
Canad. Math. Bull. Vol. 52 (2), 2009 pp. 175–185

Connections on a Parabolic Principal
Bundle, II

Indranil Biswas

Abstract.

In Connections on a parabolic principal bundle over a curve, I we defined connections on a parabolic

principal bundle. While connections on usual principal bundles are defined as splittings of the Atiyah

exact sequence, it was noted in the above article that the Atiyah exact sequence does not generalize

to the parabolic principal bundles. Here we show that a twisted version of the Atiyah exact sequence

generalizes to the context of parabolic principal bundles. For usual principal bundles, giving a splitting

of this twisted Atiyah exact sequence is equivalent to giving a splitting of the Atiyah exact sequence.

Connections on a parabolic principal bundle can be defined using the generalization of the twisted

Atiyah exact sequence.

1 Introduction

Generalizing the notion of a parabolic vector bundle, the notion of a parabolic prin-

cipal bundle was introduced in [BBN1,BBN2]. Let G be a connected, complex, linear

algebraic group. A parabolic G-bundle over a complex smooth projective variety X

is a smooth variety EG equipped with an action of G as well as a projection to X such

that EG is a principal bundle over the complement of a simple normal crossing divisor

in X. However the action of G over the divisor is allowed to have finite isotropies.

In [Bi2], connections on a parabolic principal bundle were defined. Before we

describe connections on a parabolic principal bundle, we will first briefly recall the

definition of a connection on an usual principal G-bundle. Let FG be a holomorphic

principal G-bundle over a complex manifold Y , and let

(1.1) 0 −→ ad(FG) −→ At(FG) −→ TY −→ 0

be the corresponding Atiyah exact sequence over Y . A holomorphic (respectively,

complex) connection on FG is a holomorphic (respectively, C∞) splitting of the above

Atiyah exact sequence. Giving a holomorphic (respectively, C∞) splitting of (1.1) is

equivalent to giving a holomorphic (respectively, C∞) one-form ω on FG with values

in the Lie algebra g of G and satisfying the following two conditions:

• the restriction of ω to each fiber of the projection FG −→ Y coincides with the

Maurer–Cartan form, and
• the form ω is G-equivariant for the adjoint action of G on g.
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176 I. Biswas

Let EG be a parabolic G-bundle over X. Then there exists a Galois covering

f : Y −→ X, where Y is a smooth complex variety, together with a holomorphic

principal G-bundle FG over Y equipped with a lift of the action of the Galois group

Γ := Gal( f ) on Y , such that EG = FG/Γ. It should be mentioned that there are many

coverings of X satisfying the above conditions. In [Bi2] we noted that there is no

Atiyah exact sequence for a general parabolic G-bundle. This means that for a choice

of a covering Y of the above type, the exact sequence of vector bundles over X given

by the Atiyah exact sequence for FG on Y depends on the choice of covering. Since

the Atiyah exact sequence is not available, we used the above description of a con-

nection as a g-valued 1-form on the total space to define connections on a parabolic

G-bundle; see [Bi2] for the details.

Let

0 −→ ad(FG) ⊗ Ω
1
Y −→ At(FG) ⊗ Ω

1
Y

q
−→ TY ⊗ Ω

1
Y −→ 0

be the exact sequence obtained by tensoring (1.1) with Ω
1
Y . Consider the inclusion

of OY in TY
⊗

Ω
1
Y obtained by sending the constant function 1 to the identity au-

tomorphism of TY . Therefore, from the above exact sequence we get the following

short exact sequence of holomorphic vector bundles

(1.2) 0 −→ ad(FG) ⊗ Ω
1
Y −→ Ãt(FG) := q−1(OY )

q
−→ OY −→ 0

over Y .

It is easy to see that giving a holomorphic (respectively C∞) splitting of (1.1) is

equivalent to giving a holomorphic (respectively C∞) splitting of (1.2). Therefore,

the twisted version of the Atiyah exact sequence given in (1.2) is also suitable for

defining connections.

