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WEAK SEQUENTIAL COMPACTNESS AND 
COMPLETENESS IN RIESZ SPACES 

OWEN BURKINSHAW AND P E T E R DODDS 

1. I n t r o d u c t i o n . If L is an Archimedean Riesz space and M an ideal in 
the order dual of L, the subset A of L is called M-equicontinuous if and only if 
each monotone decreasing sequence of positive elements of M is uniformly 
Cauchy on A. I t was shown by Luxemburg and Zaanen [7] t h a t if Lp is a 
Banach function space with associate space Lp and if AT is a closed ideal in 
Lp , then Lp is sequentially a(Lp, AT) complete and a subset A C Lp is relatively 
sequentially cr(Lp, AT) compact if and only if A is AT-equicontinuous. One 
interesting consequence of these results is the fact t ha t each norm bounded 
subset of a Banach function space Lp is relatively sequentially cr(Lp, LP

a) 
compact , where Lp

a denotes the ideal in Lp of elements of absolutely con­
t inuous norm. I t is our intention in this note to derive these results from 
abs t rac t theorems in the theory of Riesz spaces. T h e basic tools necessary for 
our work are, in essence, the well known results of H. Nakano [4] t ha t if L is 
a Dedekind complete Riesz space with a separat ing family L~ of normal 
integrals then L^ is cr(Ln~, L) sequentially complete and a subset A of L~ is 
o-(Ln~, L) relatively compact if and only if A is L-equicontinuous. These 
results and some of their various extensions are t reated in [1] and [2]. 

A further motivat ion for the present work is provided by the paper [3] 
where several results are proved concerning weak sequential completeness 
and compactness in Banach lattices. Some of the most interesting of these 
results are proved under the assumption t ha t the Banach lattice norm is 
order continuous. While this assumption in general cannot be omit ted, it 
does preclude a direct discussion of related results in Banach function spaces 
such as those indicated above. Our more general approach does in fact yield 
simultaneously extensions of a number of the main results of [3] wi thout 
excluding general Banach function spaces from consideration. As pointed out 
above, our techniques are based directly on two well known order theoretic 
results of Nakano , whereas those of [3] are based on a direct application of the 
theorem of Dunford-Pet t is on weak compactness in spaces of type Ll{^) and 
the classical Hahn-Saks theorem via the representat ion theorem of Kaku tan i 
for abs t rac t L-spaces. 

We use without further explanation the basic terminology and results from 
the theory of Riesz spaces as set out in [6, 8]. Throughou t the paper L shall 
denote an Archimedean Riesz space and AT shall denote an ideal in the order 
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dual L~. We shall use also the following terminology which differs slightly 
from tha t used in [7]. The subset A of L is called conditionally sequentially 
a(L, M) compact if and only if each sequence in A contains a subsequence 
which is a(L, M) Cauchy. The subset A of L will be called relatively sequentially 
0-(L, M) compact if and only if each sequence in A contains a subsequence 
which is a(L, M) convergent to some element of L. 

2. E q u i c o n t i n u i t y . 

Definition 2.1. Let M be an ideal in the order dual L~. The subset A of L 
will be called M-equicontinuous if and only if whenever the sequence {<t>n} C M 
satisfies <j)n [n 0 it follows tha t 

supj |0w (x) | : x £ A} -^ 0 as w -> oo . 

As far as the authors are aware, the above notion of equicontinuity was 
introduced by H. Nakano [4]. Our main purpose in this section is to gather a 
number of essentially known results concerning ikf-equicontinuity which go 
back to Nakano [4]. The proofs are omitted as they involve only simple 
modifications of corresponding results given in [1] and Theorem 45.6 of [5]. 
Recall t ha t if AI is an ideal in IT, the topology \4>\(L, M) is the locally solid 
topology on L defined by the Riesz semi-norms x *—> |</>| (|x|), x £ L, <t> G AI. 

PROPOSITION 2.2. Let M be an ideal in L~. 

(a) The subset A of L is M-equicontinuous if and only if its convex solid hull 
is M-equicontinuous. 

(b) If the subset A of I is M-equicontinuous, then A is \cr\(I, M) bounded. 

PROPOSITION 2.3. Let M be an ideal in L~. If the subset A of I is conditionally 
sequentially a(L, M) compact, then A is M-equicontinuous. 

