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Abstract. In the classical theorems about lower and upper vector functions
for systems of linear differential equations very heavy restrictions on the signs of
coefficients are assumed. These restrictions in many cases become necessary if we wish
to compare all the components of a solution vector. The formulas of the integral
representation of the general solution explain that these theorems claim actually the
positivity of all elements of the Green’s matrix. In this paper we define a principle of
partial monotonicity (comparison of only several components of the solution vector),
which assumes only the positivity of elements in a corresponding row of the Green’s
matrix. The main theorem of the paper claims the equivalence of positivity of all
elements in the nth row of the Green’s matrices of the initial and two other problems,
non-oscillation of the nth component of the solution vector and a corresponding
assertion about differential inequality of the de La Vallee Poussin type. Necessary and
sufficient conditions of the partial monotonicity are obtained. It is demonstrated that
our sufficient tests of positivity of the elements in the nth row of the Cauchy matrix
are exact in corresponding cases. The main idea in our approach is a construction of
an equation for the nth component of the solution vector. In this sense we can say that
an analog of the classical Gauss method for solving systems of functional differential
equations is proposed in the paper.

2000 Mathematics Subject Classification. 34K11.

1. Introduction. Consider the system

(Mix)(t) ≡ x′
i(t) +

n∑
j=1

(Bijxj)(t) = fi(t), t ∈ [0, ω], i = 1, . . . , n, (1.1)

where x = col(x1, . . . , xn), Bij:C[0,ω] → L[0,ω], i, j = 1, . . . , n, are linear continuous
operators and C[0,ω] and L[0,ω] are the spaces of continuous and measurable essentially
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bounded functions y : [0, ω] → R1 respectively. We will also consider the case ω = ∞,
which is important, for example, in problems of stability.

Let l:Cn
[0,ω] → Rn be a linear bounded functional. If the homogeneous boundary

value problem (Mix)(t) = 0, t ∈ [0, ω], i = 1, . . . , n, lx = 0, has only the trivial
solution, then the boundary value problem

(Mix)(t) = fi(t), t ∈ [0, ω], i = 1, . . . n, lx = α, (1.2)

has for each fi ∈ L[0,ω], α ∈ Rn a unique solution, which has the following
representation [2]:

x(t) =
∫ ω

0
G(t, s)f (s) ds + X(t)α, t ∈ [0, ω], (1.3)

where the n × n matrix G(t, s) is called the Green’s matrix of problem (1.2), X(t) is an
n × n fundamental matrix of the system (Mix)(t) = 0, i = 1, . . . , n, such that lX = E (E
is the unit n × n matrix), f = col(f1, . . . , fn). It is clear from the solution representation
(1.3) that the matrices G(t, s) and X(t) determine all properties of solutions.

If the Green’s matrix G(t, s) is positive then from the conditions

(Mix)(t) ≥ (Miy)(t), t ∈ [0, ω], i = 1, . . . , n, lx = ly, (1.4)

it follows that

xi(t) ≥ yi(t), t ∈ [0, ω], i = 1, . . . , n. (1.5)

The great importance of the property (1.4) → (1.5) in the approximate integration
was noted by S.A. Tchaplygin [25]. Series of papers, starting with the paper by N.N.
Luzin [24], were devoted to the various aspects of Tchaplygin’s approximate method
of integration. Note in this connection the well-known monograph by V. Lakshmik-
antham and S. Leela [21] and the recent monograph by I. Kiguradze and B. Puza [19].

As a particular case of system (1.1) let us consider the following delay system:

x′
i(t) +

n∑
j=1

pij(t)xj(hij(t)) = fi(t), i = 1, . . . , n, t ∈ [0, ω],

(1.6)
x(θ ) = 0 for θ < 0,

where pij are measurable essentially bounded functions and hij are measurable
functions such that hij(t) ≤ t for i, j = 1, . . . , n, t ∈ [0, ω]. Its general solution has
the representation

x(t) =
∫ t

0
C(t, s)f (s) ds + C(t, 0)x(0), t ∈ [0, ω], (1.7)

where C(t, s) = {Cij(t, s)}i,j=1,...,n is called the Cauchy matrix of system (1.6). Note that
for each fixed s the matrix C(t, s) is the fundamental matrix of the system

x′
i(t) +

n∑
j=1

pij(t)xj(hij(t)) = 0, i = 1, . . . , n, t ∈ [0, ω],

x(θ ) = 0 for θ < s,

such that C(s, s) is the unit n × n matrix [2].
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The classical Wazewskii’s theorem claims [27] that the condition

pij ≤ 0 f or j 
= i, i, j = 1, . . . , n, (1.8)

is necessary and sufficient for non-negativity of all elements Cij(t, s) of the Cauchy
matrix and consequently of the property (1.4), (1.5) for the system of ordinary
differential equations

x′
i(t) +

n∑
j=1

pij(t)xj(t) = fi(t), i = 1, . . . , n, t ∈ [0, ω]. (1.9)

In Section 3 we obtain an extension of this result on boundary value problem (1.2).
Note that results of this type for various boundary problems can be found in [18, 19].

The assertions of Section 3 are auxiliary for our main results, which will be obtained
in Section 4. We focus our attention upon the problem of comparison for only one of
the components of solution vector.

Let ki be either 1 or 2. In Section 4 we consider the following problem: when from
the conditions

(−1)ki [(Mix)(t) − (Miy)(t)] ≥ 0, t ∈ [0, ω], lx = ly, i = 1, . . . , n, (1.10)

it does follow that for a corresponding fixed component xr of the solution vector the
inequality

xr(t) ≥ yr(t), t ∈ [0, ω], (1.11)

is satisfied. This property is a weakening of the property (1.4) → (1.5) and, as we will
obtain below, leads to essentially less hard limitations on the given system. From the
formula of solution’s representation it follows that this property is reduced to sign-
constancy of all elements standing only in the rth row of the Green’s matrix.

It should be noted here that the classical monotone technique in the theory of non-
linear differential system is based on monotonicity of corresponding operators acting
on spaces of solutions vector of systems. These operators are obtained as a result of
regularisation procedures reducing the boundary value problems to equivalent integral
equations [2, 17, 21]. The monotonicity of such operators, obtained on the basis of
positivity of corresponding Green’s matrices of boundary value problems, leads, as
it was noted above in the case of the initial problem, to very heavy restrictions on
given systems. In this paper we propose new ideas of such a regularisation, leading to a
problem of so-called partial monotonicity of these operators, which can be described
in a linear case as their positivity in the space of vector functions consisting of only
several and not all the components of solution vectors of a given system. It will be
clear that in this case positivity of several components of solution vector is achieved on
the basis of positivity of elements standing in several corresponding rows of Green’s
matrices.

Our technique in proofs of main assertions of the paper is based on a construction
of a corresponding scalar functional differential equation for nth component of a
solution vector. In this sense it is similar to the idea of the classical Gauss method
for solving systems of algebraic equations. In Section 2 the auxiliary results for first-
order scalar functional differential equations are included. These assertions develop
the known non-oscillation results of [9, 13].
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The problem of the asymptotic stability of delay differential systems is one of the
most important applications of results on positivity of the Cauchy matrix C(t, s). The
technique of the use of positivity of C(t, s) in the exponential stability was proposed in
[7], where necessary and sufficient conditions of the exponential stability for a system
possessing positivity of the Cauchy matrix were obtained. In other terminology, this
approach can be found in [11]. The same idea of a regularisation, leading to an analysis
of vector integral equations with positive operators, was proposed in [3, 15]. Important
development of this approach can be found in [12].