The exact sequence in (1.2) generalizes to the context of parabolic G-bundles.

Connections on a parabolic G-bundle can be defined to be the splittings of the cor-

responding short exact sequence.

2 Preliminaries

Let X be a connected, smooth, projective variety of dimension d defined over C.

Let D ⊂ X be a simple normal crossing hypersurface. This means that D is an

effective and reduced divisor with each irreducible component of D being smooth,

and furthermore, the irreducible components of D intersect transversally. Let

D =

ℓ∑

i=1

Di

be the decomposition of D into irreducible components. The above condition that

the irreducible components of D intersect transversally means that if

(2.1) x ∈ Di1
∩ Di2

∩ · · · ∩ Dik
⊂ D

is a point where k distinct components of D meet, and fi j
, j ∈ [1 , k], is the local

equation of the divisor Di j
around x, then {d fi j

(x)} is a linearly independent subset
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of the holomorphic cotangent space T∗
x X of X at x. This implies that for any choice

of k integers

(2.2) 1 ≤ i1 < i2 < · · · < ik ≤ ℓ,

each connected component of Di1
∩ Di2

∩ · · · ∩ Dik
is a smooth subvariety of X.

Let E be an algebraic vector bundle over X. For each i ∈ [1, ℓ], let

(2.3) E|Di
= Fi

1 ) Fi
2 ) Fi

3 ) · · · ) Fi
mi

) Fi
mi +1 = 0

be a filtration by subbundles of the restriction of E to Di . In other words, each Fi
j is a

subbundle of E|Di
and rank(Fi

j) > rank(Fi
j+1) for j ∈ [1,mi].

A quasiparabolic structure on E over D is a filtration as above of each E|Di
satisfying

the following extra condition. Take any k ∈ [1, ℓ], and take integers {i j}
k
j=1 as in

(2.2). If we fix some F
i j
n j , n j ∈ [1,mi j

], then over each connected component S of

Di1
∩ Di2

∩ · · · ∩ Dik
, the intersection

k⋂
j=1

F
i j
n j ⊂ E|Di1

∩···∩Dik

gives a subbundle of the restriction of E to S. It should be clarified that the rank of

this subbundle may depend on the choice of the component S ⊂ Di1
∩Di2

∩· · ·∩Dik
.

To explain the above condition we give an example. Let S ⊂ Di1
∩ Di2

be a con-

nected component, where 1 ≤ i1 < i2 ≤ ℓ, and take Fi1
n1

, Fi2
n2

, where n j ∈ [1,mi j
],

j = 1, 2. For any point x ∈ S, consider the subspace (Fi1
n1

)x ∩ (Fi2
n2

)x ⊂ Ex. The above

condition says that the dimension of this subspace is independent of the choice of

x ∈ S. But this dimension depends on the choices of i j , n j , j ∈ [1, 2], and it also

depends on the choice of the connected component S in Di1
∩ Di2

. Note that the

condition that (Fi1
n1

)x ∩ (Fi2
n2

)x is of constant dimension over a connected component

S is equivalent to the condition that (Fi1
n1
∩ Fi2

n2
)|S is a subbundle of E|S.

For a quasiparabolic structure as above, parabolic weights are a collection of ratio-

nal numbers 0 ≤ λi
1 < λi

2 < λi
3 < · · · < λi

mi
< 1, where i ∈ [1, ℓ]. The parabolic

weight λi
j corresponds to the subbundle Fi

j in (2.3). A parabolic structure on E is a

quasiparabolic structure with parabolic weights. A vector bundle over X equipped

with a parabolic structure on it is also called a parabolic vector bundle.

For notational convenience, a parabolic vector bundle defined as above will be

denoted by E∗. The divisor D is called the parabolic divisor for E∗.

Let G be a connected complex linear algebraic group. We will recall the definition

of a parabolic G-bundle introduced in [BBN1].