We remark tha t the above Proposition 2.3 is essentially proved in [5, 
Theorem 45.6] as a consequence of the well-known lemma of Phillips. I t is to 
be noted tha t the converse to Proposition 2.3 is not, in general, valid. By way 
of example, let L be the space of bounded sequences V° and let M be the 
Banach dual space (I00)*. I t is easily seen tha t the unit ball of L is M-equi­
continuous. On the other hand, it is well known tha t there exists an isometric 
(though not order-preserving) mapping from the sequence space ll into L. I t 
follows tha t the unit ball of L is not conditionally sequentially a(L, M) 
compact. 

The notion of M-equicontinuity occurs also in the work [7] of Luxemburg 
and Zaanen in the setting of Banach function spaces. Since the formulation in 
[7] differs slightly from tha t given in Definition 2.1 above, we insert the 
following result for ease of comparison of the results of this paper and those of 
[7]. T h e proof is again a simple modification of Proposition 2.11 of [1] and is 
accordingly omitted. 
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PROPOSITION 2.4. Let M be an ideal in L~. The following statements are 
equivalent for a subset A of L. 

(i) A is M-equicontinuous. 
(ii) A is \a\(L, M) bounded and for each 0 ^ 0 G M and sequence {0n} of 

principal components of $, it follows from 4>n | n 0 in M that 
sup{0„(|x|) : x e A} J,nO. 

(iii) A is \a\(L, M) bounded and sup{</>w(|x|) : x Ç A} —>0 as n —» oo /#/-
rad disjoint order bounded sequence {0n} m .M+. 

3. C o n d i t i o n a l cr(L, Af) s e q u e n t i a l c o m p a c t n e s s . î t was observed in the 
preceding section t ha t ÂT-equicontinuity does not in general characterize the 
conditionally sequentially a(L, M) compact subsets of L. In this section some 
natural conditions on L and M are given for which the converse to Proposition 
2.3 is valid. 

PROPOSITION 3.1. Let M C L~ be an ideal with an {at most) countable order 
basis. The following statements are equivalent for a subset A of L. 

(i) A is M-equicontinuous. 
(ii) A is conditionally sequentially <r(L, M) compact. 

Proof. By Proposition 2.3, it is only necessary to prove the implication 
(i) => (ii). Assume then t ha t A (Z L is Af-equicontinuous and let 0 ^ 
0w în C M be a countable order basis for M. Consider A as a subset of M~. 
Since A is Af-equicontinuous, it follows from Proposition 4.6 of [1] t ha t given 
0 S <t> G M, each sequence in A contains a subsequence which converges 
pointwise on the principal ideal generated by </> in M. Let {xn} C A be a 
sequence. By a diagonal argument , it follows tha t there is a subsequence 
{zn} C {xn} such tha t lim \p(zn) exists whenever \p belongs to the ideal in M 
generated by the order basis {<l>n}. Suppose now t h a t 0 ;§ 0 Ç M and let 
e > 0 be given. Since the sequence {cj)n} is an order basis for M, and since A 
is M-equicontinuous, it follows t h a t there exists an integer k > 0 such tha t 

sup{(0 - k<t>k A <t>)(\x\) : x e A} < e. 

Since k<j>k A 0 is a member of the ideal generated by {<£„}, it follows tha t there 
exists n0 such t ha t n, m ^ no imply |&0fc A 0(£re ~~ 2™)| < e- I t follows tha t , 
for n, m ^ wo, 

|*(Z») - *(2m) | ^ (« - *** A 0 ) ( | z n | + |ZW|) + \Hk A 0 ( Z „ - Z , n ) | ^ 3e. 

Thus , the sequence {zn\ is a(L, M) Cauchy and the proof of the implication 
(i) => (ii) is complete. 

Before s tat ing the second main result of this section, we need two pre­
liminary results which are in par t extensions to Archimedean Riesz spaces of 
Theorem 27.20 and Lemma 25.9 of [6]. We recall t ha t the carrier Lx in L of 
L~ is the band [x G L : x ± °Ln~] where °L~ = {x £ L : 0(x) = 0 for all 
0 e L~). 
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PROPOSITION 3.2. If the carrier L\ in L of L~ has an (at most) countable 
order basis, then 

(a) L~ is Dedekind super complete. 
(b) The following statements are equivalent. 

(i) L\ has the countable sup property. 
(ii) Ln~ has an (at most) countable order basis. 