It should also be noted that our approach can be applied to differential equations
with unbounded delay, which have been intensively studied over the past 10 years. The
foundations of the theory of such equations were developed in [14, 22]. Non-oscillation
properties of such equations were considered, for example, in [9] (note also a recent
paper [5]). Integro-differential equations can be considered as a class of equations
with unbounded memory. Various applications of integro-differential and functional
differential equations are presented, for example, in [4, 8, 10].

In this paper we consider the boundary value problems with boundary conditions
of the following form:

lixi = 0, i = 1, . . . , n, (1.12)

where li : C[0,b] → R1, i = 1, . . . , n, is a linear boundary functional. Note that each of
the following types of boundary conditions

xi(0) = 0, i = 1, . . . , n, (1.13)

xi(ω) = 0, i = 1, . . . , n, (1.14)

xi(0) = xi(ω), i = 1, . . . , n, (1.15)

xi(0) = 0, xj(ω) = 0, i = 1, . . . , k, j = k + 1, . . . , n (1.16)

is a particular case of condition (1.12).

2. First-order scalar functional differential equation – auxiliary results. In this
Section we formulate auxiliary results on first-order scalar equations. Let us consider
boundary value problems described by the following scalar equation:

(My)(t) ≡ x′(t) + (Bx)(t) = f (t), t ∈ [0,+∞), (2.1)

and one of the following boundary conditions:

x(0) = 0, (2.2)

x(ω) = 0, (2.3)

x(0) = x(ω), (2.4)

where B : C → L is a bounded linear Volterra operator acting from the space of
continuous functions to the space of measurable essentially bounded functions
determined on [0,∞). Denote by C[0,ω] the space of continuous functions and L[0,ω] –
the space of measurable essentially bounded functions y : [0, ω] → R1. The fact that
B : C → L is a Volterra operator allows us to consider also the operator B[0,ω] : C[0,ω] →
L[0,ω], where (B[0,ω]x) = (Bx)(t) for t ∈ [0, ω] and each continuous function x ∈ C.

Below we write B instead of B[0,ω].
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If the periodic boundary value problem (2.1), (2.4) has a unique solution, then it
has the following representation:

x(t) =
∫ ω

0
P(t, s)f (s) ds, (2.5)

where P(t, s) is called the Green’s function of the periodic problem (2.1), (2.4).
If the boundary value problem (2.1), (2.3) has a unique solution, it has the following

representation:

x(t) =
∫ ω

0
G(t, s)f (s) ds, (2.6)

where G(t, s) is called the Green’s function of the problem (2.1), (2.3).
Define an operator N : C[0,ω] → C[0,ω] as follows:

(Nx)(t) =
∫ ω

t
(Bx)(s) ds. (2.7)

For (2.1), the following assertion was proven.

THEOREM 2.1 [1]. Let B : C[0,ω] → L[0,ω] be a positive non-zero Volterra operator,
then the following assertions are equivalent:

(1) There exists a non–negative absolutely continuous function v such that v′ ∈ L[0,ω],

Mv(t) ≤ 0, v(ω) −
∫ ω

t
(Mv)(s) ds > 0, t ∈ [0, ω]. (2.8)

(2) The spectral radius of the operator N is less than 1.
(3) The problem (2.1), (2.3) is uniquely solvable and its Green’s function G(t, s) is

negative for 0 ≤ t < s ≤ ω and non-positive for 0 ≤ s ≤ t ≤ ω.

(4) A non-trivial solution of the homogeneous equation (My)(t) = 0, t ∈ [0, ω] has
no zeros on [0, ω].

(5) The Cauchy function of (2.1) is positive for 0 ≤ s ≤ t ≤ ω.

(6) The periodic problem (2.1), (2.4) is uniquely solvable and its Green’s function
P(t, s) is positive for t, s ∈ [0, ω].

(7) There exists a positive continuous function v such that v(t) > Nv(t), t ∈ [0, ω].
(8) There exists a positive essentially bounded function u such that

B e
∫ t

s u(ξ ) dξ (t) ≤ u(t), t ∈ [0, ω].

REMARK 2.1. If we consider (2.1) on the semi-axis, the equivalence of the
corresponding assertions (1a) − (8a) is also fulfilled. Let us describe these assertions:

(1a) there exists a positive locally absolutely continuous function v such that v′ ∈
L and Mv(t) < 0 for t ∈ [0,+∞).

If one sets ω = +∞ in the assertions (4), (5) and (8), we obtain the assertions
(4a), (5a) and (8a) respectively.

If we require that each of the assertions (2), (3), (6) and (7) is fulfilled for each
ω ∈ (0,+∞), the assertions (2a), (3a), (6a) and (7a) will be obtained respectively.

REMARK 2.2. The assertion (1) → (4) is an analog for the first-order functional
differential equations of the classical de La Vallee Poussin theorem about the
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differential inequality obtained in [26] for ordinary second-order equations. Assertions
(4) → (3) and (4) → (5) are analogs of the corresponding assertions connecting non-
oscillation and positivity of Green’s functions for the n-th-order ordinary differential
equations [23]. Note that for the delayed differential equation

x′(t) + p(t)x(t − g(t)) = f (t), t ∈ [0,+∞),

the inequality in assertion (8a) is of the following form,

p(t) e
∫ t

t−g(t) u(s) ds(t) ≤ u(t), t ∈ [0,+∞),

and the equivalence of assertions (4a) and (8a) is the well-known result (see [9], p. 29).
Consider the equation

(My)(t) ≡ x′(t) + (Bx)(t) − (Ax)(t) = f (t), t ∈ [0,+∞), (2.9)

where A : C → L is a bounded linear Volterra operator acting from the space of
continuous functions on the space of essentially bounded functions determined on
[0,∞).

THEOREM 2.2. If B and A are positive operators, and the Cauchy function C+(t, s)
of (2.1) is positive for 0 ≤ s ≤ t ≤ +∞, then the Cauchy function C(t, s) and the Green’s
matrix P(t, s) of the periodic problem for (2.9) satisfy the inequalities C(t, s) ≥ C+(t, s)
for 0 ≤ s ≤ t ≤ +∞ and if (A1)(t) < (B1)(t), then P(t, s) ≥ P+(t, s) for t, s ∈ [0, ω] for
each ω ∈ (0,+∞) (here P+(t, s) is the Green’s function of periodic problem (2.1), (2.4)).

