〈E〉 = 3T
2

+

∫ (
1
2

meω
2
r r2 + 1

2
qφ0

)
eψr dr∫

eψr dr
, (2.33)

where ψ was introduced in (2.6), and we performed the trivial θ and z integrals.
We now introduce the Debye length, normalized radial coordinate, ratio of plasma

rotation to cyclotron frequency and a convenient variable Δ:

λ2
D = T

4πq2n0(r = 0; T, ωr)
, (2.34a)

ρ ≡ r/λD, (2.34b)

χ ≡ ωr/Ωc, |χ | 	 1, (2.34c)

Δ ≡ 2ωr(Ωc + ωr)meλ
2
D

T
= −(1 + δ). (2.34d)

The normalization
∫

n0 d3r = Ne =⇒ 2πn0(r = 0)
∫

eψr dr = Ne can be rewritten with
the help of the Debye length and normalized radial coordinate∫

eψρ dρ = 2q2Ne/T. (2.35)

Substituting all of these in (2.33) and exchanging the remaining φ0 in favour of ψ gives

〈E〉 = 3T
2

+ qφ0(r = 0; T, ωr)

2
+ T2

4q2Ne

(
−
∫
ψ eψρ dρ + Δ

4

[
1 + 3χ
1 + χ

] ∫
ρ3 eψ dρ

)
.

(2.36)

To calculate the potential at the centre of the plasma column, note that the electric field
can be written as

E(r) = 4πq
r

∫ r

0
n0(r′)r′ dr′. (2.37)

Setting φ0(RW) = 0 (conducting wall at the boundary), we have

φ0(r = 0; T, ωr) =
∫ Rw

0

4πq
r

∫ r

0
n0(r′)r′ dr′ dr. (2.38)

This can be rewritten in terms of ψ and ρ as

qφ0(r = 0; T, ωr)

2
= T

2

∫ ρw

0

dρ
ρ

∫ ρ

0
exp(ψ(ρ ′))ρ ′ dρ ′, (2.39)

where ρw = Rw/λD. This completes our expression for the energy in terms of T and ωr
(and hence in terms of Θ and D). The remaining implicit dependence of ψ on T can be
uncovered by searching for δ such that the solution of the Poisson equation (2.7) satisfies
the normalization

∫
eψρ dρ = 2q2Ne/T .
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The calculation of the angular momentum proceeds in a similar manner. We can take
advantage of our previous result for the expectation of pθ under Gaussian integration:

〈 pθ 〉 =

∫
1
2

me(Ωc + 2ωr)r2 eψr dr∫
eψr dr

. (2.40)

Substituting our dimensionless variables gives

〈 pθ 〉 = T2Δ

8q2Ne

1 + 2χ
Ωcχ(1 + χ)

∫
ρ3 eψ dρ. (2.41)

Our final expressions for the dimensionless energy and angular momentum are thus

Ê = 3
2
Θ + 1

2
Θ

∫ ρw

0

dρ
ρ

∫ ρ

0
exp(ψ(ρ ′))ρ ′ dρ ′

+ αΘ2

4

(
−
∫
ψ eψρ dρ + Δ

4

[
1 + 3χ
1 + χ

] ∫
ρ3 eψ dρ

)
, (2.42a)

p̂ = αΘ2

8
Δ

1 − D
1 + 2χ
1 + χ

∫
ρ3 eψ dρ, (2.42b)

where α ≡ mv2
φ,0/q

2Ne. As noted above, Δ and Θ are implicitly linked by the Poisson
equation. Equation (2.42) can be simplified further using the assumption |χ | 	 1, as is
typically the case in experiments.

Despite the seeming complexity of the expressions (2.42) in dimensionless variables,
the underlying physical quantities are straightforward averages over the plasma. So the
average energy 〈E〉 (see (2.33)) is a sum of the average thermal energy 3T/2, the average
rotational kinetic energy 〈 1

2 meωrr2〉 and the self-energy 〈 1
2 qφ0〉. The average angular

momentum 〈 pθ 〉 (see (2.40)) is a sum of the kinetic angular momentum 〈meωrr2〉 and
the magnetic field correction (qB/2c)〈r2〉. The evolution is driven by the average torque
〈τ 〉, which is just the average of r × F = −qr × ∇φ = −q(∂φ/∂θ)ẑ.

We now turn to the final piece of our model: the derivation of the torque.

