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WEAK SEQUENTIAL COMPACTNESS AND
COMPLETENESS IN RIESZ SPACES

OWEN BURKINSHAW AND PETER DODDS

1. Introduction. If L is an Archimedean Riesz space and M an ideal in
the order dual of L, the subset 4 of L is called M-equicontinuous if and only if
each monotone decreasing sequence of positive elements of A/ is uniformly
Cauchy on A. It was shown by Luxemburg and Zaanen [7] that if L, is a
Banach function space with associate space L, and if M is a closed ideal in
L,’, then L, is sequentially o (L,, M) complete and a subset A C L, is relatively
sequentially o(L,, M) compact if and only if 4 is M-equicontinuous. One
interesting consequence of these results is the fact that each norm bounded
subset of a Banach function space L, is relatively sequentially o(L,, L,’®)
compact, where L,’* denotes the ideal in L,” of elements of absolutely con-
tinuous norm. It is our intention in this note to derive these results from
abstract theorems in the theory of Riesz spaces. The basic tools necessary for
our work are, in essence, the well known results of H. Nakano [4] that if L is
a Dedekind complete Riesz space with a separating family L,” of normal
integrals then L, is ¢(L,”, L) sequentially complete and a subset 4 of L, is
a(L,~, L) relatively compact if and only if 4 is L-equicontinuous. These
results and some of their various extensions are treated in [1] and [2].

A further motivation for the present work is provided by the paper [3]
where several results are proved concerning weak sequential completeness
and compactness in Banach lattices. Some of the most interesting of these
results are proved under the assumption that the Banach lattice norm is
order continuous. While this assumption in general cannot be omitted, it
does preclude a direct discussion of related results in Banach function spaces
such as those indicated above. Our more general approach does in fact yield
simultaneously extensions of a number of the main results of [3] without
excluding general Banach function spaces from consideration. As pointed out
above, our techniques are based directly on two well known order theoretic
results of Nakano, whereas those of [3] are based on a direct application of the
theorem of Dunford-Pettis on weak compactness in spaces of type L!(u) and
the classical Hahn-Saks theorem via the representation theorem of Kakutani
for abstract L-spaces.

We use without further explanation the basic terminology and results from
the theory of Riesz spaces as set out in [6, 8]. Throughout the paper L shall
denote an Archimedean Riesz space and M shall denote an ideal in the order
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dual L~. We shall use also the following terminology which differs slightly
from that used in [7]. The subset 4 of L is called conditionally sequentially
o(L, M) compact if and only if each sequence in A contains a subsequence
whichis ¢ (L, M) Cauchy. The subset 4 of L will be called relatively sequentially
o (L, M) compact if and only if each sequence in 4 contains a subsequence
which is o (L, M) convergent to some element of L.

2. Equicontinuity.

Definition 2.1. Let M be an ideal in the order dual L~. The subset 4 of L
will be called M-equicontinuous if and only if whenever the sequence {¢,} C M
satisfies ¢, |, 0 it follows that

sup{|¢,(x)| 1« € A} >0 as n— ©.

As far as the authors are aware, the above notion of equicontinuity was
introduced by H. Nakano [4]. Our main purpose in this section is to gather a
number of essentially known results concerning M-equicontinuity which go
back to Nakano [4]. The proofs are omitted as they involve only simple
modifications of corresponding results given in [1] and Theorem 45.6 of [5].
Recall that if M is an ideal in L™, the topology |¢|(L, M) is the locally solid
topology on L defined by the Riesz semi-norms x — |¢|(|x]), x € L, ¢ € M.

ProrosITION 2.2. Let M be an ideal in L™.

(@) The subset A of L is M-equicontinuous if and only if its convex solid hull
1s M-equicontinuous.

(b) If the subset A of L 1s M-equicontinuous, then A is |o| (L, M) bounded.

ProposiTION 2.3. Let M be an ideal in L~. If the subset A of L is conditionally
sequentially o (L, M) compact, then A is M-equicontinuous.

