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DERIVATIVES AND LENGTH-PRESERVING MAPS 

BY 

SHINJI YAMASH1TA 

ABSTRACT. Let a be a constant, \a\ = 1. We shall prove meromorphic 
(M) and bounded-holomorphic (BH) versions of the following prototype: 
(P) Let/and g be holomorphic in a domain D. Then, \f'\ = \g'\ in D if 
and only if there exist constant a, b with/ = ag + b in D. (M) Let /and 
g be meromorphic in D. Then, \f |/(1 + |/|2) = |#'|/(1 + |g|2) inD if and 
only if there exist a, fr with |Z?| ̂  o° such that/ = #(g - b)/{\ + fcg). (£//) 
Let/and g be holomorphic and bounded, | / | < 1, \g\ < 1, in D. Then, \f |/ 
(1 - |/|2) = |#'|/(1 - |#|2) in D if and only if there exist a,b with 
|£| < 1, such that/ = a(g - b)/{\ - Eg). 

1. Results. Let D be a domain in the complex plane C and let <ï>, be the family of 
functions az + b, where \a\ = 1 and fr G C. A prototype for the present observation 
is the following which can be easily proved. 

(I) Let f and g be holomorphic in D. Then, \f \ = \g' \ in D if and only if there exists 
7 E $ , such thatf = To g in D. 

Each T E Oj preserves the Euclidean metric. Let <f>2 be the family of functions 

a(z - b)/(\ + bz), 

where \a\ = 1 and l ? 6 C = C U {°o}; if b = °° then a/z should be considered instead. 
For / meromorphic in D we set 

f*{z) = | / ( Z ) | / ( 1 + \f(z)\2) if f(z) * oo; 

= | (1/ / ) ' (Z) | if / (Z) = 00. 

Our first result is: 

(II) Let fand g be meromorphic in D. Then, y = g* inD if and only if there exists 
r e $ 2 such thatf = To g in D. 

The "if" part is obvious. Let 

0 ^ tan"1 x ^ ir/2, 0 ^ x ^ oo, 

and set 

CT5(Z,W) = tan_l(|z - w|/ |l + zw|); 
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this is the spherical metric on C. To explain this, let 2 be the Riemann sphere of 
diameter one touching C at the origin from above. On identifying 2 with C via the 
stereographic projection, we observe that, the great circle passing through z and w is 
divided into two arcs by z and w. The smaller of the lengths of these arcs is CT5(Z, W). 

Each r e $ 2 preserves a5. Furthermore, 

(Js(f(w)J(z))/\w - z\-+f#(z) as w-> z. 

Let <I>3 be the family of functions 

a(z - b)/{\ - bz), 

where \a\ = 1 and b E A = {\z\ < 1}. For/holomorphic and bounded, | / | < 1, in D, 

we set/* = | / ' I /O - l/l2)- 0 u r n e x t r e s u l t i s 

(III) Let f and g be holomorphic and bounded, \f\ < 1, \g\ < 1, in D. Then, f* = 
g* in D if and only if there exists T E <ï>3 such that f = To g in D. 

The "if" part is obvious. The Poincaré metric in A is 

o>(z,w) = tanh~'(|z - w|/(l - zw\). 

Each T £ $ 3 preserves o>. Furthermore, 

(Jp(f(w),f(z))/\w - z | -> /* (z ) as w-> z. 

2. Proofs. To prove the "only if" parts of (II) and (III) we shall make use of the 
lemma due to E. Landau and J. Dieudonné; see [5, Theorem VI. 10, p. 259]. 

LEMMA. Let f be holomorphic and bounded, \f\ < M, in A withf(0) = f'(0) — 1 
= 0. Then, f is univalent and starlike in A(M) = {\z\ < X(M)} with X(M) = 
M - (M2 - 1),/2. 

