DERIVATIVES AND LENGTH-PRESERVING MAPS

BY
SHINJI YAMASHITA

Abstract

Let a be a constant, $|a|=1$. We shall prove meromorphic (M) and bounded-holomorphic $(B H)$ versions of the following prototype: (P) Let f and g be holomorphic in a domain D. Then, $\left|f^{\prime}\right|=\left|g^{\prime}\right|$ in D if and only if there exist constant a, b with $f=a g+b$ in D. (M) Let f and g be meromorphic in D. Then, $\left|f^{\prime}\right| /\left(1+|f|^{2}\right)=\left|g^{\prime}\right| /\left(1+|g|^{2}\right)$ in D if and only if there exist a, b with $|b| \leqq \infty$ such that $f=a(g-b) /(1+\bar{b} g)$. (BH) Let f and g be holomorphic and bounded, $|f|<1,|g|<1$, in D. Then, $\left|f^{\prime}\right| /$ $\left(1-|f|^{2}\right)=\left|g^{\prime}\right| /\left(1-|g|^{2}\right)$ in D if and only if there exist a, b with $|b|<1$, such that $f=a(g-b) /(1-\bar{b} g)$.

1. Results. Let D be a domain in the complex plane \mathbb{C} and let Φ_{1} be the family of functions $a z+b$, where $|a|=1$ and $b \in \mathbb{C}$. A prototype for the present observation is the following which can be easily proved.
(I) Let f and g be holomorphic in D. Then, $\left|f^{\prime}\right|=\left|g^{\prime}\right|$ in D if and only if there exists $T \in \Phi_{1}$ such that $f=T \circ g$ in D.

Each $T \in \Phi_{1}$ preserves the Euclidean metric. Let Φ_{2} be the family of functions

$$
a(z-b) /(1+\bar{b} z)
$$

where $|a|=1$ and $b \in \overline{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$; if $b=\infty$ then a / z should be considered instead. For f meromorphic in D we set

$$
\begin{aligned}
f^{\#}(z) & =\left|f^{\prime}(z)\right| /\left(1+|f(z)|^{2}\right) & & \text { if } \quad f(z) \neq \infty ; \\
& =\left|(1 / f)^{\prime}(z)\right| & & \text { if } \quad f(z)=\infty .
\end{aligned}
$$

Our first result is:

(II) Let f and g be meromorphic in D. Then, $f^{\#}=g^{\#}$ in D if and only if there exists $T \in \Phi_{2}$ such that $f=T \circ g$ in D.

The "if" part is obvious. Let

$$
0 \leqq \tan ^{-1} x \leqq \pi / 2, \quad 0 \leqq x \leqq \infty,
$$

and set

$$
\sigma_{s}(z, w)=\tan ^{-1}(|z-w| /|1+\bar{z} w|)
$$

Received by the editors April 25, 1986.
AMS Subject Classification (1980): Primary, 30A99; Secondary, $30 C 45$.
© Canadian Mathematical Society 1986.
this is the spherical metric on $\overline{\mathbb{C}}$. To explain this, let Σ be the Riemann sphere of diameter one touching \mathbb{C} at the origin from above. On identifying Σ with $\overline{\mathbb{C}}$ via the stereographic projection, we observe that, the great circle passing through z and w is divided into two arcs by z and w. The smaller of the lengths of these arcs is $\sigma_{s}(z, w)$. Each $T \in \Phi_{2}$ preserves σ_{s}. Furthermore,

$$
\sigma_{s}(f(w), f(z)) /|w-z| \rightarrow f^{\#}(z) \quad \text { as } w \rightarrow z
$$

Let Φ_{3} be the family of functions

$$
a(z-b) /(1-\bar{b} z),
$$

where $|a|=1$ and $b \in \Delta=\{|z|<1\}$. For f holomorphic and bounded, $|f|<1$, in D, we set $f^{*}=\left|f^{\prime}\right| /\left(1-|f|^{2}\right)$. Our next result is
(III) Let f and g be holomorphic and bounded, $|f|<1,|g|<1$, in D. Then, $f^{*}=$ g^{*} in D if and only if there exists $T \in \Phi_{3}$ such that $f=T \circ g$ in D.

The "if" part is obvious. The Poincare metric in Δ is

$$
\sigma_{P}(z, w)=\tanh ^{-1}(|z-w| /(1-\bar{z} w \mid) .
$$

Each $T \in \Phi_{3}$ preserves σ_{P}. Furthermore,

$$
\sigma_{P}(f(w), f(z)) /|w-z| \rightarrow f^{*}(z) \quad \text { as } w \rightarrow z
$$

2. Proofs. To prove the "only if" parts of (II) and (III) we shall make use of the lemma due to E. Landau and J. Dieudonné; see [5, Theorem VI.10, p. 259].