Proof. The formula of the representation of the solutions (1.7) and (2.5) allows us
to write the initial and periodic problems ((2.1), (2.2) and (2.1), (2.4) respectively) in
the following equivalent integral forms:

x(t) =
∫ t

0
C+(t, s)(Ax)(s) ds +

∫ t

0
C+(t, s)f (s) ds + C+(t, 0)x(0) (2.10)

and

x(t) =
∫ t

0
P+(t, s)(Ax)(s) ds +

∫ t

0
P+(t, s)f (s) ds. (2.11)

Denote by TC and TP the operators

(TCx)(t) =
∫ t

0
C+(t, s)(Ax)(s) ds

and

(TPx)(t) =
∫ t

0
P+(t, s)(Ax)(s) ds

respectively. It is clear that the operators TC and TP are positive. Equations (2.10) and
(2.11) can be written as follows:

x(t) − (TCx)(t) = ϕ1(t),

x(t) − (TPx)(t) = ϕ2(t),
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where ϕ1(t) = ∫ t
0 C+(t, s)f (s) ds + C+(t, 0)x(0) and ϕ2(t) = ∫ t

0 P+(t, s)f (s) ds. If f ≥
0, x(0) ≥ 0, then ϕ1 ≥ 0 and

x(t) = ((1 − T)−1ϕ1)(t) = ϕ1 + Tϕ1 + T2ϕ1 + T3ϕ1 + · · · ≥ ϕ1,

and consequently

∫ t

0
C(t, s)f (s) ds ≥

∫ t

0
C+(t, s)f (s) ds,

for each f ≥ 0, and this implies that C(t, s) ≥ C+(t, s). Analogously it can be proven
that P(t, s) ≥ P+(t, s). �

DEFINITION 2.1. Let us determine the function h : 0,+∞) → [0,+∞) as the
maximal possible value for which the equality y1(s) = y2(s) for s ∈ [h(t),+∞) implies
the equality (By1)(s) = (By2)(s) for s ∈ [t,+∞) for each two continuous functions y1

and y2 : [0,+∞) → (−∞,+∞).

If we set v = exp[−e
∫ t

0 (B1)(s) ds] in assertion (1) of Theorem 2.1, then the
following result is obtained.

THEOREM 2.3 [1]. Let B : C[0,+∞) → L[0,+∞) be a positive linear Volterra operator
and ∫ t

h(t)
(B1)(s) ds ≤ 1

e
, t ∈ (0,+∞), (2.12)

then C(t, s) > 0 for 0 ≤ s ≤ t < +∞, and each of the assertions (2)−(6) is satisfied for
each ω ∈ (0,+∞).

3. Positivity of Green’s matrices of systems of functional differential equations. In
this section we consider the system

(Mix)(t) ≡ x′
i(t) +

n∑
j=1

(Bijxj)(t) = fi(t), i = 1, . . . , n, t ∈ [0, ω], (3.1)

with boundary conditions of the form

lixi = 0, i = 1, . . . , n, (3.2)

where Bij : C[0,ω] → L[0,ω] are linear bounded Volterra operators and li : C0
[0,ω] → R1 are

linear bounded functionals (i, j = 1, 2, 3, . . . , n).
Let us define operator R : Cn

[0,ω] → Cn
[0,ω] acting in the space of nth-

dimensional vector functions with continuous elements xi : [0, ω] → R1, ‖x‖C[0,ω]
=

max1≤i≤n maxt∈[0,ω] |xi(t)| as follows:

(Rx)(t) = col
(

−
∫ ω

0
gi(t, s)

n∑
j=1, j 
=i

(Bijxj)(s) ds
)n

i=1
, t ∈ [0, ω]. (3.3)
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THEOREM 3.1. Let the following conditions be fulfilled:
(1) The Green’s functions gi(t, s) (i = 1, . . . , n) of n scalar boundary value problems

(Mix)(t) ≡ x′
i(t) + (Biixi)(t) = fi(t), t ∈ [0, ω], (3.4)

lixi = 0, (3.5)

exist and preserve their signs such that∫ ω

0
|gi(t, s)| ϕ(s) ds > 0, t ∈ [0, ω] (3.6)

for each positive measurable essentially bounded function ϕ.
(2) The non-diagonal operators Bij ( j 
= i) are positive or negative such that the

operator R : Cn
[0,ω] → Cn

[0,ω] determined by the formula (3.3) is positive.
Then the following assertions are equivalent:
(a) There exists a vector function v ∈ Cn

[0,ω] with positive absolutely continuous
components vi : [0, ω] → [0,+∞) such that∫ ω

0
gi(t, s)(Miv)(s) ds > 0, t ∈ [0, ω].

(b) Boundary value problem (3.1), (3.2) is uniquely solvable for each right-hand
side f = col(f1, . . . , fn) such that fi ∈ L[0,ω], i = 1, . . . , n, and elements of its
Green’s matrix preserve sign and satisfy the inequality

gi(t, s)Gij(t, s) ≥ 0, t, s ∈ [0, ω], (3.7)

while

|Gii(t, s)| ≥ |gi(t, s)| , t, s ∈ [0, ω], (3.8)

for i, j = 1, . . . , n.
(c) The spectral radius of the operator R : Cn

[0,ω] → Cn
[0,ω] is less than 1.

Proof. (a)→(c). The function v satisfies the boundary value problem

(Mix)(t) = ϕi(t), lixi = 0, i = 1, . . . , n, t ∈ [0, ω], (3.9)

where ϕi(t) = (Miv)(t), t ∈ [0, ω]. It is clear that this function v also satisfies the integral
equation x(t) − (Rx)(t) = ψ(t), t ∈ [0, ω], where

ψ(t) = col
(∫ ω

0
gi(t, s)ϕi(s) ds

)n

i=1
, t ∈ [0, ω]. (3.10)

The condition (a) implies that all components ψi(t), i = 1, . . . , n, of the vector ψ(t)
are positive for t ∈ [0, ω]. By the known result of M.A. Krasnosel’skii [20, p. 86], the
spectral radius of the operator R : Cn

[0,ω] → Cn
[0,ω] is less than 1.

(c)→(b). If the spectral radius of the operator R : Cn
[0,ω] → Cn

[0,ω] is less than 1, then
the sequence {xm} of vectors x = (x1, . . . , xn), where xm = Rxm−1 + ψ, x0 = ψ, ψ ∈
Cn

[0,ω], converges to the solution of the equation x = Rx + ψ, which is equivalent to
boundary value problem (3.1), (3.2). This means that boundary value problem (3.1),

https://doi.org/10.1017/S0017089509990218 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089509990218


ON POSITIVITY OF SEVERAL COMPONENTS OF SOLUTION VECTOR 123

(3.2) is uniquely solvable, while for ψ with non-negative components ψi, i = 1, . . . , n,

we obtain xi ≥ ψi ≥ 0, i = 1, . . . , n.

If fi preserves its sign for i = 1, . . . , n such that

∫ ω

0
gi(t, s)fi(s) ds ≥ 0, t ∈ [0, ω], (3.11)

then

ψi(t) =
∫ ω

0
gi(t, s)fi(s) ds ≥ 0, t ∈ [0, ω], (3.12)

and consequently xi(t) ≥ ψi(t), i = 1, . . . , n. The inequality (3.7) has been proven.
In order to prove inequality (3.8) we set fj = 0 for j 
= i, j = 1, . . . , n. In this case

we obtain

xi(t) − ψi(t) =
∫ ω

0
[Gii(t, s) − gi(t, s)]fi(s) ds, t ∈ [0, ω], i = 1, . . . , n. (3.13)

The inequality xi(t) ≥ ψi(t) implies the inequality (3.8).
(b) → (a). In order to prove this implication we can set v(t) = ∫ ω

0 G(t, s)E ds, where
E = col(e1, . . . , en) and ei is equal to 1 or −1 such that eigi(t, s) ≥ 0, t, s ∈ [0, ω].

In case of the Cauchy problem the spectral radius of the Volterra integral operator
is equal to zero. Moreover, we can set ω = +∞ and get the following assertion.