Let Rep(G) denote the category of all finite dimensional rational left representa-

tions of G. Let Vect(X) denote the category of algebraic vector bundles over X. Nori

showed that a principal G-bundle over X is a functor from Rep(G) to Vect(X) that is

compatible with the operations of taking direct sum, tensor product, and dual. Given

a principal G-bundle EG over X, the corresponding functor Rep(G) −→ Vect(X)

sends a G-module V to the vector bundle EG ×G V over X associated to EG for V ; see

[No1, No2] for details.
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Let Pvect(X) denote the category of all parabolic vector bundles over X with D as

the parabolic divisor. In [BBN1], parabolic G-bundles over X with D as the parabolic

divisor were defined to be as functors from Rep(G) to Pvect(X) satisfying a list of

conditions identical to the list of conditions of Nori in the above mentioned char-

acterization of usual principal bundles as functors. It may be mentioned that the

operations of taking direct sum, tensor product and dual of usual vector bundles are

replaced by the operations of taking parabolic direct sum, parabolic tensor product

and parabolic dual. See [BBN1] for the details.

In [BBN2], the notion of a ramified G-bundle over a curve was introduced. The

main result of [BBN2] is the construction of a natural bijective correspondence be-

tween the ramified G-bundles over a Riemann surface C, with ramifications over

a finite set of points D0 ⊂ C, and the parabolic G-bundles over C with D0 as the

parabolic divisor.

We will define ramified G-bundles over the projective manifold X with ramifica-

tion over the simple normal crossing divisor D.

A ramified G-bundle over X with ramification over D is a smooth complex variety

EG on which G acts (algebraically) on the right, that is, the map f : EG × G −→ EG

defining the action is an algebraic morphism, together with a surjective algebraic map

(2.4) ψ : EG −→ X

satisfying the following five conditions:

(1) ψ ◦ f = ψ ◦ p1, where p1 is the natural projection of EG × G to EG;

(2) for each point x ∈ X, the action of G on the reduced fiber ψ−1(x)red is transitive;

(3) the restriction of ψ to ψ−1(X \ D) makes ψ−1(X \ D) a principal G-bundle over

X \ D, that is, the map ψ is smooth over ψ−1(X \ D) and the map to the fiber

product

ψ−1(X \ D) × G −→ ψ−1(X \ D) ×X\D ψ
−1(X \ D)

defined by (z, g) 7−→ (z, f (z, g)) is an isomorphism;

(4) for each irreducible component Di ⊂ D, the reduced inverse image ψ−1(Di)red is

a smooth divisor and

D̂ :=

ℓ∑

i=1

ψ−1(Di)red

is a normal crossing divisor on EG;

(5) for any smooth point z ∈ D̂, the isotropy group Gz ⊂ G, for the action

of G on EG, is a finite cyclic group that acts faithfully on the quotient line

TzEG/Tzψ
−1(D)red.

Note that since the map ψ commutes with the action of G, the isotropy subgroup

Gz preserves Tzψ
−1(D)red ⊂ TzEG. Therefore, there is an induced action of Gz on

the fiber TzEG/Tzψ
−1(D)red of the normal bundle. Since the finite isotropy group

Gz in the above condition (5) acts faithfully on the line TzEG/Tzψ
−1(D)red, it follows

automatically that Gz is a cyclic group.
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Let EG be a ramified G-bundle over X with ramification over the divisor D. Fix a

component Di ⊂ D. Let x ∈ Di be a smooth point of D. The order of the finite cyclic

group Gz, where z satisfies the conditionψ(z) = x, does not depend on the choices of

x and z; it depends only on the component Di and EG. Therefore, given any ramified

G-bundle EG, we have a positive integer ηi associated to each component Di ; for any

z as above, the order of Gz is ηi .

In the next section we will describe a correspondence between parabolic G-bundles

and ramified G-bundles.

3 Ramified G-Bundles as Parabolic G-Bundles

The map from ramified G-bundles to parabolic G-bundles described in Section 2

of [Bi2]. Although it is assumed in [Bi2] that dimC X = 1, the construction of a

parabolic G-bundle from a given ramified G-bundle goes through.

