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Abstract Working on a suitable cone of continuous functions, we give new results for integral equa-
tions of the form λu(t) =

∫
G k(t, s)f(s, u(s)) ds := Tu(t), where G is a compact set in R

n and k is a
possibly discontinuous function that is allowed to change sign. We apply our results to prove existence
of eigenvalues of some non-local boundary-value problems.
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1. Introduction

In this paper we study the existence of eigenvalues of a Hammerstein integral equation
of the form

λu(t) =
∫

G

k(t, s)f(s, u(s)) ds := Tu(t), (1.1)

where G is a compact set in R
n with meas(G) > 0, k and f are allowed to be discontinuous

and k may change sign. This type of problem, under a variety of conditions on the
function f and with a positive kernel k, has been studied by several authors (see, for
example, [9,10,12] and, with λ = 1, [1,2,8,11,13]). All papers cited above focus on
particular problems where positive solutions of the integral equation exist. Here we deal
with more general equations where positive solutions might not exist; nevertheless we
are able to achieve existence of non-trivial solutions.

The tool we use is a well-known result for compact maps in order to establish existence
of eigenvalues, working on the cone

K = {u ∈ C(G) : min{u(t) : t ∈ G0} � c‖u‖},

where G0 is a closed subset of G. This type of cone was introduced by Infante and Webb
in [5] and is a larger cone than the one used by Lan [8,9].
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76 G. Infante

Our results apply to second-order differential equations of the form

λu′′(t) + f(t, u(t)) = 0 (0 < t < 1), (1.2)

subject to suitable boundary conditions (BCs).
Under a variety of BCs, Lan and Webb [10] and, more recently, Ma [12] studied

eigenfunctions of the special case f(t, u(t)) = g(t)h(u). Lan and Webb [10] proved that
for every λ lying in a certain interval there exists a positive solution of equation (1.2).
Our result is of a different kind. Under weaker assumptions we show that there exists a
positive (or negative) λ such that equation (1.2) has a non-zero solution. This improves
the results of Lan [9], who proved existence of positive solutions under separated BCs,
but allowing positive kernels only.

In this paper we concentrate on the following non-local boundary-value problems
(BVPs):

u′(0) = 0, αu′(η) = u(1), 0 < η < 1, (1.3 a)

u(0) = 0, αu′(η) = u(1), 0 < η < 1, (1.3 b)

u′(0) = 0, αu(η) = u(1), 0 < η < 1, (1.3 c)

u(0) = 0, αu(η) = u(1), 0 < η < 1. (1.3 d)

The boundary condition (1.3 b), under stronger assumptions on the growth of f and with
λ = 1, has been studied by Infante and Webb in [6]. They proved existence of at least
one and existence of multiple non-trivial solutions. Existence theorems under the two
conditions (1.3 c) and (1.3 d) have been widely studied by Gupta and co-workers (see,
for example, [3,4] and the references cited therein). Webb [13] studied the existence of
positive solutions of (1.3 c), (1.3 d), improving a result of Ma [11], who dealt with the
sublinear and superlinear case only for (1.3 d). Infante and Webb [5], with a technique
similar to that of [6], also studied the conditions (1.3 c), (1.3 d), showing existence of
multiple non-trivial solutions.

The conditions we impose on f are quite weak, a non-negative function that satisfies
Carathéodory conditions and has suitable growth properties. In particular, we do not
exclude the possibility that f(t, 0) = 0 for all t, so that 0 is a solution of equation (1.2)
with the given BCs. Here we prove existence of non-trivial solutions that are positive (or
negative) on an interval.

The results obtained are new and the BC (1.3 a) is studied for the first time.

2. Existence of eigenvalues of Hammerstein integral equations

We begin by giving some results for the following Hammerstein integral equation:

λu(t) =
∫

G

k(t, s)f(s, u(s)) ds := Tu(t), (2.1)

where G is a compact set in R
n of positive measure. We make the following assumptions

on f and the kernel k for some r > 0; we assume throughout that the following conditions
hold.
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(C1) f : G × [−r, r] → [0,∞) satisfies Carathéodory conditions on G × [−r, r] and there
exists a measurable function gr : G → [0,∞) such that

f(t, u) � gr(t) for almost every t ∈ G and all u ∈ [−r, r].