THEOREM 3.2. Let the following conditions be fulfilled:

(1) The Cauchy functions ci(t, s) (i = 1, . . . , n) of n scalar equations

x′
i(t) + (Biixi)(t) = fi(t), t ∈ [0,+∞) (3.14)

are positive for 0 ≤ s ≤ t < +∞, i = 1, . . . , n.
(2) All non-diagonal operators Bij ( j 
= i, i, j = 1, . . . , n) are negative.

Then all elements Cij(t, s) of the Cauchy matrix C(t, s)of the system (3.1) are
non-negative, while Cii(t, s) are positive for 0 ≤ s ≤ t ≤ ω, i, j = 1, . . . , n.

REMARK 3.1. In the case of a diagonal system (the operators Bij are zero operators
( j 
= i, i, j = 1, . . . , n)) the elements Cii(t, s) coincide with ci(t, s), Cij(t, s) = 0 for
j 
= i, i, j = 1, . . . , n, and condition (1) becomes necessary and sufficient for the non-
negativity of all elements of the Cauchy matrix.

REMARK 3.2. It will be demonstrated below that condition (2) is not necessary for
non-negativity of all elements of the Cauchy matrix.

DEFINITION 3.1. Let us determine the function hij∗ : [0,+∞) → [0,+∞) as the
maximal possible value for which the equality y1(s) = y2(s) for s ∈ [hij∗(t),+∞) implies
the equality (Bijy1)(s) = (Bijy2)(s) for s ∈ [t,+∞) for each two continuous functions y1

and y2 : [0,+∞) → (−∞,+∞).

It follows from a known result [16] that each bounded operator Bij : C[0,+∞) →
L[0,+∞) can be written as Bij = B+

ij − B−
ij , where B+

ij and B−
ij are positive operators.
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THEOREM 3.3. Let Bij : C0
[0,+∞) → L[0,+∞) be a linear Volterra operator, all non-

diagonal operators Bij ( j 
= i) be negative and

∫ t

hii∗(t)
(B+

ii 1)(s) ds ≤ 1
e
, t ∈ (0,+∞), i = 1, . . . , n. (3.15)

Then all elements Cij(t, s) of the Cauchy matrix C(t, s) of the system (3.1) are non-negative
while Cii(t, s) are positive for 0 ≤ s ≤ t < +∞, i, j = 1, . . . , n.

Proof. Consider the following n scalar equations

x′
i(t) + (B+

ii xi)(t) = fi(t), t ∈ [0,+∞), i = 1, . . . , n. (3.16)

Let us set vi(t) = exp[−e
∫ t

0 (Bii1)(s) ds] in assertion (1) of Theorem 2.1. By virtue
of Theorem 2.1 the Cauchy functions c+

i (t, s) of (3.16) are positive for 0 ≤ s ≤ t <

+∞, i = 1, . . . , n. By virtue of Theorem 2.1 the Cauchy functions ci(t, s) of (3.16) are
positive for 0 ≤ s ≤ t < +∞, i = 1, . . . , n. Now reference to Theorem 3.2 completes
the proof. �

Consider the following particular case of system (3.1):

x′
i(t) +

n∑
k=1

pik(t)xk(hik(t)) = fi(t), t ∈ [0,+∞), i = 1, . . . , n, (3.17)

where xi(θ ) = 0 for θ < 0. In this case, the function hii∗(t) introduced in Definition 2.1
can be determined as follows: hii∗(t) = mins≥t hii(s). Introduce p+

ii and p−
ii as follows:

pii = p+
ii − p−

ii , p+
ii ≥ 0, p−

ii ≥ 0. Theorem 3.2 for system (3.17) can be formulated in
the following form.

COROLLARY 3.1. Assume that hik(t) ≤ t, pik(t) ≤ 0 for t ∈ [0,+∞), i 
= k, i, j =
1, . . . , n, and the following inequalities∫ t

hii∗(t)
p+

ii (s) ds ≤ 1
e
, t ∈ (0,+∞), i = 1, . . . , n, (3.18)

are fulfilled. Then all elements Cij(t, s) of the Cauchy matrix C(t, s) of the system (3.17)
are non-negative, while Cii(t, s) are positive for 0 ≤ s ≤ t < +∞, i, j = 1, . . . , n.

REMARK 3.3. Inequality (3.18) cannot be improved. Actually for the system

x′
i(t) + piixi(t − τii) = 0, t ∈ [0,+∞), i = 1, . . . , n, (3.19)

where pii and τii are positive constants, an opposite inequality, for example, p11τ11 > 1/e
implies [9, 13] the oscillation of all solutions of the equation

x′
1(t) + p11x1(t − τ11) = 0, t ∈ [0,+∞), (3.20)

and consequently by virtue of Theorem 2.1 the Cauchy function c1(t, s) of this equation,
coinciding in the case of diagonal system (3.19) with C11(t, s), changes its sign for
0 ≤ s ≤ t < +∞.
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REMARK 3.4. In contrast with the classical Wazewski’s theorem the condition (1.8)
is not necessary for non-negativity of all elements of the Cauchy matrix C(t, s) as the
following example demonstrates. Consider the system

x′
1(t) + p12x2(t − 1) + p13x3(t − 1) = 0,

x′
2(t) + p21x1(t − 1) + p23x3(t − 1) = 0,

x′
3(t) + p31x1(t − 2) + p32x2(t) = 0,

t ∈ [0, 3],

where x(θ ) = 0 for θ < 0. Assume that all coefficients are constant, p31 > 0 and other
coefficients pij are non-positive. For each fixed s the Cauchy matrix C(t, s) is the
fundamental matrix of this system on [s, 3] with initial vector function x(θ ) = 0 for θ <

s, satisfying the condition C(s, s) = E, where E is the unit 3×3 matrix [2]. Constructing
the first column of the Cauchy matrix C(t, s) step by step as the solution satisfying the
initial condition x1(s) = 1, x2(s) = 0, x3(s) = 0, we obtain

C11(t, s) = 1, C21(t, s) = 0, C31(t, s) = 0 for t ∈ [s, s + 1),

C11(t, s) = 1, C21(t, s) = −p21(t − s − 1),

C31(t, s) = 1
2

p32p21(t − s − 1)2 for t ∈ [s + 1, s + 2),

C11(t, s) = −p12(t − s − 2)2 − 1
6

p13p32p21(t − s − 2)3 + 1,

C21(t, s) = −p21(t − s − 2) − 1
6

p23p32p21(t − s − 2)3 − p21,

C31(t, s) = 1
24

p2
32p23p21(t − s − 2)4 + 1

2
p32p21(t − s − 2)2 + (p32p21 − p31)

× (t − s − 2) + 1
2

p32p21 for t ∈ [s + 2, s + 3].

Analogously, the other elements of the Cauchy matrix can be constructed. All
elements Cij(t, s) of the Cauchy matrix C(t, s), except C31(t, s), are non-negative for
each positive p31 and non-positive for other coefficients pij in the zone 0≤ s ≤ t ≤ 3. If
p31 ≤ p32p21, then the element C31(t, s) is also non-negative in this zone. It proves that
the condition (1.18) is not necessary for non-negativity of the Cauchy matrix C(t, s) in
contrast with the case of ordinary differential systems.