Let E∗ be a parabolic G-bundle over over X with D as the parabolic divisor. In

[BBN1] the following was proved:

There is a Galois covering

(3.1) ϕ : Y −→ X

and a Γ-linearized principal G-bundle EG over Y , where Γ is the Galois group

for ϕ, such that E∗ corresponds to EG (see [BBN1, Theorem 4.3]).

We will show that EG/Γ is a ramified G-bundle over X. All the properties except

one of a ramified G-bundle for EG/Γ have already been shown in [BBN2]. The only

property that remains to be checked is that EG/Γ is smooth. (The argument given in

[BBN2] that EG/Γ is smooth uses the assumption that dimC X = 1.) We will show

that EG/Γ is smooth.

Let S ⊂ Y be the subscheme where the map ϕ in (3.1) fails to be smooth. Since

X = Y/Γ is smooth, each component of S is a hypersurface. For any rational point

y ∈ S, let Γy ⊂ Γ be the isotropy subgroup for the action of the Galois group Γ on Y .

For any rational point y ∈ S \ ϕ−1(D) in the complement of the inverse image

ϕ−1(D), the action of Γy on the fiber (EG)y is trivial. Indeed, this follows from the

fact the action of G on the fiber (E∗)ϕ(y) is a free action (recall the definition of a

ramified G-bundle with ramifications over D).

For each irreducible component Di of D, there is a maximal subgroup Hi ⊂ Γ such

that Hi ⊂ Γy for all y ∈ ϕ−1(Di). Furthermore, for the general point y ∈ ϕ−1(Di),

the equality Hi = Γy holds, and also the group Hi is cyclic. The action of Hi on the

fiber of EG over a point ϕ−1(Di) need not be free, but there is a fixed quotient group

H ′
i of Hi such that for all y ∈ ϕ−1(Di), the action of Hy on the fiber (EG)y factors

through H ′
i . Furthermore, the action of H ′

i on (EG)y is free. From these it follows

that the quotient EG/Γ is smooth.

4 Holomorphic Connections

We will first recall the usual Atiyah exact sequence and its equivalent formulations.
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4.1 The Atiyah Exact Sequence

Let M be a complex manifold and

(4.1) f : EH −→ M

a holomorphic principal H-bundle over M, where H is a complex Lie group. Con-

sider the sheaf F on M that associates to any open subset U ⊂ M the space of

all H-invariant holomorphic vector fields on f −1(U ) ⊂ EH . Therefore, F(U ) is a

OU -module, where OU is the algebra of holomorphic functions on U ; the multipli-

cation of a holomorphic vector field τ on f −1(U ) with a function φ ∈ OU is the

vector field (φ ◦ f ) · τ . Since the action of H on the fibers of f is transitive, it follows

immediately that F is a locally free, coherent, analytic sheaf on M.

The holomorphic vector bundle over M defined by F is called the Atiyah bundle

for EH . The Atiyah bundle for EH is denoted by At(EH).

Let ad(EH) be the adjoint bundle of EH . So ad(EH) is the holomorphic vector

bundle over M associated to EH for the adjoint action of H on its Lie algebra h. We

recall that h is identified with the vector fields on H invariant under the right trans-

lation action of H on itself. Using this it follows that for any open subset U ⊂ M,

the space of all holomorphic sections of ad(EH) over U is identified with the space

of all H-invariant holomorphic vector fields on f −1(U ) ⊂ EH that lie in the kernel

of the differential d f : TEH → f ∗TM of the projection f in (4.1). In other words,

Γ(U , ad(EH)) is the space of all H-invariant holomorphic vertical vector fields on

f −1(U ). Therefore, we obtain a short exact sequence of holomorphic vector bundles

(4.2) 0 −→ ad(EH) −→ At(EH) −→ TM −→ 0

over M; the projection At(EH) −→ TM is given by the differential d f .

The following definitions are from [At].

Definition 4.1 A holomorphic connection on EH is a holomorphic splitting of the

short exact sequence in (4.2). A complex connection on EH is a C∞ splitting of the

short exact sequence in (4.2).