(C2) k : G × G → R is measurable, and for every τ ∈ G we have

lim
t→τ

∫
G

|k(t, s) − k(τ, s)|gr(s) ds = 0.

(C3) There exist a closed subset G0 ⊂ G with meas(G0) > 0, a measurable function
Φ : G → [0,∞) and a constant c ∈ (0, 1] such that

|k(t, s)| � Φ(s) for t ∈ G and almost every s ∈ G,

cΦ(s) � k(t, s) for t ∈ G0 and almost every s ∈ G.

(C4) There is Mr < ∞ such that
∫

G
Φ(s)gr(s) ds � Mr.

Assumptions (C1)–(C4) were also made in [6]. Hypothesis (C3) means finding upper
bounds for |k| on G and lower bounds of the same form for k on G0. In applications we
have some freedom of choice in determining G0 but we are constrained by needing k(t, s)
to be positive for almost every t ∈ G0 and s ∈ G.

These hypotheses will allow us to work in the cone

K = {u ∈ C(G) : min{u(t) : t ∈ G0} � c‖u‖}.

This is a larger cone than used by Lan [8,9]. Note that functions in K are positive on
the subset G0 but may change sign on G.

Notation. We let Kr = {u ∈ K : ‖u‖ < r}, K̄r = {u ∈ K : ‖u‖ � r} and ∂Kr = {u ∈
K : ‖u‖ = r}.

We need the following theorem.

Theorem 2.1 (see [6]). Assume that (C1)–(C4) hold for some r > 0. Then T maps
K̄r into K and is compact.

We use the following well-known result (see, for example, Lemma 1.1 in Chapter 5
of [7]).

Lemma 2.2. Let T : K̄r → K be compact and suppose that

inf
x∈∂Kr

‖Tx‖ > 0.

Then there exist λ0 > 0 and x0 ∈ ∂Kr such that λ0x0 = Tx0.

The following theorem generalizes Lan’s results, allowing operators with negative ker-
nels.
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78 G. Infante

Theorem 2.3. Assume that there exists ρ ∈ (0, r] such that

(i) there exists a measurable function mρ : G0 → R+ such that

f(s, u) � mρ(s) for all u ∈ [cρ, ρ] and almost all s ∈ G0;

and

(ii) τ := sup
t∈G0

∫
G0

k(t, s)mρ(s) ds > 0.

Then there exist λ0 and u0 ∈ ∂Kρ such that λ0u0 = Tu0.

Proof. Since T satisfies the hypotheses of Theorem 2.1, T : K̄r → K is compact. Let
u ∈ ∂Kρ, then we have, for every s ∈ G0, cρ � u(s) � ρ. For t ∈ G0 we have k(t, s) � 0
and

|Tu(t)| �
∫

G0

k(t, s)f(s, u(s)) ds �
∫

G0

k(t, s)mρ(s) ds.

Thus
‖Tu‖ = sup

t∈G
|Tu(t)| � sup

t∈G0

|Tu(t)| � τ and inf
u∈∂Kρ

‖Tu‖ > 0.

By Lemma 2.2 we obtain the existence of an eigenvalue λ0 > 0. �

Remark 2.4. In [9], due to the positive nature of the kernel, Lan is able to take a
larger τ , namely τ = supt∈G

∫
G0

k(t, s)mρ(s) ds > 0.

Remark 2.5. We shall see below that, for the integral equations corresponding to the
BCs (1.3 c), (1.3 d) and certain values of the parameter α, the kernel k(t, s) is negative
for t in some interval G0, for all s. In this case, assuming f is positive, we can show that
a negative eigenvalue exists by studying the operator −T . Indeed, λ is an eigenvalue for

λu(t) =
∫

G

k(t, s)f(s, u(s)) ds

if and only if λ̃ is an eigenvalue of

λ̃u(t) =
∫

G

k̃(t, s)f(s, u(s)) ds ≡ T̃ u(t),

where k̃ = −k and λ̃ = −λ. Hence we can obtain a result, the same as the one above, for
the existence of negative eigenvalues. We do not state the obvious theorem thus obtained.