Let us consider the following system with unbounded delay

(Mix)(t) ≡ x′
i(t) +

∞∑
k=1

pik(t)xi(t − kτi) +
n∑

j=1,j 
=i

aij(t)xj(t − τij(t)) = fi(t),

i = 1, ...n, t ∈ [0,+∞). (3.21)

Assume that there exists β such that

β <
1
e
, pi1 ≥ βpi2, pi1 ≥ β2pi3, . . . , pi1 ≥ βk−1pik, . . . , i = 1, . . . , n. (3.22)
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Let us substitute vi(t) = e−αi t, i = 1, . . . , n, into assertion (1) of Theorem 2.1. The
following inequality is desirable:

(Miv)(t) ≡ e−αi t

{
−αi +

∞∑
k=1

pk(t) eαikτi

}
≤ 0, t ∈ [0,+∞). (3.23)

Using condition (3.22), we can see that this inequality is satisfied if

pi1

1 − β eαiτi
≤ αi e−αiτi . (3.24)

The function gi(αi) = αi e−αiτi in the right-hand side of this inequality is maximal at
αi = 1/τi. If we substitute αi into the inequality (3.24), the following inequalities are
obtained:

pi1τi

1 − βe
≤ 1

e
, (3.25)

or

pi1τi + β ≤ 1
e
. (3.26)

THEOREM 3.4. Let the conditions (3.22) and (3.26) be satisfied for (3.21) and aij ≤ 0
for j 
= i, then Cij(t, s) > 0 for 0 ≤ s ≤ t < +∞, i, j = 1, . . . , n.

Proof. The proof follows from Theorem 3.2. �
Let us consider the following system:

(Mx)(t) ≡ x′
i(t) +

∫ t−τi

0
Ki(t, s)xi(s) ds +

n∑
j=1,j 
=i

aij(t)xj(t − τij(t)) = f (t),

i = 1 . . . , n, t ∈ [0,+∞), (3.27)

where K(t, s) is a positive continuous function satisfying the inequality

Ki(t, s) ≤ bi e−γi(t−s), 0 ≤ s ≤ t < +∞, γi, bi > 0. (3.28)

Substituting vi(t) = e−αi t, where γi > αi into assertion (1) of Theorem 2.1 for each
i = 1, . . . , n, we obtain

(Mi e−αi t)(t) ≤ −αi + bi

γi − αi
e−(γi−αi)τi , 0 ≤ t < +∞. (3.29)

The right-hand side of (3.29) is non-positive if

bi e−(γi−αi)τi ≤ αi(γi − αi). (3.30)

Choosing αi = γi/2, we obtain the following inequality implying non-positivity of
(Mi e−αi t)(t) for 0 ≤ t < +∞, i = 1, . . . , n:

bi ≤ γ 2
i

4
e

γi
2 τi , i = 1, . . . , n. (3.31)
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THEOREM 3.5. Let inequalities (3.28) and (3.31) be satisfied and aij ≤ 0 for j 
= i,
then all elements Cij(t, s) of the Cauchy matrix of (3.27) are positive for 0 ≤ s ≤ t <

+∞, i, j = 1, . . . , n.

Proof. The proof follows from Theorem 3.2. �
REMARK 3.5. For the scalar equation

x′
1(t) +

∫ t−τ1

0
K1(t, s)x1(s) ds = f1(t), t ∈ [0,+∞), (3.32)

where K1(t, s) = b1 e−γ1(t−s) for 0 ≤ s ≤ t < +∞, γ1, b1 > 0 and τ1 = 0, the inequality
(3.31) becomes of the form

b1 ≤ γ 2
1

4
, (3.33)

which is a necessary and sufficient condition of non-oscillation of the solutions of
(3.32) [6].

4. Positivity of the elements in the fixed rth row of Green’s matrix. In this section
we consider the equation

(Mix)(t) ≡ x′
i(t) +

n∑
j=1

(Bijxj)(t) = fi(t), t ∈ [0, ω], i = 1, . . . , n, (4.1)

where Bij : C[0,ω] → L[0,ω] are linear bounded Volterra operators for i, j = 1, . . . , n.

Together with system (4.1) let us consider the following auxiliary system of the
order n − 1

x′
i(t) +

n−1∑
j=1

(Bijxj)(t) = fi(t), t ∈ [0, ω], i = 1, . . . , n − 1, (4.2)

and denote by K(t, s) = {Kij(t, s)}i,j=1,...,n−1 its Cauchy matrix. Denote by G(t, s) =
{Gij(t, s)}i,j=1,...,n and P(t, s) = {Pij(t, s)}i,j=1,...,n the Green’s matrices of the problems
consisting of (4.1) and one of the boundary conditions

xi(0) = 0, i = 1, . . . , n − 1, xn(ω) = 0 (4.3)

or

xi(0) = 0, i = 1, . . . , n − 1, xn(0) = xn(ω) (4.4)

respectively.
Let us start with the following assertion, explaining how the scalar functional

differential equation for one of the components of the solution vector can be
constructed.

LEMMA 4.1. The component xn of the solution vector of the problem (4.1) satisfies
the following scalar functional differential equation

(Mxn)(t) ≡ x′
n(t) + (Bxn)(t) = f ∗(t), t ∈ [0, ω], (4.5)
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where

(Bxn)(t) ≡ −
n−1∑
i=1

Bni

{∫ t

0

n−1∑
j=1

Kij(t, s)(Bjnxn)(s) ds
}

(t) + (Bnnxn)(t), t ∈ [0, ω], (4.6)

and

f ∗(t) = fn(t) −
n−1∑
i=1

Bni

{ ∫ t

0

n−1∑
j=1

Kij(t, s)fj(s) ds
}

(t) −
n−1∑
i=1

Bni

{ n−1∑
j=1

Kij(t, 0)xj(0)
}

(t).

(4.7)

Proof. Using the Cauchy matrix K(t, s) = {Kij(t, s)}i,j=1,...,n−1 of the system (4.2),
we obtain

xi(t) = −
∫ t

0

n−1∑
j=1

Kij(t, s)(Bjnxn)(s) ds +
∫ t

0

n−1∑
j=1

Kij(t, s)fj(s) ds +
n−1∑
j=1

Kij(t, 0)xj(0) (4.8)

for each i. Substitution of these representations in the nth equation of the system (4.1)
leads to (4.5), where the operator B and the function f ∗ are described by the formulas
(4.6) and (4.7) respectively. �

THEOREM 4.1. Let all elements of the (n − 1) × (n − 1) Cauchy matrix K(t, s) of
system (4.2) be non-negative, each of the operators Bjn and Bnj be positive or negative and
the product −BnjBjn be a positive operator for j = 1, . . . , n − 1.