Let

(4.3) 0 −→ ad(EH) ⊗ Ω
1
M −→ At(EH) ⊗ Ω

1
M

q
−→ TM ⊗ Ω

1
M −→ 0

be the short exact sequence obtained by tensoring (4.2) with the holomorphic cotan-

gent bundle Ω
1
M . Using the section of TM⊗T∗M given by the identity automorphism

of TM, the structure sheaf OM is a subsheaf of TM ⊗ Ω
1
M . Therefore, from (4.3) we

have the short exact sequence of holomorphic vector bundles

(4.4) 0 −→ ad(EH) ⊗ Ω
1
M −→ Ãt(EH) := q−1(OM)

q|eAt(EH )

−−−−→ OM −→ 0

over M, where q is the projection in (4.3).
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Remark 4.2. A holomorphic splitting of (4.2) gives a holomorphic splitting of (4.4)

and conversely a holomorphic splitting of (4.4) gives a holomorphic splitting of (4.2).

Similarly, giving a C∞ splitting of the exact sequence in (4.2) is equivalent to giving a

C∞ splitting of (4.4). Therefore, giving a holomorphic connection on EG is equiva-

lent to giving a holomorphic splitting of (4.4). Similarly, giving a complex connection

on EG is equivalent to giving a C∞ splitting of (4.4).

4.2 Connections on a Ramified Principal Bundle

Let EG be a ramified G-bundle over X with ramification over D. As in (2.4), let

ψ denote the projection of EG to X. Consider the subbundle of the holomorphic

tangent bundle K ⊂ TEG defined by the orbits of the action of G on EG. Since the

isotropy subgroups, for the action of G on EG, are all finite subgroups of G, it follows

that K is a subbundle of TEG, and the vector bundle K is identified with the trivial

vector bundle over EG with fiber g, where g is the Lie algebra of G. The differential

dψ : TEG → ψ∗TX evidently vanishes on K.

Let Q denote the quotient bundle TEG/K. So we have a short exact sequence of

holomorphic vector bundles

(4.5) 0 −→ K −→ TEG −→ Q −→ 0

over EG. Tensoring (4.5) with Q
∗ we get the exact sequence

0 −→ K ⊗ Q
∗ −→ TEG ⊗ Q

∗ q0
−→ Q ⊗ Q

∗ −→ 0

over EG. As in (4.4), we will consider the inverse image of the trivial line subbundle

of Q ⊗ Q
∗ generated by the identity automorphism of Q. So we have the short exact

sequence of holomorphic vector bundles

(4.6) 0 −→ K ⊗ Q
∗ −→ VEG

:= q−1
0 (OEG

)
q0|VEG−−−−→ OEG

−→ 0

over EG.

We note that the action of G on EG has natural lifts to all three vector bundles

in the short exact sequence in (4.6). Furthermore, all the homomorphisms in (4.6)

commute with the actions of G. Therefore, the direct image, on X, of any of the

vector bundles in (4.6) is equipped with an action of G.

Define the quasi-coherent analytic sheaves

(4.7) AEG
:= (ψ∗(K ⊗ Q

∗))G

and

(4.8) BEG
:= (ψ∗VEG

)G

on X, where ψ is the projection in (2.4), and by W G, where W is any sheaf on X

equipped with an action of G, we mean the G-invariant part of W . Since the action
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of G on the fibers of ψ is transitive with finite isotropy subgroups, it follows that both

AEG
and BEG

introduced in (4.7) and (4.8) are locally free coherent analytic sheaves

on X. The holomorphic vector bundles over X defined by AEG
and BEG

will also be

denoted by AEG
and BEG

respectively.

We note that the action of G on the sheaf OEG
in (4.6) is the trivial action. This

means that the identity automorphism of Q is preserved by the action of G on Q⊗Q∗.

Therefore, (ψ∗OEG
)G

= OX .

Using the above observations, from (4.6) we have following short exact sequence

of holomorphic vector bundles over X

(4.9) 0 −→ AEG
−→ BEG

−→ OX −→ 0.