We remark that the above Proposition 2.3 is essentially proved in [5,
Theorem 45.6] as a consequence of the well-known lemma of Phillips. It is to
be noted that the converse to Proposition 2.3 is not, in general, valid. By way
of example, let L be the space of bounded sequences [ and let M be the
Banach dual space (I”)*. It is easily seen that the unit ball of L is M-equi-
continuous. On the other hand, it is well known that there exists an isometric
(though not order-preserving) mapping from the sequence space /! into L. It
follows that the unit ball of L is not conditionally sequentially (L, M)
compact.

The notion of M-equicontinuity occurs also in the work [7] of Luxemburg
and Zaanen in the setting of Banach function spaces. Since the formulation in
[7] differs slightly from that given in Definition 2.1 above, we insert the
following result for ease of comparison of the results of this paper and those of
[7]. The proof is again a simple modification of Proposition 2.11 of [1] and is
accordingly omitted.
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ProrositioN 2.4. Let M be an ideal in L~. The following statements are
equivalent for a subset A of L.
(i) A is M-equicontinuous.
(ii) 4 s |o|(L, M) bounded and for each 0 < ¢ € M and sequence {¢,} of
principal components of ¢, it follows from ¢, |, 0 in M that
sup{e,(|x[) : v € A} [, 0.
(iii) A s |o|(L, M) bounded and sup{é¢,(|x|) : x € A} =0 as n— 00 for
each disjoint order bounded sequence {$,} in M.

3. Conditional ¢(L, M) sequential compactness. it was observed in the
preceding section that M-equicontinuity does not in general characterize the
conditionally sequentially ¢ (L, M) compact subsets of L. In this section some
natural conditions on L and M are given for which the converse to I’roposition
2.3 is valid.

Provrosition 3.1. Let M C L~ be an ideal with an (at most) countable order
basis. The following statements are equivalent for a subset A of L.

(i) A is M-equicontinuous.

(ii) A s conditionally sequentially o (L, M) compact.

Proof. By Proposition 2.3, it is only necessary to prove the implication
(i) = (ii). Assume then that 4 C L is M-equicontinuous and let 0 =<
¢ Tn C M be a countable order basis for 3. Consider A as a subset of M,~.
Since 4 is M-equicontinuous, it follows from Proposition 4.6 of [1] that given
0 = ¢ € M, each sequence in A contains a subsequence which converges
pointwise on the principal ideal generated by ¢ in M. Let {x,} C A4 Dbe a
sequence. By a diagonal argument, it follows that there is a subsequence
{z,} C {x,} such that lim ¢(z,) exists whenever ¥ belongs to the ideal in M
generated by the order basis {¢,}. Suppose now that 0 £ ¢ € M and let
e > 0 be given. Since the sequence {¢,} is an order basis for M, and since 4
is M-equicontinuous, it follows that there exists an integer & > 0 such that

sup{ (¢ — kg A @) (Jx]) :x € 4} < e

Since k¢, A ¢ is a member of the ideal generated by {¢,}, it follows that there
exists n such that n, m = ny imply |k¢, A ¢ (3, — 2,)| < e. It follows that,
for n, m = ny,

[6(z0) — @(z)| = (& — ki A @) (2] + [2]) + ki A ¢z, — 2.)] = 3e.

Thus, the sequence {z,} is ¢(L, M) Cauchy and the proof of the implication
(i) = (il) is complete.

Before stating the second main result of this section, we need two pre-
liminary results which are in part extensions to Archimedean Riesz spaces of
Theorem 27.20 and Lemma 25.9 of [6]. We recall that the carrier L; in L of
L, is the band {x € L :x 1 °L,”} where °L,” = {x € L: ¢(x) = 0 for all
¢ € L}
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PropositioN 3.2. If the carrier Ly in L of L~ has an (at most) countable
order basis, then
(@) L, s Dedekind super complete.
(b) The following statements are equivalent.
(1) L1 has the countable sup property.
(ii) L, has an (at most) countable order basis.