If Bni for i = 1, . . . , n − 1 are negative operators, then the following five assertions
are equivalent:

(1) There exists an absolutely continuous vector function v such that v′ ∈ L[0,ω],

vn(t) > 0, vi(0) ≤ 0 for i = 1, . . . , n − 1, (Miv)(t) ≤ 0 for i = 1, . . . , n, t ∈
[0, ω];

(2) Cnn(t, s) > 0, Cnj(t, s) ≥ 0 for j = 1, . . . , n − 1, 0 ≤ s ≤ t ≤ ω;
(3) The boundary value problem (4.1), (4.3) is uniquely solvable and its Green’s

matrix satisfies the inequalities Gnj(t, s) ≤ 0 for j = 1, . . . , n, t, s ∈ [0, ω],while
Gnn(t, s) < 0 for 0 ≤ t < s ≤ ω;

(4) If in addition the operator B, determined by equality (4.6), is a non-zero operator,
the boundary value problem (4.1), (4.4) is uniquely solvable and its Green’s matrix
satisfies the inequalities Pnj(t, s) ≥ 0 for j = 1, . . . , n, while Pnn(t, s) > 0 for t, s ∈
[0, ω];

(5) The nth component of the solution vector x of the homogeneous system Mix =
0, i = 1, . . . , n, such that xi(0) ≥ 0, i = 1, . . . , n − 1, xn(0) > 0, is positive for
t ∈ [0, ω].

If Bni for i = 1, . . . , n − 1 are positive operators, then the following five assertions
are equivalent:

(1∗) There exists an absolutely continuous vector function v such that v′ ∈
L[0,ω], vn(t) > 0, vi(0) ≥ 0, (Miv)(t) ≥ 0 for i = 1, . . . , n − 1, (Mnv)(t) ≤ 0 for
t ∈ [0, ω];

(2∗) Cnn(t, s) > 0, Cnj(t, s) ≤ 0 for j = 1, . . . , n − 1, 0 ≤ s ≤ t ≤ ω;
(3∗) The boundary value problem (4.1), (4.3) is uniquely solvable and its Green’s matrix

satisfies the inequalities Gnj(t, s) ≥ 0 for j = 1, . . . , n − 1, Gnn(t, s) ≤ 0 for t, s ∈
[0, ω], while Gnn(t, s) < 0 for 0 ≤ t < s ≤ ω;
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(4∗) If in addition the operator B, determined by equality (4.6), is a non-zero operator,
the boundary value problem (4.1), (4.4) is uniquely solvable and its Green’s
matrix satisfies the inequalities Pnj(t, s) ≤ 0 for j = 1, . . . , n, Pnn(t, s) > 0 for
t, s ∈ [0, ω];

(5∗) The nth component of the solution vector x of the homogeneous system Mix =
0, i = 1, . . . , n, such that xi(0) ≤ 0, i = 1, . . . , n − 1, xn(0) > 0, is positive for
t ∈ [0, ω].

Proof. Let us start with the implications (1) → (2) and (1∗) → (2∗). By virtue of
Lemma 4.1 the component xn of the solution vector of system (4.1) satisfies (4.5). It
follows from the condition of positivity of the operator −BnjBjn that B is a positive
operator. Each of the conditions (1) and (1∗) implies that (Mvn)(t) ≤ 0 for t ∈ [0, ω]. By
virtue of Theorem 2.1 the Cauchy function R(t, s) of the equation Mvn = 0 is positive
for 0 ≤ s ≤ t ≤ ω.

From the formula of representation of solutions and Lemma 4.1 it follows that

xn(t) =
∫ t

0

n∑
j=1

Cnj(t, s)fj(s) ds =
∫ t

0
R(t, s)f ∗(s) ds, t ∈ [0, ω]. (4.9)

If Bnj is a negative operator for each j = 1, . . . , n − 1, and fi ≥ 0 for i = 1, . . . , n,

then f ∗ ≥ 0. The positivity of R(t, s) implies that xn is non-negative and consequently
Cnj(t, s) ≥ 0 for 0 ≤ s ≤ t ≤ ω and j = 1, . . . , n.

If we set fj = 0 and xj(0) = 0 for j = 1, . . . , n − 1, then

xn(t) =
∫ t

0
Cnn(t, s)fn(s) ds =

∫ t

0
R(t, s)fn(s) ds, t ∈ [0, ω], (4.10)

and it is clear that Cnn(t, s) = R(t, s). It implies that Cnn(t, s) > 0 for 0 ≤ s ≤ t ≤ ω.

Let us prove the implication (1)→(3). By virtue of Lemma 4.1 the component xn

of the solution vector of system (4.1) satisfies (4.5). Condition (1) by virtue of Theorem
2.1 implies that the Green’s function GM(t, s) of the boundary value problem

(Mxn)(t) ≡ x′
n(t) + (Bxn)(t) = f ∗(t), t ∈ [0, ω], x(ω) = 0, (4.11)

exists and satisfies the inequalities GM(t, s) < 0 for 0 ≤ t ≤ s ≤ ω and GM(t, s) ≤ 0 for
0 ≤ s ≤ t ≤ ω. Lemma 4.1, the representations of solutions of boundary value problem
(4.1), (4.3) and the scalar one-point problem (4.11) imply the equality

xn(t) =
∫ ω

0

n∑
j=1

Gnj(t, s)fj(s) ds =
∫ ω

0
GM(t, s)f ∗(s) ds, t ∈ [0, ω]. (4.12)

If Bnj is a negative operator for each j = 1, . . . , n − 1, and fi ≥ 0 for i = 1, . . . , n, then
f ∗ ≥ 0. The non-positivity of GM(t, s) implies that xn is non-negative and consequently
Gnj(t, s) ≤ 0 for t, s ∈ [0, ω] and j = 1, . . . , n.

If we set fj = 0 and xj(0) = 0 for j = 1, . . . , n − 1, then

xn(t) =
∫ ω

0
Gnn(t, s)fn(s) ds =

∫ ω

0
GM(t, s)f (s) ds, t ∈ [0, ω], (4.13)

and it is clear that Cnn(t, s) = GM(t, s). This implies that Gnn(t, s) < 0 for 0 ≤ t < s ≤ ω.
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The proof of the implications (1∗) → (3∗), (1) → (4) and (1∗) → (4∗) are analogous.
In order to prove (3) → (1) we set v(t) = y(t), where y is the solution of the

boundary value problems

(Mix)(t) = −1, i = 1, . . . , n, t ∈ [0, ω], (4.14)

xi(0) = 0, i = 1, . . . , n − 1, xn(ω) = 0. (4.15)

In this case vi(0) = 0, i = 1, . . . , n − 1, and

vn(t) = −
∫ ω

0

n∑
j=1

Gnj(t, s) ds > 0, t ∈ [0, ω]. (4.16)

In order to prove (3∗) → (1∗) we set v(t) = y(t), where y is the solution of the
boundary value problem consisting of the equations

(Mix)(t) = 1, i = 1, . . . , n − 1, (Mnx)(t) = −1, t ∈ [0, ω], (4.17)

and boundary conditions (4.15).
In order to prove the implications (2) → (1) and (2∗) → (1∗) we set vi(t) = Cni(t, 0)

for i = 1, . . . , n, t ∈ [0, ω].
(4) → (1) and (4∗) → (1∗). It was explained above that the element Pnn(t, s) coincides

with the Green’s function Q(t, s) of the periodic problem for scalar equation (4.5), which
has the representation

Q(t, s) = R(t, s) + R(t, 0)R(ω, s)
1 − R(ω, 0)

, (4.18)

where R(t, s) is the Cauchy function of (4.5) and R(t, s) = 0 if 0 ≤ t < s ≤ ω. Thus
from the positivity of the Green’s matrix of problem (4.4) follows the positivity of Q(t, s)
and by virtue of Theorem 2.1 the positivity of R(t, s). We can set vn(t) = R(t, 0), vi(t) =
0, t ∈ [0, ω], i = 1, . . . , n.