"Starlike" here means that for each z E A(M), 

{tf(z)-0^t^ 1}C/(A(M)); 

we note that 1 = |/ '(0)| ^ M. 
To prove the "only if" part of (II) we may assume that/is nonconstant. Then, there 

exists w E D such that 

f(w) ± oo =£ g(w) and / # ( w ) =£0. 

Set 

F = (f-f(w))/(l+J(w~)f), 

G = {g-g(w))/(l+~tfW)g), 

in D. It suffices to show that there exists ai9 \a\\ = 1, such that 

F(z) = axG{z) in D. 

Obvious computations then complete the proof. 
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We fix a constant R > 0 such that {\z - w\ ^ R} C D, and we note that 

K = max{/#(z); \z - w\ ^ R} 

is positive and finite because/# is continuous. Let 0 < r < R and rK < ir/4. To verify 
that |F| < 1 and \G\ < 1 in D,(w) = {|z - w| < r} we let 

a(w, z) = {(1 - t)w + fz; 0 ^ t ^ 1}, z G Dx(w). 

Now, F # - / # = g # = G # in D and F(w) = G(w) = 0. We then have 

t<m~]\F(z)\ = crs(F(z),F(w)) =i J F*(Q\dt\ ^ \w - z\K ^ rK < TT/4, 

whence \F(z)\ < 1 for z E D](w). Similarly we have \G(z)\ < 1 in D\(w). 
Since |F'(w)| = |G'(w)| = f (w), it follows that the holomorphic functions 

4>(z) = F(rz + w)/(rF'{w)), 

i|i(z) = G(rz + w)/(rG'(w)), z G A 

are bounded, 

|<|)| ^ M = l /(r /#(w)), | i | i | ^ M in A. 

By the lemma, both <j> and i|i are univalent and starlike in A(M). 
Restricting F to D2(w) = {\z — w\ < r\(M)}, we let $(w,z) be the inverse image 

of 

{tF(z)\ 0 ^ f ^ 1} C F(D2(w)), z G D2(w). 

Then, 

tan-'lFCz)! = a5(F(z),F(w)) - f F#(î) |dÇ| 

= f G#(Q\di\ ^ <Js(G(z),G(w)) = tim-l\G(z)\, 

whence \F(z)\ ^ \G(z)\ for z G D2(w). We can replace F by G in the above argument, 
so that we obtain 

\F(z)\ - |G(z)| in D2(w), 

and hence F(z) = #iG(z) in D2(w). The unicity theorem yields that F — axG in the 
whole D. 

For the case of (III) we may assume that there exists w G D with/*(w) =£ 0. This 
time, we consider 

F = (f - f(w))/(l -f(w)f), 

G = (g~ g(w))/(l - g(w)g), 

in D to prove that F = a2G (\a2\ = 1) in D. First, F* = / * = g* = G* in D. For 
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R > 0 with {\z — w\ ^ R} C D, we may consider 

<|>(z) = F(Rz + w)/(/?F'(w)), 

i|i(z) = G(Rz + w)/(/?G'(w)), z E A. 

We can then apply the lemma to $ and i|i with M = 1/(/?/* (w)). Then, c)> and \\f are 
univalent and starlike in A(M). In this case, for z E D3(w) = {\z - w\ < RX(M)}, we 
let 7 (w,z) be the inverse image of 

{tF(z)\ 0 ^ ? ̂  1} C F(D3(w)) 

by F restricted to D3(w). Then, 

tanh-' |F(z)| = o>(F(z),F(w)) = f F*(Ç)|</Ç| 

= f G*(0\di\ ^ o>(G(z),G(w)) = tanh-'lGCz)!, 

so that \F(z)\ ^ |G(z)| for z E D3(w). Similarly, \F(z)\ ^ |G(z)| inD3(w). The unicity 
theorem now proves the requested. 

3. Real-part surfaces. The real-part surface of / holomorphic in D is the set of 
vectors, V(x,y) = (x,y,Re/(z)), z = x + iy E D, in the space IR3. The Gauss 
curvature at V(x,y) is then 

*/(z) = -(f'f(z)2', 
see [2], [1, Satz 3]. 