2.3. Derivation of the rotating wall torque
The RW torque is found by first solving for δf and δφ, and then inserting them into (2.22c).
In the previous section, the Vlasov distribution on the full six-dimensional phase space
was for the thermodynamic equations. In this section, we take advantage of the small
Larmor radius and use the guiding centre approximation. Our distribution will thus be
over a four-dimensional phase space (r, θ, z, vz), with the first three variables denoting
the position of the guiding centre and the last being the guiding centre velocity along the
magnetic field. See Lifshitz & Pitaevski (1981) for details on transitioning from the particle
to the guiding centre phase space. From now on, all variables are assumed to refer to the
guiding centre. The full distribution is

f (t, r, θ, z, vz) = f0(r, vz;Θ,D)+ δf (t, r, θ, z, vz). (2.43)
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The equilibrium distribution function, f0(r, vz), can be written as the equilibrium
density, n0(r;Θ,D), multiplied by a Maxwellian velocity distribution,

f0(r, vz;Θ,D) = n0 (r;Θ,D)
1√

2πv2
th

exp

[
−1

2

(
vz

vth

)2
]
, (2.44)

with thermal velocity vth = vφ,0
√
Θ = √

T/me.
The distribution function, f (t, r, θ, z, vz), evolves according to the drift kinetic equation

(DKE) (Dubin & O’Neil 1999; Lifshitz & Pitaevski 1981),

∂f
∂t

+ vz
∂f
∂z

+ c
|B|2 (E × B) · ∇⊥f − q

me

∂φ

∂z
∂f
∂vz

= εδf , (2.45)

where ε is an effective collision frequency, δf is the perturbation of the distribution
function, and E and B are the total electric and magnetic fields. Note that E =
−∇φ(t, r, θ, z) includes the RW potential.

We solve the linearized DKE together with the linearized Poisson equation

∇2δφ(t, r, θ, z) = −4πqδn(t, r, θ, z), (2.46)

where

δn =
∫
δf dvz, (2.47)

by expanding in Fourier modes:

δf (t, r, θ, z, vz) =
∑
m,l,s

am,l,sδfm,l,s(r, vz) exp (i (mk0z + lθ − stωRW)) , (2.48a)

δn(t, r, θ, z) =
∑
m,l,s

am,l,sδnm,l,s(r) exp (i (mk0z + lθ − stωRW)) , (2.48b)

δφ(t, r, θ, z) =
∑
m,l,s

am,l,sδφm,l,s(r) exp (i (mk0z + lθ − stωRW)) . (2.48c)

The mode functions δφm,l,s(r) satisfy the boundary condition δφm,l,s(Rw) = 1. For
convenience, we chose the same expansion coefficients am,l,s for all three of δφ, δf and
δn. The mode functions δfm,l,s and δnm,l,s are then uniquely determined by δφm,l,s as we
show below. The coefficients am,l,s are determined by requiring that the RW potential at
the trap radius satisfies

δφ(Rw) = V(z) cos (θ − ωRWt) , (2.49)

where V(z) = Φ0 on the RW electrodes and V(z) = 0 elsewhere. We picked this form
to simplify our calculations, although one could modify our model to include the
sectored nature of RW apparatuses. As such, only the l = s = ±1 modes are non-zero
in our model. The coefficients, am,l,s, are thus given by the usual relation am,±1,±1 =
(1/2Lp)

∫
cos(mk0z)V(z) dz. Because V(z) is a step function, the coefficients are

am,±1,±1 = Φ0
sin (mk0Le/2)

mk0Lp
, (2.50)

where Le = 2Le is twice the physical electrode length.
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Returning to the DKE, we insert the Fourier decompositions and linearize to find

δfm,l,s(r, vz) = q
mev

2
th

(
mk0vz

sωRW − lωE×B − mk0vz − iε

)
f0(r, vz;Θ,D)δφm,l,s(r). (2.51)

In (2.51), we dropped the diamagnetic drift, (mev
2
th/q)(lc/rB)(∂ ln n0(r;Θ,D)/∂r), which

is one of the terms arising from ∇⊥f (t, r, θ, z, vz) in (2.45). This term is small for the
regime of interest here (see, for example, Section IIB of Dubin & O’Neil 1999). In the
absence of any diamagnetic drift,

ωr = ωE×B = vE×B

r
= |E × B|

B2r
c, (2.52)

and we use these interchangeably in the rest of the paper.
The density perturbation, δnm,l,s(r), is obtained by integrating δfm,l,s(r, vz) over the axial

velocity vz. Using the plasma dispersion function Z (Fried & Conte 2015), we have

δnm,l,s = − q
T

n0 (r; T, ωr) δφm,l,s

[
1 + vres

vth

√
2

Z
(
vres

vth

√
2

)]
, (2.53)

where the resonance between the rotating wall and the combined electron rotational and
axial motion is given by

vres = sωRW − lωE×B

mk0
. (2.54)

Inserting this density perturbation into the linearized Poisson equation (2.46) yields an
equation for δφm,l,s:{

1
r
∂

∂r

(
r
∂

∂r

)
−
(

l2

r2
+ (mk0)

2 + 4πq2n0 (r;Θ,D)
T

×
[

1 + vres

vth

√
2

Z
(
vres

vth

√
2

)])}
δφm,l,s = 0. (2.55)

This is a homogeneous Bessel-like equation with a source term proportional to density
manifesting a Debye screening effect.