Proof, (a) This is contained in Theorem 31.13 of [6]. 
(b) The implication (ii) => (i) is Corollary 31.14 of [6]. We prove here the 

implication (i) => (ii). Recall first tha t if 0 ^ </> £ Ln~, the Riesz subspace 
Q> © N^ is order dense in L, where Q,, N<t> denote respectively the carrier band 
and the null band in L of the normal integral 0. If 0 S u Ç L, it follows tha t 
<t>(u) T^ 0 if and only if there exists ^ Q with 0 S v ^ u and <f>(v) ^ 0. 
Suppose now tha t {0aj C Ln~

+ is a maximal pairwise disjoint system and let 
{un) C L+ be an (at most) countable order basis for the carrier Lx of L~. 
Since each order bounded disjoint system in L\ is a t most countable by 
Theorem 181) of [2] and since Q a J_ C0/3 if a ^ /3, it follows tha t for each n, 
<t>a(un) = 0 with the exception of a t most countably many indices a. Since 
{un} is an order basis for Lu and since Lx © °L„^ is order dense in L, it follows 
tha t <t>a — 0 with the exception of an at most countable set of indices a and by 
this the implication (i) =» (ii) is proved. 

PROPOSITION 3.3. Let L have the countable sup property. If L has an (at most) 
countable order basis and J is an ideal in L, then J has an (at most) countable 
order basis. 

Proof. I t is sufficient to show tha t each disjoint system of positive elements 
in J has a t most countably many non-zero members, since any maximal 
disjoint system in / (which exists by Zorn's lemma) is an order basis for J. 
Let {̂ x! be a disjoint system in J and let \un) be an a t most countable order 
basis for L. Since L has the countable sup property, it follows tha t z>\ A un = 0 
for every n, with the exception of an at most countable set of indices X. Since 
{un} is an order basis for L, it follows tha t V\ = 0 with the exception of an a t 
most countable number of indices X and the proof is complete. 

The final result of this section is proved in [3] for Banach lattices with order 
continuous norm via an appeal to the criterion of Dunford-Pett is for weak 
compactness in spaces of type Ll(n). Even in this special case our proof is 
quite different and is similar to tha t of Nakano [4] to whom the result is due 
in the case t ha t the Riesz space L is Dedekind super complete and perfect 
and the ideal M is the band of normal integrals Ln~. 

T H E O R E M 3.4. Let M be an ideal in L~ and assume that L has the countable 
sup property. The following statements are équivalent for a subset A of L. 

(i) A is M-equicontinuous. 
(ii) A is conditionally sequentially a(L, M) compact. 
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Proof. I t is only necessary to prove the implication (i) => (ii). Let {xn} C A 
be a sequence and let / denote the ideal in L generated by the sequence {xn}. 
I t is clear t h a t / has the countable sup proper ty and an a t most countable 
order basis and so by Propositions 3.2, 3.3 above it follows t h a t 7W~ has an a t 
most countable order basis, and is Dedekind super complete. Denote by [M] 
the set of restrictions to / of the elements of M. We show t h a t [M] is an ideal 
in I~ and tha t the sequence \xn) is [M]-equicontinuous. I t will then follow 
from Proposition 3.3 tha t [M] has an at most countable order basis and the 
assertion of the implication (i) => (ii) will follow from an appeal to Proposition 
3.1. 

I t is clear tha t [M] is a linear subspace of 1^. T o show tha t [M] is an ideal 
in I~, suppose tha t 0 S ty G In~ satisfies 0 ^ \p ^ [</>] for some </> G M. 
Denote by p the Riesz semi-norm y i—> |</>|(|^|), y G L. Observe t ha t \^(u)\ ^ 
p(n) holds for u G / and so it follows from Theorem 19.2 of [6] t ha t there exists 
i//' G Lra~ such tha t \f/' = \p on / and 0 ^ \[/' S \<t>\ on L. Since M is an ideal in 
L~ it follows tha t \f/' G M and [\p'] = [£). I t follows tha t [M] is an ideal in 
7n~. T O show tha t the sequence \xn) is [itf]-equicontinuous, it is sufficient to 
show tha t if [</>J [n ^ 0 holds in [M] there exists {<f>n'} C M such tha t [</>J = 
[</>/] holds for each n and </>/ | n ^ 0 holds in M. To this end, choose 0 ^ 
<t>i G AT such tha t [<l>i] = [0i] and suppose <£/, <£2', • • • , <£/i-/ have been 
defined such tha t [ 0 / ] = [</>J, ^ / f M for 1 g i g « - 1 and tha t 0 / ^ 
02r â . . . è 0 n - / è 0. By Theorem 19.2 of [6], there, exists O g ^ G M such 
tha t [IAJ = [4>n-i ~ « J and 0 g * B g 0n_i'. I t follows tha t [0n] = [</>„_/ - ^n] 
and so defining </>/ = <t>n-i — \f/n the induction step is complete. Since {xn} is 
[Af]-equicontinuous and since [M] has an (at most) countable order basis, it 
follows from Proposition 3.1 t ha t {xn} contains a subsequence which is 
a (I, [Af])-Cauchy and so evidently a(L, M) Cauchy and the proof is complete. 