Lemma. Let f be holomorphic and bounded, $|f|<M$, in Δ with $f(0)=f^{\prime}(0)-1$ $=0$. Then, f is univalent and starlike in $\Delta(M)=\{|z|<\lambda(M)\}$ with $\lambda(M)=$ $M-\left(M^{2}-1\right)^{1 / 2}$.
"Starlike" here means that for each $z \in \Delta(M)$,

$$
\{t f(z) ; 0 \leqq t \leqq 1\} \subset f(\Delta(M)) ;
$$

we note that $1=\left|f^{\prime}(0)\right| \leqq M$.
To prove the "only if" part of (II) we may assume that f is nonconstant. Then, there exists $w \in D$ such that

$$
f(w) \neq \infty \neq g(w) \quad \text { and } \quad f^{\#}(w) \neq 0 .
$$

Set

$$
\begin{aligned}
& F=(f-f(w)) /(1+\overline{f(w)} f), \\
& G=(g-g(w)) /(1+\overline{g(w)} g)
\end{aligned}
$$

in D. It suffices to show that there exists $a_{1},\left|a_{1}\right|=1$, such that

$$
F(z) \equiv a_{1} G(z) \quad \text { in } \quad D
$$

Obvious computations then complete the proof.

We fix a constant $R>0$ such that $\{|z-w| \leqq R\} \subset D$, and we note that

$$
K=\max \left\{f^{\#}(z) ;|z-w| \leqq R\right\}
$$

is positive and finite because $f^{\#}$ is continuous. Let $0<r<R$ and $r K<\pi / 4$. To verify that $|F|<1$ and $|G|<1$ in $D_{1}(w)=\{|z-w|<r\}$ we let

$$
\alpha(w, z)=\{(1-t) w+t z ; 0 \leqq t \leqq 1\}, \quad z \in D_{1}(w)
$$

Now, $F^{\#}=f^{\#}=g^{\#}=G^{\#}$ in D and $F(w)=G(w)=0$. We then have

$$
\tan ^{-1}|F(z)|=\sigma_{S}(F(z), F(w)) \leqq \int_{\alpha(w, z)} F^{\#}(\zeta)|d \zeta| \leqq|w-z| K \leqq r K<\pi / 4
$$

whence $|F(z)|<1$ for $z \in D_{1}(w)$. Similarly we have $|G(z)|<1$ in $D_{1}(w)$.
Since $\left|F^{\prime}(w)\right|=\left|G^{\prime}(w)\right|=f^{\#}(w)$, it follows that the holomorphic functions

$$
\begin{aligned}
& \phi(z)=F(r z+w) /\left(r F^{\prime}(w)\right), \\
& \psi(z)=G(r z+w) /\left(r G^{\prime}(w)\right), \quad z \in \Delta
\end{aligned}
$$

are bounded,

$$
|\phi| \leqq M=1 /\left(r f^{\#}(w)\right), \quad|\psi| \leqq M \quad \text { in } \Delta .
$$

By the lemma, both ϕ and ψ are univalent and starlike in $\Delta(M)$.
Restricting F to $D_{2}(w)=\{|z-w|<r \lambda(M)\}$, we let $\beta(w, z)$ be the inverse image of

$$
\{t F(z) ; 0 \leqq t \leqq 1\} \subset F\left(D_{2}(w)\right), \quad z \in D_{2}(w)
$$

Then,

$$
\begin{aligned}
\tan ^{-1}|F(z)| & =\sigma_{S}(F(z), F(w))=\int_{\beta(w, z)} F^{\#}(\zeta)|d \zeta| \\
& =\int_{\beta(w, z)} G^{\#}(\zeta)|d \zeta| \geqq \sigma_{s}(G(z), G(w))=\tan ^{-1}|G(z)|,
\end{aligned}
$$

whence $|F(z)| \geqq|G(z)|$ for $z \in D_{2}(w)$. We can replace F by G in the above argument, so that we obtain

$$
|F(z)| \equiv|G(z)| \quad \text { in } \quad D_{2}(w)
$$

and hence $F(z) \equiv a_{1} G(z)$ in $D_{2}(w)$. The unicity theorem yields that $F=a_{1} G$ in the whole D.