Proof. (a) This is contained in Theorem 31.13 of [6].

(b) The implication (ii) = (i) is Corollary 31.14 of [6]. We prove here the
implication (i) = (ii). Recall first that if 0 £ ¢ € L,~, the Riesz subspace
Cs ® N, is order dense in L, where C4, N, denote respectively the carrier band
and the null band in L of the normal integral ¢. If 0 < « € L, it follows that
o(u) # 0 if and only if there exists v € C;, with 0 < v < « and ¢(v) # 0.
Suppose now that {¢,} C L,”t is a maximal pairwise disjoint system and let
{up,} C LT be an (at most) countable order basis for the carrier L, of L,™.
Since each order bounded disjoint system in L; is at most countable by
Theorem 18D of (2] and since Gy, L Gy if @ 5 8, it follows that for each n,
¢a(1t,) = 0 with the exception of at most countably many indices a. Since
{u,} is an order basis for L;, and since L; ®@ °L,” is order dense in L, it follows
that ¢, = 0 with the exception of an at most countable set of indices « and by
this the implication (i) = (ii) is proved.

ProrositioN 3.3. Let L have the countable sup property. If L has an (at most)
countable order basis and J is an ideal in L, then J has an (at most) countable
order basts.

Proof. 1t is sufficient to show that each disjoint system of positive elements
in J has at most countably many non-zero members, since any maximal
disjoint system in J (which exists by Zorn’s lemma) is an order basis for J.
Let {o\} be a disjoint system in J and let {«,} be an at most countable order
basis for L. Since L has the countable sup property, it follows that oy A #, = 0
for every n, with the exception of an at most countable set of indices \. Since
{u,} is an order basis for L, it follows that o, = 0 with the exception of an at
most countable number of indices N and the proof is complete.

The final result of this section is proved in [3] for Banach lattices with order
continuous norm via an appeal to the criterion of Dunford-Pettis for weak
compactness in spaces of type L'(u). Even in this special case our proof is
quite different and is similar to that of Nakano [4] to whom the result is due
in the case that the Riesz space L is Dedekind super complete and perfect
and the ideal M is the band of normal integrals L,.

THEOREM 3.4. Let M be an ideal in L, and assume that L has the countable
sup property. The following statements are equivalent for a subset A of L.
(1) A 1s M-equicontinuous.
(ii) A s conditionally sequentially o (L, M) compact.
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Proof. It is only necessary to prove the implication (i) = (ii). Let {x,} C 4
be a sequence and let I denote the ideal in L generated by the sequence {x,}.
It is clear that I has the countable sup property and an at most countable
order basis and so by Propositions 3.2, 3.3 above it follows that I, has an at
most countable order basis, and is Dedekind super complete. Denote by [M]
the set of restrictions to I of the elements of M. We show that [M] is an ideal
in I,” and that the sequence {x,} is [M]-equicontinuous. It will then follow
from Proposition 3.3 that [M] has an at most countable order basis and the
assertion of the implication (i) = (ii) will follow from an appeal to Proposition
3.1.