If g' = af, \a\ = 1, then Â , = AT/-; in particular, K{-if) = ^ ; see [2, Satz 3.1]. 
E. Kreyszig and A. Pendl [3, Satz 3] proved much more; see also [4, Lemma 2]. 

(KP) Let f and g be holomorphic in D such that 

(L) g' = (af + P)/(7jf + 8) in D, 

where a, p , 7, ô E C, aô — P7 =É 0. Then, Kf = Kg in D if and only if 

g' = (Af + B)/(-Bf + Â) in D, 

where A,B E C, \A\2 + \B\2 > 0. 

We can drop the condition (L) in the proposition (KP). This is obvious for the "if " 
part. With the aid of (II) applied to / ' and gf with Kf— Kgorf^ = g , we can show 
that (L) is superfluous for the "only if" part also. The details are left as exercises. 

4. Further applications. We begin with an entire/. 

(IV) / / / E 4>,, then for each TE: 4>i, | / |2 — |r |2 is harmonic in C. Conversely if 
there exists T E $1 such that \f\2 — \T\2 is harmonic in a domain D, then f E. $>x. 

The first half is obvious by direct computations. If/and g are holomorphic in D, then 
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A ( | / | 2 - | ^ | 2 ) - 4 ( | / | 2 - | ^ | 2 ) in D. 

Therefore, \f\ = \T | in D in the second half. By (I), together with the unicity theorem, 
we have/ E <ÏV Also a direct proof is possible. 

By the similar observations we propose applications (V) and (VI) of (II) and (III), 
respectively. Perhaps (VI) is more interesting than (V). 

Let/and g be meromorphic in D. Then, there exist holomorphic functions/] and/2 

(g\ and g2) with no common zero in D such that/ = / / / 2 (g = g\/gi) in D. Then, 

A{log(|/,|2 + | / 2 | 2 ) - l o g ( | g , | 2 + b | 2 )} = 4 ( / # 2 - £#2) in D. 

(V) Letf = /1//1 be meromorphic in C, where / , ara//2 0 ^ entire with no common 
zero. IffEi <ï>2, then for each T(z) = a(z — p)/(l + bz) E <I>2, f/zere ex/sto a harmonic 
function h such that 

(i) |/i(z)|2 + |/2(z)|2 = (\z - b\2 + |1 + £ z | V ( z ) 

m C with 1 + |z|2/or f/*e parentheses on the right in case b = °°. Conversely if there 
exist T E 4>2 am/ 0 harmonic function h in D such that (i) /zo/ds in D, then f E <ï>2. 

PROOF. The first half. Because/#(z) = (1 + |z|2)-1 = T#(z) in C. The second half. 
Since/ # = T* in D, it follows that there exists T, E $>2 with/ = T, o r (E 3>2) in D 
by (II). By the unicity theorem,/E <E>2. 

(VI) Let f be holomorphic and bounded, | / | < 1, in A. / / / E $3 , then for each 
T E 03 , //zere e m to a harmonic function h such that 

(ii) 1 " l/l2 = (1 ~ |71V 

in A. Conversely if there exist I £ $ 3 AAZJ a harmonic function h in a subdomain Ai 
o/A such that (ii) /zo/ds m Ab thenfE <ï>3. 

In general, if/and g are holomorphic and bounded, | / | < 1, \g\ < 1, in D, then 

A{log(l - l/l2) - log(l - \g\2)} = 4(#*2 - / * 2 ) 

in D. Therefore,/* = g* in D if and only if there exists a harmonic function h in D 
such that 

1 " l/|2 = 0 - \g\2)eh inD. 

PROOF OF (VI). The first half. Because/*(z) = (1 - |z|2)-' = 7*(z) in A. The 
second half. By (III), there exists Tx E 4>3 with/ = 7j o r in Aj, and hence in A. 
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