We conclude the section with some examples which show tha t in general 
neither of the assumptions of Theorem 3.4 can be dropped. 

Example 3.5. If L = Z00, M = (Ie0)*, the uni t ball of L is M-equicontinuous 
bu t not conditionally sequentially a(L, M) compact . T h u s the assumption 
t ha t M C LrT cannot be entirely omit ted, even if L is Dedekind super 
complete. 

Example 3.6. Denote by a> the set of natural numbers , Q the set of rational 
numbers and let X = {K : K is a subsequence of w}. Let L be lœ(X). For each 
K G X, let {rK

p : p £ K} be an enumerat ion of Q C\ [0, 1]. For n G w, define 
xn G L as follows. 

( \ — {r* ^ n ^ K 
%n{K) " \ 0 otherwise. 

Let {xp : p G KQ} be a subsequence of {xn}. I t follows tha t {XP(K0) : p G K0) = 
<2 H [0, 1]. T h u s if M denotes l1(X)J the uni t ball of L is not conditionally 
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sequentially a(L, M) compact, although it is M-equicontinuous. Thus even if 
M C L~ and L is Dedekind complete, it is not possible to drop entirely the 
assumption tha t L has the countable sup property. 

4. S e q u e n t i a l a(L, M) c o m p l e t e n e s s . The principal theorem of this 
section, which yields directly our results on weak sequential completeness, is 
an extension of Satz 1.7 of [3]. As pointed out in the Introduction, the proof 
we give here is an intrinsic order-theoretic proof which is based on the well-
known fact t ha t if the Riesz space L is Dedekind complete, then the space 
L~ of normal integrals is a(Ln~, L) sequentially complete. 

T H E O R E M 4.1. Let L be an {Archimedean) Riesz space with the countable sup 
property and let M C L~ be a separating ideal. If the sequence {xn} d L is 
<T(L, M) Cauchy, there exist sequences 0 ^ vn j w , 0 ^ wn ]n C L such that 
%n — Vn + wn is &(L, M) convergent to 0. 

Proof. Let {xn} C L be a a(L, M) Cauchy sequence and denote by / the 
ideal generated in L by the sequence {xn} and by [M] the set of restrictions to 
/ of the elements of M. As in the proof of Theorem 3.4 above, [M] is a separat­
ing ideal in I~ and it is clear tha t \xn) is a (I, [M]) Cauchy. From Proposition 
3.2 it follows tha t 7rf is Dedekind super complete and has an (at most) 
countable order basis and so [M] is Dedekind super complete. By Proposition 
3.3, [M] has an (at most) countable order basis from which it follows tha t 
[M]JT is Dedekind super complete. By Theorem 32.11 of [6], the ideal generated 
by / in [ikf]n~ is a Dedekind completion of / , which is moreover order dense in 
[M]n~ by 32B of [2]. Since [M]n~ is <7([M]n~, [M]) sequentially complete, there 
exists x G [M]n~ such tha t xn —> x, v([M]^, [M]). I t follows tha t there exist 
sequences {vn}f {wn) C L with 0 ^ vn ]n x+, 0 ^ wn]nx~ holds in [M]~. 
Since each element of M defines a normal integral on [AT]W~, it follows tha t 
[0] (%n — vn + wn) ~> 0 for each <j> £ M and the s ta tement of the theorem 
follows. 

We s ta te without proof the following simple consequence of Theorem 4.1. 

COROLLARY 4.2. Let L have the countable sup property and let M C L^ be a 
separating ideal. The following statements are equivalent. 