It is clear that [M] is a linear subspace of I,”. To show that [M] is an ideal
in I,7, suppose that 0 < ¢ € I~ satishies 0 < ¢ < [¢] for some ¢ € M.
Denote by p the Riesz semi-norm y — |¢|(|y|), ¥ € L. Observe that |y (u)] <
p(u) holds for u € I and so it follows from Theorem 19.2 of [6] that there exists
' € L, such thaty’ = yon I and 0 < ¢/ < |¢| on L. Since M is an ideal in
L, it follows that ¢’ € M and [¢'] = [¢]. It follows that [M] is an ideal in
1,7 To show that the sequence {x,} is [M]-equicontinuous, it is sufficient to
show that if [¢,] |, = 0 holds in [M] there exists {¢,’} C M such that [¢,] =
[¢,'] holds for each n and ¢,” |, = 0 holds in M. To this end, choose 0 =
¢ € M such that [¢1'] = [¢:] and suppose ¢i/, ¢2/, ..., ¢,—1 have been
defined such that [¢)] = [¢:], ¢/ € M for 1 <17 = n — 1 and that ¢, =
¢’ = ... 2 ¢,-1 = 0. By Theorem 19.2 of [6], there.exists 0 < ¢, € M such
that [¢,] = (¢t — o] and 0 = ¢, = ¢,—1". It follows that [¢,] = [dn_1’ — ¥n)
and so defining ¢,/ = ¢,_1" — ¢, the induction step is complete. Since {x,} is
[ M]-equicontinuous and since [M] has an (at most) countable order basis, it
follows from Proposition 3.1 that {x,} contains a subsequence which is
o (I, [M])-Cauchy and so evidently o (L, M) Cauchy and the proof is complete.

We conclude the section with some examples which show that in general
neither of the assumptions of Theorem 3.4 can be dropped.

Example 3.5. If L = 1", M = (I)*, the unit ball of L is M-equicontinuous
but not conditionally sequentially ¢(L, M) compact. Thus the assumption
that M C L,” cannot be entirely omitted, even if L is Dedekind super
complete.

Example 3.6. Denote by o the set of natural numbers, Q the set of rational
numbers and let X = {«: « is a subsequence of w}. Let L he [®(X). For each
k € X, let {r.2:p € «} be an enumeration of Q M [0, 1]. For # € w, define
x, € L as follows.

%, (6) = {(r),( if né€x

otherwise.

Let {x, : p € xo} be a subsequence of {x,}. It follows that {x,(ke) : p € k} =
Q M [0, 1]. Thus if A denotes /'(X), the unit ball of L is not conditionally
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sequentially (L, M) compact, although it is M-equicontinuous. Thus even if
M C L, and L is Dedekind complete, it is not possible to drop entirely the
assumption that L has the countable sup property.

4. Sequential ¢(L, M) completeness. The principal theorem of this
section, which yields directly our results on weak sequential completeness, is
an extension of Satz 1.7 of [3]. As pointed out in the Introduction, the proof
we give here is an intrinsic order-theoretic proof which is based on the well-
known fact that if the Riesz space L is Dedekind complete, then the space
L, of normal integrals is ¢(L,~, L) sequentially complete.

THEOREM 4.1. Let L be an (Archimedean) Riesz space with the countable sup
property and let M C L, be a separating ideal. If the sequence {x,} C L 1is
o(L, M) Cauchy, there exist sequences 0 <wv,7T,, 0= w,T, CL such that
X, — Uy + w, is o(L, M) convergent to 0.

Proof. Let {x,} C L be a (L, M) Cauchy sequence and denote by I the
ideal generated in L by the sequence {x,} and by [M] the set of restrictions to
I of the elements of M. As in the proof of Theorem 3.4 above, [ M] is a separat-
ing ideal in I~ and it is clear that {x,} is o({,[M]) Cauchy. From Proposition
3.2 it follows that I,” is Dedekind super complete and has an (at most)
countable order basis and so [ M] is Dedekind super complete. By Proposition
3.3, [M] has an (at most) countable order basis from which it follows that
[M], is Dedekind super complete. By Theorem 32.11 of {6], the ideal generated
by I in [M], is a Dedekind completion of 7, which is moreover order dense in
[M],” by 32B of [2]. Since [M],” is ¢ ([M],~, [M]) sequentially complete, there
exists x € [M],” such that x, — x, ¢ ([M],”, [M]). It follows that there exist
sequences {v,}, {w,} CL with 0 <9,7,x%, 0= w,T,x holds in [M],.
Since each element of M defines a normal integral on [M],”, it follows that
[¢])(x, — v, + w,) — 0 for each ¢ € M and the statement of the theorem
follows.

We state without proof the following simple consequence of Theorem 4.1.