Definition 4.3 A holomorphic connection on EG is a holomorphic splitting of the

short exact sequence in (4.9). A complex connection on EG is a C∞ splitting of the

short exact sequence in (4.9).

When EG is an usual principal G-bundle, the exact sequence in (4.9) clearly coin-

cides with the exact sequence in (4.4). In view of Remark 4.2, the above definitions

coincide with those in Definition 4.1 when EG is an usual principal bundle.

In [Bi2] we defined connections on a ramified G-bundle over a curve. The follow-

ing theorem shows that the above definition coincides with the one given in [Bi2].

Theorem 4.4 Let EG be a ramified principal G-bundle over X. Giving a holomorphic

connection on EG is equivalent to giving a holomorphic connection on EG in the sense of

[Bi2]. Similarly, giving a complex connection on EG is equivalent to giving a complex

connection on EG in the sense of [Bi2].

Proof Let β : OX −→ BEG
be a holomorphic splitting of the exact sequence in (4.9).

The lift on β to EG gives a G-equivariant holomorphic splitting

(4.10) β̃ : OEG
−→ VEG

of the exact sequence in (4.6). Therefore, β̃ gives a homomorphism of holomorphic

vector bundles

β ′ : Q −→ TEG

whose composition with the projection TEG −→ Q in (4.5) is the identity automor-

phism of Q. Let

(4.11) γ̃ : TEG −→ K

be the projection given by the above homomorphism β ′, where K is the kernel in

(4.5). Therefore, the kernel of γ̃ is the image of β ′, and the composition of γ̃ with

the inclusion K →֒ TEG in (4.5) is the identity automorphism of K.

We recall that K is the trivial vector bundle over EG whose fiber is the Lie algebra g

of G. Therefore, the homomorphism γ̃ in (4.11) defines a g-valued holomorphic one-

form γ on EG. Since the homomorphism β̃ in (4.10) is G-equivariant, we conclude
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that the holomorphic one-form γ on EG is also G-equivariant for the adjoint action

of G on g. From the fact that the composition of γ̃ with the inclusion K →֒ TEG in

(4.5) is the identity automorphism of K it follows immediately that the restriction of

γ to each fiber of the projection ψ (see (2.4)) is the Maurer–Cartan form on the fiber.

Therefore, γ defines a holomorphic connection on EG in the sense of [Bi2].

Conversely, let γ be a g-valued holomorphic one-form on EG defining a holomor-

phic connection on EG in the sense of [Bi2]. Therefore, γ is G-equivariant and it coin-

cides with the Maurer–Cartan form on the fibers of the projection ψ. Consequently,

γ gives a G-invariant holomorphic splitting γ̃ : TEG → K of the exact sequence in

(4.5). Consider the corresponding homomorphism β ′ : Q → TEG. So, the image of

β ′ is the kernel of γ̃, and the composition of β ′ with the projection TEG → Q in

(4.5) is the identity automorphism of Q. Therefore, β ′ gives a G-invariant holomor-

phic splitting β̃ : OEG
→ VEG

of the exact sequence in (4.6). Hence β̃ descends to a

holomorphic splitting of the exact sequence in (4.9).

Therefore, giving a holomorphic connection on EG is equivalent to giving a holo-

morphic connection on EG in the sense of [Bi2].

Similarly, it can be shown that giving a complex connection on EG is equivalent to

giving a complex connection on EG in the sense of [Bi2]. This completes the proof of

the theorem.

4.3 A Construction of AEG

Consider the derivation action of TX on OX . Let

TX(− log D) ⊂ TX

be the subsheaf that leaves OX(−D) ⊂ OX invariant. So

TX ⊗ OX(−D) ⊂ TX(− log D) ⊂ TX,

and if x ∈ Di is a smooth point of D, then the image of the fiber TX(− log D)x in TxX

coincides with TxDi . More generally, for any point x as in (2.1), the image of the fiber

TX(− log D)x in TxX is contained in the kernel of the projection of TxX to the fiber

over x of the normal bundle to Di1
∩ Di2

∩ · · · ∩ Dik
. The subsheaf TX(− log D) is

locally free and hence it defines a holomorphic vector bundle over X. The dual vector

bundle (TX(− log D))∗ is denoted by Ω
1
X(log D).