(5) → (1) and (5∗) → (1∗). Consider the solution vector of the problem Mix =
0, i = 1, . . . , n, xi(0) = 0, i = 1, . . . , n − 1, xn(0) = γ, with γ > 0. By virtue of
assertion (5), the component xn(t) > 0 for t ∈ [0, ω]. Now we can set vn(t) =
xn(t), vi(0) = 0, i = 1, . . . , n − 1.

(2) → (5) and (2∗) → (5∗). From the properties of the Cauchy matrix it follows
that the vector col{C1n(t, 0), . . . , Cnn(t, 0)} is the solution of the initial problem Mix =
0, i = 1, . . . , n, xi(0) = 0, i = 1, . . . , n − 1, xn(0) = 1. By virtue of Lemma 4.1 the
component xn satisfies (4.5), where the operator B is determined by the formula (4.6)
and

f ∗(t) = −
n−1∑
i=1

Bni{
n−1∑
j=1

Kij(t, 0)xj(0)}(t).

From the formula (4.10) it is clear that the Cauchy function R(t, s) of the first-order
scalar equation (4.5) coincides with the element Cnn(t, s) of the Cauchy matrix C(t, s)
of the system (4.1). The general solution of (4.5) can be written as follows

x(t) =
∫ t

0
Cnn(t, s)f ∗(s) ds + Cnn(t, 0)xn(0).
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The conditions xi(0) ≥ 0 and the negativity of the operators Bni for i = 1, . . . , n − 1,

in assertion (5) (the conditions xi(0) ≤ 0 and the positivity of the operators Bni for i =
1, . . . , n − 1, in assertion (5∗)) imply that f ∗(t) ≥ 0 for t ∈ [0, ω]. Positivity of Cnn(t, s)
now implies that xn(t) ≥ Cnn(t, 0)xn(0) > 0. �

REMARK 4.1. The assertions (1) → (5) and (1∗) → (5∗) are analogs for the nth
component of the solution vector of nth-order functional differential systems of the
classical de La Vallee Poussin theorem about the differential inequality obtained in
[26] for ordinary second-order equations. Assertions (5) → (2), (5∗) → (2∗), (5) → (3)
and (5∗) → (3∗) are analogs of the corresponding assertions connecting non-oscillation
and positivity of Green’s functions for the nth-order ordinary differential equations
[23].

Let us write system (1.6) in the following form

x′
i(t) +

n∑
j=1

pij(t)xj(t − τij(t)) = fi(t), i = 1, . . . , n, t ∈ [0,+∞), (4.19)

where the delay τij ≥ 0 for i, j = 1, . . . , n.

Let us introduce the following denotations: p∗
ij = ess sup pij(t), pij∗ = ess inf pij(t),

τ ∗
ij = ess sup τij(t), τij∗ = ess inf τij(t), p+

ij (t) = max{0, pij(t)}.
THEOREM 4.2. Let the following conditions be fulfilled:

(1) pij ≤ 0 for i 
= j, i, j = 1, . . . , n − 1;
(2) pjn ≥ 0, pnj ≤ 0 for j = 1, . . . , n − 1;
(3) τ ∗

ii (p
+
ii )∗ ≤ 1

e , for i = 1, . . . , n − 1,

(4) There exists a positive α such that τ ∗
ij α ≤ 1/e for i = 1, . . . , n, and

p+
nn(t) eατnn(t) −

n−1∑
j=1

pnj(t) eατnj(t) ≤ α ≤ min
1≤i≤n−1

{
pii(t) eατii(t) +

n∑
j=1,i 
=j

pij(t) eατnj(t)
}
,

t ∈ [0,+∞). (4.20)

Then the elements of the nth row of the Cauchy matrix of system (4.19) satisfy the
inequalities Cnn(t, s) > 0, Cnj(t, s) ≥ 0 for j = 1, . . . , n − 1, 0 ≤ s ≤ t < +∞.

Proof. By virtue of Theorem 3.3 all the elements of the (n − 1) × (n − 1) Cauchy
matrix of the system

x′
i(t) +

n−1∑
j=1

pij(t)xj(t − τij(t)) = fi(t), i = 1, . . . , n − 1, t ∈ [0,+∞),

of the order n − 1 are non-negative.
Let us continue the coefficients pij to the interval [−τ ∗, 0), where τ ∗ =

maxi,j=1,...,n τ ∗
ij , as follows: pij(t) = 0 for i 
= j and pii = α, i, j = 1, . . . , n, and consider

system (4.19) also on [−τ ∗,+∞).
Let us set vi(t) = −e−αt for i = 1, . . . , n − 1, and vn(t) = e−αt in condition (1) of

Theorem 4.1. We obtain that this condition is satisfied if α satisfies the following system
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of the inequalities:

α ≤ pii(t) eατii(t) +
n∑

j=1,i 
=j

pij(t) eατnj(t), i = 1, . . . , n − 1, t ∈ [0,+∞), (4.21)

p+
nn(t) eατnn(t) −

n−1∑
j=1

pnj(t) eατnj(t) ≤ α, t ∈ [0,+∞). (4.22)

Now by virtue of Theorem 4.1 all elements of the nth row of the Cauchy matrix
satisfy the inequalities Cnj(t, s) ≥ 0 for j = 1, . . . , n − 1, and Cnn(t, s) > 0 for 0 ≤ s ≤
t < +∞.

The Cauchy matrices of system (4.19) on the interval [0,+∞) and on the
interval [−τ ∗,+∞) clearly coincide in the triangle 0 ≤ s ≤ t < +∞. This completes the
proof. �

For the ordinary differential system

x′
i(t) +

n∑
j=1

pij(t)xj(t) = fi(t), i = 1, . . . , n, t ∈ [0,+∞), (4.23)

Theorem 4.2 implies the following assertion.

THEOREM 4.3. Let the conditions be fulfilled:
(1) pij ≤ 0 for i 
= j, i, j = 1, . . . , n − 1;
(2) pjn ≥ 0, pnj ≤ 0 for j = 1, . . . , n − 1;
(3) There exists a positive α such that

p+
nn(t) −

n−1∑
j=1

pnj(t) ≤ α ≤ min
1≤i≤n−1

{
pii(t) +

n∑
j=1,i 
=j

pij(t)
}
, t ∈ [0,+∞). (4.24)

Then the elements of the nth row of the Cauchy matrix of system (4.23) satisfy the
inequalities Cnn(t, s) > 0, Cnj(t, s) ≥ 0 for j = 1, . . . , n − 1, 0 ≤ s ≤ t < +∞.