3. Eigenvalues of Problem (1.3 a)

As an application of the theory, we investigate in this section the existence of eigenvalues
of equations of the form

λu′′(t) + f(t, u(t)) = 0 a.e. on [0, 1], (3.1)
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with boundary conditions

u′(0) = 0, αu′(η) = u(1), 0 < η < 1. (3.2)

By an eigenvalue of this problem we mean an eigenvalue of the related Hammerstein
integral equation

λu(t) =
∫

G

k(t, s)f(s, u(s)) ds. (3.3)

The solution of u′′ + y = 0 with these BCs is

u(t) =
∫ 1

0
(1 − s)y(s) ds − α

∫ η

0
y(s) ds −

∫ t

0
(t − s)y(s) ds,

with Green’s function

k(t, s) = (1 − s) +

{
−α, s � η,

0, s > η,
−

{
t − s, s � t,

0, s > t.

Note that, for α �= 0, the kernel is discontinuous on the line s = η. We shall study
separately the cases α < 0 and α > 1. The case α = 0 is included in the results of
Lan [9], who studied separated BCs.

3.1. The case α < 0

To simplify the calculations we write −β in place of α, so that β > 0.
We have to exhibit Φ(s), a subinterval [a, b] ⊂ [0, 1] and a constant c < 1 such that

|k(t, s)| � Φ(s) for every t, s ∈ [0, 1],

k(t, s) � cΦ(s) for every s ∈ [0, 1], t ∈ [a, b].

We show that for these BCs we can take

Φ(s) = (1 − s)
(

1 +
β

1 − η

)
.

Upper bounds.

Indeed,

k(t, s) � (1 − s)
(

1 +
β

1 − η

)
,

since
1 − s

1 − η
� 1 for s � η.

Lower bounds.

We show that we may take an arbitrary [a, b] ⊂ [0, 1).
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Case 1 (s � η). If s > t, then

k(t, s) = (1 − s) + β � (1 − s) =
(

1
/(

1 +
β

1 − η

))
Φ(s).

If s � t, then
k(t, s) = (1 − s) + β − (t − s),

which is a function decreasing in t and therefore the minimum is achieved when t = 1.
So

k(t, s) � β �
(

β

/(
1 +

β

1 − η

))
Φ(s).

Case 2 (s > η). If s > t, then

k(t, s) = (1 − s) =
(

1
/(

1 +
β

1 − η

))
Φ(s).

If s � t, then

k(t, s) = (1 − s) − (t − s) = 1 − t �
((

1 − b

1 − η

)/(
1 +

β

1 − η

))
Φ(s).

Thus we can take

c =
(

min
{

1, β,
1 − b

1 − η

}/(
1 +

β

1 − η

))
. (3.4)

We can now state the following result on the existence of eigenvalues of Equation (3.1)
with the BC (3.2).

Theorem 3.1. Let α < 0, [a, b] ⊂ [0, 1), c be as in (3.4) and assume that there exists
ρ ∈ (0, r] such that

(i) there exists a measurable function mρ : [a, b] → R+ such that

f(s, u) � mρ(s) for all u ∈ [cρ, ρ] and almost all s ∈ [a, b];

and

(ii) sup
t∈[a,b]

∫ b

a

k(t, s)mρ(s) ds > 0.

Then the BVP (3.1), (3.2) has a positive eigenvalue and a corresponding eigenfunction
that is positive on [a, b]. Hence there exists an eigenfunction positive on (0, 1) if (i) and
(ii) are satisfied for an arbitrary [a, b] ⊂ [0, 1).

3.2. The case 0 < α < 1 − η

When α > 0 note that k(1, s) = −α < 0 for every s ∈ [0, η], and therefore the solu-
tion cannot be positive in all of [0, 1]. We have to find Φ such that |k(t, s)| � Φ(s) for
every t, s ∈ [0, 1] and show that there exist [a, b] ⊂ [0, 1] and a constant c such that
k(t, s) � cΦ(s) for every s ∈ [0, 1] and t ∈ [a, b]. In fact we show that we can take

Φ(s) = (1 − s).
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Upper bounds.

Clearly, k(t, s) � (1 − s) in all cases. k(t, s) is negative when s � η and t � s and
1 − t − α < 0. In this case we then have

−k(t, s) = −1 + t + α � α < 1 − η � (1 − s)

and we are done.

Lower bounds.

We will show that we may take [a, b] ⊂ [0, η].

Case 1 (s � η). If s > t, then

k(t, s) = 1 − s − α � (1 − η − α)(1 − s).

If s � t, since we chose α < 1 − η, we obtain

k(t, s) = 1 − t − α � 1 − η − α � (1 − η − α)(1 − s).