Let EG be a ramified G-bundle over X with ramification over D. As we saw in Sec-

tion 3, the ramified G-bundle EG gives a functor from Rep(G) to PVect(X). Consider

the G-module g equipped with the adjoint action of G. The image of this G-module

g by the functor Rep(G) −→ PVect(X) corresponding to EG will be denoted by Eg
∗.

So Eg
∗ is a parabolic vector bundle over X with parabolic structure over D.

Let Eg
0 denote the underlying holomorphic vector bundle for the above defined

parabolic vector bundle Eg
∗. For each irreducible component Di of D, let

Eg
0|Di

= Fi
1 ⊃ Fi

2 ⊃ Fi
3 ⊃ · · · ⊃ Fi

mi
⊃ Fi

mi +1 = 0
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be the filtration as in (2.3). We will define a subbundle V i of Eg
0|Di

. If the parabolic

weight λ1 corresponding to Fi
1 is zero, then set V i := Fi

2, and if λ1 6= 0, then set

V i := Fi
1. Let F ⊂ Eg

0 be the subsheaf that fits in the following short exact sequence

of coherent sheaves on X

(4.12) 0 −→ F −→ Eg
0 −→

ℓ⊕
i=1

(Eg
0|Di

)/Vi −→ 0,

where Vi are defined above, and {Di}
ℓ
i=1 are the irreducible components of D. There-

fore, F is a holomorphic vector bundle over X which is identified with Eg
0 over the

complement X \ D.

Let

(4.13) WEG
⊂ Eg

0 ⊗ Ω
1
X(log D)

be the coherent subsheaf generated by the two subsheaves F⊗Ω
1
X(log D) and Eg

0⊗Ω
1
X ,

where F is defined in (4.12) and Ω
1
X(log D) was defined earlier. It is easy to check that

WEG
is locally free. Hence it defines a holomorphic vector bundle over X. This vector

bundle is clearly identified with Eg
0 ⊗ Ω

1
X over the complement X \ D.

Proposition 4.5 The vector bundle AEG
in (4.9) is identified with the vector bundle

WEG
in (4.13).

Proof There is a Galois covering

(4.14) f : Y −→ X

with Y a smooth complex projective variety and a holomorphic principal G-bundle

FG over Y equipped with a lift of the action of the Galois group Γ := Gal( f ) on

Y such that EG = FG/Γ. Indeed, in [BBN1] it was shown that given a parabolic

G-bundle over X, such a pair ( f , FG) exists. We noted in Section 3 that a parabolic

G-bundle is same as a ramified G-bundle.

Using the actions of the Galois group Γ on Y and FG, the vector bundle

ad(FG) ⊗ Ω
1
Y over Y is equipped with an action of Γ. The corresponding parabolic

vector bundle over X has the property that its underlying vector bundle is identified

with the vector bundle WEG
defined in (4.13). (See [Bi1] for the correspondence

between parabolic vector bundles over X and Γ-linearized vector bundles over Y .)

Let ψ0 : FG → Y be the natural projection. Let δ : FG → FG/Γ = EG be the

quotient map. Since the actions of G and Γ on FG commute, for any Γ-linearized

vector bundle W over Y , the pullback ψ∗
0 W on FG has the following property: the

invariant direct image ( f∗W )Γ on X, where f is the projection in (4.14), is identified

with the invariant direct image (ψ∗(δ∗ψ
∗
0 W )Γ)G, where ψ is the projection in (2.4).

Now setting W to be ad(FG) ⊗ Ω
1
Y we conclude that the vector bundle WEG

defined

in (4.13) is identified with the vector bundle AEG
in (4.9). This completes the proof

of the proposition.
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