Consider now the following ordinary differential system of the second order

x′
1(t) + p11(t)x1(t) + p12(t)x2(t) = f1(t),

x′
2(t) + p21(t)x1(t) + p22(t)x2(t) = f2(t),

t ∈ [0,+∞). (4.25)

THEOREM 4.4. Let the following conditions be fulfilled:
(1) p11 ≥ 0, p12 ≥ 0, p21 ≤ 0, p22 ≥ 0;
(2) There exists a positive α such that

p22(t) − p21(t) ≤ α ≤ p11(t) − p12(t), t ∈ [0,+∞). (4.26)

Then the elements of the second row of the Cauchy matrix of system (4.25) satisfy
the inequalities C21(t, s) ≥ 0, C22(t, s) > 0 for 0 ≤ s ≤ t < +∞.
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REMARK 4.2. If coefficients pij are constants the second condition in Theorem 4.4
is as follows:

p22 − p21 ≤ p11 − p12. (4.27)

REMARK 4.3. Let us demonstrate that inequality (4.27) (and consequently
inequality (4.26)) is best possible in a corresponding case. It is known that for each
fixed s the 2 × 2 matrix C(t, s) is a fundamental matrix X(t) of system (4.25) satisfying
the condition C(s, s) = E, where E is the unit 2 × 2 matrix. Theorem 4.4 claims that
elements in the second row of the fundamental matrices are positive. The characteristic
equation of the system

x′
1(t) + p11x1(t) + p12x2(t) = 0,

x′
2(t) + p21x1(t) + p22x2(t) = 0,

t ∈ [0,+∞), (4.28)

with constant coefficients is as follows:

λ2 + (p11 + p22)λ + p11p22 − p12p21 = 0, (4.29)

and its roots are real if and only if

(p11 − p22)2 ≥ −4p12p21. (4.30)

Let us instead of inequality (4.27) consider

p22 − p21 ≤ p11 − p12 + ε, (4.31)

where ε is any positive constant. We can set p11 = p22, then the inequality becomes
of the form p12 − p21 ≤ ε. If p12p21 < 0, then inequality (4.30) is not satisfied and
consequently each element of the fundamental and the Cauchy matrices oscillates.

Let us prove the following assertions, giving an efficient test of non-negativity of
elements in the nth row of the Cauchy matrix in case when the coefficients

∣∣pnj
∣∣ are

small enough for j = 1, . . . , n − 1.

THEOREM 4.5. Let the following conditions be fulfilled:
(1) pij ≤ 0 for i 
= j, i, j = 1, . . . , n − 1;
(2) pjn ≥ 0, pnj ≤ 0 for j = 1, . . . , n − 1;
(3) τij = 0 for i = 1, . . . , n, j = 1, . . . , n − 1, τnn = const;
(4) The inequalities

p+
nn(t)τnn exp

{
τnn

n−1∑
j=1

∣∣pnj
∣∣∗ }

≤ 1
e
, t ∈ [0,+∞) (4.32)

and

1
τnn

+
n−1∑
j=1

∣∣pnj
∣∣∗ ≤ min

1≤i≤n−1

{
pii(t) +

n∑
j=1,i 
=j

pij(t)
}
, t ∈ [0,+∞) (4.33)

are fulfilled.
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Then the elements of the nth row of the Cauchy matrix of system (4.19) satisfy the
inequalities Cnn(t, s) > 0, Cnj(t, s) ≥ 0 for j = 1, . . . , n − 1, 0 ≤ s ≤ t < +∞.

Proof. Consider the left part

p+
nn(t) eατnn(t) −

n−1∑
j=1

pnj(t)eατnj(t) ≤ α, t ∈ [0,+∞) (4.34)

of inequality (4.20). Using condition (3), we obtain that the inequality

p+
nn(t) ≤

{
α −

n−1∑
j=1

∣∣pnj
∣∣∗ }

e−ατnn , [0,+∞) (4.35)

is sufficient for the truth of inequality (4.34). The right-hand side of the inequality gets
its maximum for α = 1

τnn
+ ∑n−1

j=1

∣∣pnj
∣∣∗ . Substituting this α into (4.35) and the right

part of (4.20), we obtain inequalities (4.32) and (4.33). �
REMARK 4.4. It should be noted that inequality (4.32) is best possible in the

following sense. If pnj = 0 for j = 1, . . . , n − 1, pnn = const > 0, then inequality (4.32)
becomes

pnnτnn ≤ 1
e
, t ∈ [0,+∞), (4.36)

and Cnn(t, s) = cn(t, s), where cn(t, s) is the Cauchy function of the diagonal equation

x′
n(t) + pnnx(t − τnn) = 0, t ∈ [0,+∞). (4.37)

The opposite inequality pnnτnn > 1/e implies oscillation of all solutions [13], and by
virtue of Theorem 2.1 cn(t, s) changes its sign. Now it is clear that we cannot substitute

p+
nn(t)τnn exp

{
τnn

n−1∑
j=1

∣∣pnj
∣∣∗ }

≤ 1 + ε

e
, t ∈ [0,+∞), (4.38)

where ε is any positive number instead of inequality (4.32).

Let us consider the second-order scalar differential equation

(Ny)(t) ≡ y′′(t) + p11(t)y′(t − τ11(t)) + p12(t)y(t − τ12(t)) = f1(t), t ∈ [0,+∞), (4.39)

where y(θ ) = y′(θ ) = 0 for θ < 0, and the corresponding differential system of the
second order

x′
1(t) + p11(t)x1(t − τ11(t)) + p12(t)x2(t − τ12(t)) = f1(t),

x′
2(t) − x1(t) = 0,

t ∈ [0,+∞), (4.40)

where x1(θ ) = x2(θ ) = 0 for θ < 0.

It should be noted that the element C21(t, s) of the Cauchy matrix of system
(4.40) coincides with the Cauchy function W (t, s) of the second-order scalar equation
(4.39) and C11(t, s) = W ′

t (t, s). If a function y(t) is the solution of the Cauchy problem
(Ny)(t) = 0, t ∈ [0,+∞), y(0) = 1, y′(0) = 0, then C22(t, 0) = y(t) and C12(t, 0) =
y′(t).
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THEOREM 4.6. Assume that p12 ≥ 0, p∗
11τ

∗
11 ≤ 1/e and there exists a positive number

α such that ατ ∗
11 ≤ 1/e and

α2 + p12(t) eατ12(t) ≤ αp11(t) eατ11(t), t ∈ [0,+∞). (4.41)

Then the elements of the second row of the Cauchy matrix of system (4.40) satisfy
the inequalities C21(t, s) ≥ 0, C22(t, s) > 0 for 0 ≤ s ≤ t < +∞.

Proof. In order to prove Theorem 4.6 we set v1(t) = −α e−αt, v2(t) = e−αt in
assertion (1) of Theorem 4.1. �

THEOREM 4.7. Assume that p12 ≥ 0, p∗
11τ

∗
11 ≤ 1/e, τ11 ≥ τ12 and

4p12(t) ≤ p2
11∗, t ∈ [0,+∞). (4.42)

Then the elements of the second row of the Cauchy matrix of system (4.40) satisfy
the inequalities C21(t, s) ≥ 0, C22(t, s) > 0 for 0 ≤ s ≤ t < +∞.

Proof. In order to prove Theorem 4.7 we set α = p11∗/2 in Theorem 4.6. �
REMARK 4.5. Inequality (4.42) is best possible in the following sense. Let us

consider the system with constant coefficients

x′
1(t) + p11x1(t) + p12x2(t) = f1(t),

x′
2(t) − x1(t) = 0,

t ∈ [0,+∞). (4.43)

The characteristic equation for this system has real roots if and only if inequality (4.42)
is fulfilled.
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