COROLLARY 4.2. Let L have the countable sup property and let M C L, be a
separating ideal. The following statements are equivalent.
(i) L 1s o(L, M) sequentially complete.
(i1) Each monotone o (L, M) Cauchy sequence in L 1s o(L, M) convergent to
some element of L.
(i) 0 £ u, T, C L, sup, ¢(u,) < 0 for each 0 = ¢ € M implies sup, u,
exists in L.

In the above Theorem 4.1, if in addition to the countable sup property it is
assumed that L is Dedekind complete, then the assumption that the ideal M
be a separating ideal may be dropped. In fact, an inspection of the proof of
Theorem 4.1 shows that it is sufficient to work with the carrier band of M in
L rather than with L itself. Corollary 4.2 must then be reformulated as follows.
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CoROLLARY 4.3. Let L be Dedekind super complete and let M C L, be an

ideal. The following statements are equivalent.
(1) L s o(L, M) complete.

(it) Each monotone (L, M) Cauchy sequence in L 1is o(L, M) convergent to
some element of L.

(iii) 0 = u, Ty sup, ¢(u,) < 0 for each 0 = ¢ € M implies sup, P,
extsts in L, where Py denotes the band projection of L onto the carrier band of M
in L.

5. Banach function spaces. Our concluding remarks are directed towards
Banach function spaces as defined in [7] and in particular we indicate how the
results of the preceding sections may be used to derive the corresponding
results of [7].

Provros1tioN 5.1. Let L, be a Dedekind super complete, norm perfect Banach
lattice. If M C L, ,* is a closed ideal, then
(a) L, is a(L,, M) sequentially complete.
(b) The following statements are equivalent for a subset A C L,.
(i) A4 is M-equicontinuous.
(i1) A 1s relatively sequentially o(L,, M) compact.

Proof. (a) Denote by P, the band projection of L, onto the carrier band of
M in L,. It is a consequence of Corollary 31.6 of [6] that if 0 < ¢ € L, *
then P,*y belongs to the band generated by M in L, ,* and so

Il

Py*y =suplo:0=¢ € M and 0 = ¢ = Py*Y}.

Thus,if0 =x € L,and 0 £ ¢ € L, ,* then
Y(Pyx) = Py*Y(x) = supfo(x): 0= ¢ € M and 0 = ¢ = Py*Y).
Now since L, is norm perfect, there exists a constant k(p) > 0 such that
p(x) = k(p)sup{y(x) : 0 = ¢ € L,,* p*(¥) = 1}
holds for each 0 < x € L,. It follows that
p(Pyx) = k(p) sup{g(x) : 0 = ¢ € M, p*(¢) = 1}.

To see now that L, is sequentially o(L,, M) complete, suppose that 0 =<
u, T, C L, satisfies sup ¢ (u,) < o0 for each 0 < ¢ € M. Since M is closed, it
is a consequence of the uniform boundedness principle that

supf{e(u,) :0 ¢ € M, p*(¢) <1, n=1,2,...} < o0.

Thus sup, p(Psu,) < oo and so sup Pu, exists in L, since L, is perfect. The
assertion of (a) now follows from Corollary 4.3.

(b) The equivalence of the statements in (b) is now an immediate con-
sequence of part (a) and Theorem 3.4.
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The ideal L, ** of elements of absolutely continuous norm in L, * is of
special interest and we single out the following consequence of Proposition 5.1
above (cf. Theorem 5.4 of [7]).

COROLLARY 5.2. If the Banach lattice L, is Dedekind super complete and norm
perfect, then each bounded set in L, is relatively o (L,, L, ,**) sequentially compact.

The examples given in Section 3 above are both norm-perfect Banach lattices.
It follows then that in statements (a) and (b) of Proposition 5.1 above, the
assumption that M C L, ,* cannot be omitted, even if L, is Dedekind super
complete and in statement (b) of Proposition 5.1 above, the assumption that
L, be Dedekind super complete cannot be dropped even if L, is norm perfect
and M C L, ,*.
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