The solution to this equation together with the relationship between δnm,l,s and δφm,l,s is
sufficient to evaluate the torque, but further simplifications can be made. Writing

δnm,l,s(r) = bm,l,s(r)δφm,l,s(r), (2.56)

where bm,l,s is defined by (2.53), the torque (2.22c) becomes

〈τ 〉 = − q
LpNe

∫
δn
∂δφ(t, r, θ, z)

∂θ
r dr dθ dz

= −2πq
Ne

∑
m,l,s

il
∫

b∗
m,l,s(r)|am,l,sδφm,l,s(r)|2r dr

= −8πq
Ne

∑
m>0

|am,1,1|2
∫

� [bm,1,1
] |δφm,1,1(r)|2r dr. (2.57)

In going from the second to the third line of (2.57), we summed over s = l = ±1, restricted
the wavenumber sum to positive m and used the fact that �[bm,1,1] = −�[bm,−1,−1] (see
below).
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To explicitly evaluate �[bm,1,1], express the plasma dispersion function using the
Sokhotski–Plemelj formula

δnm,l,s(r) = P
∫

g(r, vz)δφm,l,s(r)

vz −
(

sωRW − �ωE×B

mk0

)dvz − iπδφm,l,sg
(

r, vz = sωRW − �ωE×B

mk0

)
,

(2.58)
where P denotes the Cauchy principal value and

g(r, vz) = q
me

∂f0

∂vz
= − qvz

mev
2
th

f0(r, vz;Θ,D). (2.59)

We can now read off bm,l,s(r) from (2.58):

bm,l,s = P
∫

g(r, vz)(r)

vz −
(

sωRW − �ωE×B

mk0

)dvz − iπg
(

r, vz = sωRW − �ωE×B

mk0

)
, (2.60)

from which we see

�[bm,1,1] = −πg
(

r, vz = ωRW − ωE×B

mk0

)
, (2.61)

�[bm,−1,−1] = −πg
(

r, vz = −ωRW − ωE×B

mk0

)
. (2.62)

Since g(r, vz) is an odd function of vz, we have �[bm,1,1] = −�[bm,−1,−1] as stated above.
Recalling that f0(r, v;Θ,D) has the Maxwellian velocity distribution given by (2.44),

we obtain the desired expression for the dimensionless torque

τ̂ (D,Θ) = −4η
(

D
Θ3/2

)∑
m>0

τ̂m, (2.63a)

τ̂m = 1
m

exp
[
− 1

2m2

D2

Θ

] ∣∣∣∣am,1,1

Φ0

∣∣∣∣
2

〈δφ2
m,1,1〉, (2.63b)

where we have defined the dimensionless torque strength

η =
√

π

2

(
qΦ0

mev
2
φ,0

)2

τRωRW, (2.64)

and introduced the notation

〈δφ2
m,1,1〉 = 2π

Ne

∫
n0(r)|δφm,1,1|2r dr

=

∫
n0(r)|δφm,1,1|2r dr∫

n0(r)r dr
. (2.65)

Now it is straightforward to substitute the solution of the Poisson equation (2.55) into the
torque. This completes our model.
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3. Discussion and conclusion

We have developed a model for RW compression of a pure electron plasma under the
assumption the plasma slowly evolves through states of thermal equilibrium. This allowed
us to avoid explicitly tracking non-equilibrium dynamics and collisions, yielding tractable
equations suitable for numerical study. We made several additional approximations along
the way. By utilizing linearized Vlasov theory in our derivations, we have assumed that
any nonlinear Vlasov effects will be muted by re-equilibration due to collisions. We have
neglected finite-length effects under the assumption that the axial motion will not be
significantly impacted, which limits our analysis to long plasma columns. The validity
of our approximations can be tested through detailed numerical studies and experimental
comparisons, which we leave for future work.

One aspect of our model that can already be validated against experiments without
numerical simulations is the lack of compression beyond ωr = ωRW. That is, as the plasma
rotation starts catching up to the rotating wall (ωr → ωRW), our torque (2.63a) vanishes
since D → 0. This sets a fundamental limit on our compression at a fixed RW frequency,
even in the absence of drag torques, and has been verified experimentally (Danielson
& Surko 2006). While this suggests our model is capable of matching the final state of
plasma experiments, it remains to validate the details of the time evolution and parameter
dependencies predicted by the model.

Assuming our model proves sufficiently accurate for experimental purposes, its relative
simplicity lends itself to further analytical approximations and numerical solutions.
This, in turn, could allow for compression optimization and real-time guidance to
experimentalists. We leave such considerations to future work.
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