For the case of (III) we may assume that there exists $w \in D$ with $f^{*}(w) \neq 0$. This time, we consider

$$
\begin{aligned}
& F=(f-f(w)) /(1-\overline{f(w)} f) \\
& G=(g-g(w)) /(1-\overline{g(w)} g)
\end{aligned}
$$

in D to prove that $F=a_{2} G\left(\left|a_{2}\right|=1\right)$ in D. First, $F^{*}=f^{*}=g^{*}=G^{*}$ in D. For
$R>0$ with $\{|z-w| \leqq R\} \subset D$, we may consider

$$
\begin{aligned}
& \phi(z)=F(R z+w) /\left(R F^{\prime}(w)\right), \\
& \psi(z)=G(R z+w) /\left(R G^{\prime}(w)\right), \quad z \in \Delta .
\end{aligned}
$$

We can then apply the lemma to ϕ and ψ with $M=1 /\left(R f^{*}(w)\right)$. Then, ϕ and ψ are univalent and starlike in $\Delta(M)$. In this case, for $z \in D_{3}(w)=\{|z-w|<R \lambda(M)\}$, we let $\gamma(w, z)$ be the inverse image of

$$
\{t F(z) ; 0 \leqq t \leqq 1\} \subset F\left(D_{3}(w)\right)
$$

by F restricted to $D_{3}(w)$. Then,

$$
\begin{aligned}
\tanh ^{-1}|F(z)| & =\sigma_{P}(F(z), F(w))=\int_{\gamma(w, z)} F^{*}(\zeta)|d \zeta| \\
& =\int_{\gamma(w, z)} G^{*}(\zeta)|d \zeta| \geqq \sigma_{P}(G(z), G(w))=\tanh ^{-1}|G(z)|,
\end{aligned}
$$

so that $|F(z)| \geqq|G(z)|$ for $z \in D_{3}(w)$. Similarly, $|F(z)| \leqq|G(z)|$ in $D_{3}(w)$. The unicity theorem now proves the requested.
3. Real-part surfaces. The real-part surface of f holomorphic in D is the set of vectors, $V(x, y)=(x, y, \operatorname{Re} f(z)), z=x+i y \in D$, in the space \mathbb{R}^{3}. The Gauss curvature at $V(x, y)$ is then

$$
K_{f}(z)=-\left(f^{\prime}\right)^{\#}(z)^{2} ;
$$

see [2], [1, Satz 3].
If $g^{\prime}=a f^{\prime},|a|=1$, then $K_{g}=K_{f}$; in particular, $K_{(-i f)}=K_{f}$; see [2, Satz 3.1]. E. Kreyszig and A. Pendl [3, Satz 3] proved much more; see also [4, Lemma 2].
(KP) Let f and g be holomorphic in D such that

$$
\begin{equation*}
g^{\prime}=\left(\alpha f^{\prime}+\beta\right) /\left(\gamma f^{\prime}+\delta\right) \quad \text { in } \quad D \tag{L}
\end{equation*}
$$

where $\alpha, \beta, \gamma, \delta \in \mathbb{C}, \alpha \delta-\beta \gamma \neq 0$. Then, $K_{f}=K_{g}$ in D if and only if

$$
g^{\prime}=\left(A f^{\prime}+B\right) /\left(-\bar{B} f^{\prime}+\bar{A}\right) \quad \text { in } \quad D
$$

where $A, B \in \mathbb{C},|A|^{2}+|B|^{2}>0$.
We can drop the condition (L) in the proposition (KP). This is obvious for the "if" part. With the aid of (II) applied to f^{\prime} and g^{\prime} with $K_{f}=K_{g}$ or $f^{\prime \#}=g^{\prime \#}$, we can show that (L) is superfluous for the "only if" part also. The details are left as exercises.
4. Further applications. We begin with an entire f.
(IV) If $f \in \Phi_{1}$, then for each $T \in \Phi_{1},|f|^{2}-|T|^{2}$ is harmonic in \mathbb{C}. Conversely if there exists $T \in \Phi_{1}$ such that $|f|^{2}-|T|^{2}$ is harmonic in a domain D, then $f \in \Phi_{1}$.

The first half is obvious by direct computations. If f and g are holomorphic in D, then

$$
\Delta\left(|f|^{2}-|g|^{2}\right)=4\left(\left|f^{\prime}\right|^{2}-\left|g^{\prime}\right|^{2}\right) \quad \text { in } \quad D .
$$

Therefore, $\left|f^{\prime}\right|=\left|T^{\prime}\right|$ in D in the second half. By (I), together with the unicity theorem, we have $f \in \Phi_{1}$. Also a direct proof is possible.