(i) L is Œ(L, M) sequentially complete. 
(ii) Each monotone cr(L, M) Cauchy sequence in L is a(L, M) convergent to 

some element of L. 
(iii) 0 S un | n C L, supn <t>(un) < oo for each 0 ^ <t> G M implies supre un 

exists in L. 

In the above Theorem 4.1, if in addition to the countable sup property it is 
assumed t ha t L is Dedekind complete, then the assumption tha t the ideal M 
be a separating ideal may be dropped. In fact, an inspection of the proof of 
Theorem 4.1 shows tha t it is sufficient to work with the carrier band of M in 
L rather than with L itself. Corollary 4.2 must then be reformulated as follows. 
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COROLLARY 4.3. Let L be Dedekind super complete and let M C L~ be an 
ideal. The following statements are equivalent. 

(i) L is cr(L, M) complete. 
(ii) Each monotone a(L, M) Cauchy sequence in L is a(L, M) convergent to 

some element of L. 

(iii) 0 ^ un\n, s u p w $ 0 O < °° for each 0 ^ <t> £ M implies supn PMun 

exists in L, where PM denotes the band projection of L onto the carrier band of M 
in L. 

5. B a n a c h f u n c t i o n spaces . Our concluding remarks are directed towards 
Banach function spaces as defined in [7] and in part icular we indicate how the 
results of the preceding sections may be used to derive the corresponding 
results of [7]. 

PROPOSITION 5.1. Let Lp be a Dedekind super complete, norm perfect Banach 
lattice. If M C Lp,n* is a closed ideal, then 

(a) Lp is a(Lp, M) sequentially complete. 
(b) The following statements are equivalent for a subset A C Lp. 

(i) A is M-equicontinuous. 
(ii) A is relatively sequentially cr(Lp, M) compact. 

Proof, (a) Denote by PM the band projection of Lp onto the carrier band of 
M in Lp. I t is a consequence of Corollary 31.6 of [6] t ha t if 0 ^ \p G Lp,n* 
then PAf*\p belongs to the band generated by M in £p ,n* and so 

PM*$ = sup{0 : 0 ^ 4> G M and 0 ^ </> ^ P M V } . 

Thus , if 0 ^ x G Lp and 0 S $ G Lp,n* then 

\l/(PMx) = PM*^(X) = sup{<t>(x) : 0 g </> G M and 0 ^ </> g P M * ^ } . 

Now since Z p is norm perfect, there exists a constant k(p) > 0 such tha t 

p(s) ^ * ( P ) sup{^(x) : 0 g * G LPl„*f p*(*) ^ 1} 

holds for each 0 ^ x G Lp. I t follows t ha t 

P ( P M X ) ^ * ( P ) sup{^(x) : 0 g </> G M, p*(0) g 1}. 

T o see now tha t Lp is sequentially cr(Lp, M) complete, suppose t ha t 0 S 
un\n C Lp satisfies sup <j>{un) < oo for each 0 ^ <j> G M. Since M is closed, it 
is a consequence of the uniform boundedness principle t ha t 

sup{0(wn) : 0 ^ 0 G M, p*(</>) g 1, n = 1, 2, . . .} < oo. 

T h u s supn p(PMun) < oo and so sup PMun exists in Lp since Lp is perfect. T h e 
assertion of (a) now follows from Corollary 4.3. 

(b) T h e equivalence of the s ta tements in (b) is now an immediate con­
sequence of pa r t (a) and Theorem 3.4. 
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The ideal LP,*a of elements of absolutely continuous norm in Ip,n* is of 
special interest and we single out the following consequence of Proposition 5.1 
above (cf. Theorem 5.4 of [7]). 

COROLLARY 5.2. If the Banach lattice Lp is Dedekind super complete and norm 

perfect, then each bounded set in Lp is relatively a(Lp, LPjtl*
a) sequentially compact. 

T h e examples given in Section 3 above are both norm-perfect Banach lattices. 
I t follows then tha t in s ta tements (a) and (b) of Proposition 5.1 above, the 
assumption tha t M C LP,n* cannot be omitted, even if Lp is Dedekind super 
complete and in s ta tement (b) of Proposition 5.1 above, the assumption tha t 
Lp be Dedekind super complete cannot be dropped even if Lp is norm perfect 
and M C Lp,n*. 
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