By the similar observations we propose applications (V) and (VI) of (II) and (III), respectively. Perhaps (VI) is more interesting than (V).

Let f and g be meromorphic in D. Then, there exist holomorphic functions f_{1} and f_{2} (g_{1} and g_{2}) with no common zero in D such that $f=f_{1} / f_{2}\left(g=g_{1} / g_{2}\right)$ in D. Then,

$$
\Delta\left\{\log \left(\left|f_{1}\right|^{2}+\left|f_{2}\right|^{2}\right)-\log \left(\left|g_{1}\right|^{2}+\left|g_{2}\right|^{2}\right)\right\}=4\left(f^{\# 2}-g^{\# 2}\right) \text { in } D .
$$

(V) Let $f=f_{1} / f_{1}$ be meromorphic in \mathbb{C}, where f_{1} and f_{2} are entire with no common zero. Iff $\in \Phi_{2}$, then for each $T(z)=a(z-\beta) /(1+\bar{b} z) \in \Phi_{2}$, there exists a harmonic function h such that

$$
\begin{equation*}
\left|f_{1}(z)\right|^{2}+\left|f_{2}(z)\right|^{2}=\left(|z-b|^{2}+|1+\bar{b} z|^{2}\right) e^{h(z)} \tag{i}
\end{equation*}
$$

in \mathbb{C} with $1+|z|^{2}$ for the parentheses on the right in case $b=\infty$. Conversely if there exist $T \in \Phi_{2}$ and a harmonic function h in D such that (i) holds in D, then $f \in \Phi_{2}$.

Proof. The first half. Because $f^{\#}(z)=\left(1+|z|^{2}\right)^{-1}=T^{\#}(z)$ in \mathbb{C}. The second half. Since $f^{\#}=T^{\#}$ in D, it follows that there exists $T_{1} \in \Phi_{2}$ with $f=T_{1} \circ T\left(\in \Phi_{2}\right)$ in D by (II). By the unicity theorem, $f \in \Phi_{2}$.
(VI) Let f be holomorphic and bounded, $|f|<1$, in Δ. If $f \in \Phi_{3}$, then for each $T \in \Phi_{3}$, there exists a harmonic function h such that

$$
\begin{equation*}
1-|f|^{2}=\left(1-|T|^{2}\right) e^{h} \tag{ii}
\end{equation*}
$$

in Δ. Conversely if there exist $T \in \Phi_{3}$ and a harmonic function h in a subdomain Δ_{1} of Δ such that (ii) holds in Δ_{1}, then $f \in \Phi_{3}$.

In general, if f and g are holomorphic and bounded, $|f|<1,|g|<1$, in D, then

$$
\Delta\left\{\log \left(1-|f|^{2}\right)-\log \left(1-|g|^{2}\right)\right\}=4\left(g^{* 2}-f^{* 2}\right)
$$

in D. Therefore, $f^{*}=g^{*}$ in D if and only if there exists a harmonic function h in D such that

$$
1-|f|^{2}=\left(1-|g|^{2}\right) e^{h} \quad \text { in } D
$$

Proof of (VI). The first half. Because $f^{*}(z)=\left(1-|z|^{2}\right)^{-1}=T^{*}(z)$ in Δ. The second half. By (III), there exists $T_{1} \in \Phi_{3}$ with $f=T_{1} \circ T$ in Δ_{1}, and hence in Δ.

References

[^0]3. E. Kreyszig and A. Pendl, Über die Gauss-Krümmung der Real- und Imaginärteilflächen analytischer Funktionen, Elemente der Mathematik 28 (1973), pp. 10-13.
4. R. Jerrard, Curvatures of surfaces associated with holomorphic functions, Colloquium Math. 21 (1970), pp. 127-132.
5. M. Tsuji, Potential theory in modern function theory, Maruzen, Tokyo, 1959.

Department of Mathematics
Tokyo Metropolitan University
Fukasawa, Setagaya, Tokyo 158
Japan

[^0]: 1. F. Gackstatter, Die Gausssche und mittlere Krümmung der Realteilflächen in der Theorie der meromorphen Funktionen, Math. Nachr. 54 (1972), pp. 211-227.
 2. E. Kreyszig, Die Realteil- und Imaginärteilflächen analytischer Funktionen, Elemente der Mathematik 24 (1969), pp. 25-31.