Case 2 (s > η). If s > t, then

k(t, s) = (1 − s),

and we are done.
Since we take b � η, the case s � t does not occur.

Therefore, we may set c = (1 − η − α).

Theorem 3.2. Let 0 < α < 1 − η, [a, b] ⊂ [0, η], c = (1 − η − α) and assume that
there exists ρ ∈ (0, r] such that

(i) there exists a measurable function mρ : [a, b] → R+ such that

f(s, u) � mρ(s) for all u ∈ [cρ, ρ] and almost all s ∈ [a, b];

and

(ii) sup
t∈[a,b]

∫ b

a

k(t, s)mρ(s) ds > 0.

Then the BVP (3.1), (3.2) has a positive eigenvalue and a corresponding eigenfunction
that is positive on [a, b].

We illustrate the theorem with two simple examples.

Example 3.3. Let [a, b] = [0, η] and f(s, u(s)) be defined as

f(s, u) =

{
|u(s)|(η − s), 0 � s � η,

0, η < s � 1.
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Take 0 < ρ � r < +∞ and gr = rη. In this case we have f(s, u) � gr for every
u ∈ [−ρ, ρ] and f(s, u) � cρ(η − s) for u ∈ [cρ, ρ] and s ∈ [0, η]. Also∫ η

0
k(t, s)cρ(η − s) ds � c2ρ

∫ η

0
(1 − s)(η − s) ds > 0.

By Theorem 3.2 we obtain the existence of a positive eigenvalue for the BVP (3.1), (3.2).

Example 3.4. Let f(s, u) ≡ 2. For every fixed ρ > 0, λ = (1 − 2αη)/ρ is a positive
eigenvalue of the BVP (3.1), (3.2) with corresponding eigenfunction

u(t) =
(1 − 2αη) − t2

λ
.

u(t) is positive on [0, η] since α < 1 − η and u changes sign (u(1) < 0).

4. Eigenvalues of Problem (1.3 b)

We now investigate the second BVP,

λu′′(t) + f(t, u(t)) = 0 (0 < t < 1), (4.1)

with boundary conditions

u(0) = 0, αu′(η) = u(1), 0 < η < 1, α < 1 − η. (4.2)

The kernel in this case is

k(t, s) =
t

1 − α
(1 − s) −




αt

1 − α
, s � η,

0, s > η,
−

{
t − s, s � t,

0, s > t.

We study the cases when α < 0 and α � 1 − η separately. The existence of positive
eigenvalues when α = 0 is covered by the results of Lan [9].

The case α < 0

In [6] it has been shown that we can take

Φ(s) = max
{

(1 − η − α)
1 − η

,−α

η

}
s(1 − s)
1 − α

,

[a, b] ⊂ (0, η] and c = min{a,−α}/ max{(1−η−α),−α/η}. Now it is clear that a theorem
the same as Theorem 3.1 holds; we leave the statement to the reader.

The case 0 < α < 1 − η

In [6] it has been shown that we may take

Φ(s) = max
{

1,
α

η

}
s(1 − s)
1 − α

, c =
min{a(1 − η − α), (1 − b − α)}

max{1, (α/η)}

and [a, b] ⊂ (0, 1 − α). A result similar to Theorem 3.2 holds. We omit the obvious
statement.
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5. Eigenvalues of Problem (1.3 c)

We now investigate the BVP

λu′′(t) + f(t, u(t)) = 0 (0 < t < 1), (5.1)

with boundary conditions

u′(0) = 0, αu(η) = u(1), 0 < η < 1, (5.2)

The kernel in this case is

k(t, s) =
1

1 − α
(1 − s) −




α

1 − α
(η − s), s � η,

0, s > η,
−

{
t − s, s � t,

0, s > t.

We shall study the cases α < 0, 0 < α < 1 and α > 1 separately. The case α = 0 has
been given by Lan in [9].

The case α < 0

In [5] it has been shown that the kernel satisfies |k(t, s)| � (1− s) for every s, t ∈ [0, 1]
and k(t, s) > c(1 − s) for every t ∈ [a, b] and s ∈ [0, 1], where [a, b] ⊂ [0, η] and c =
(1 − η)/(1 − α). Therefore, we can state the following theorem.

Theorem 5.1. Let α < 0, [a, b] ⊂ [0, η], c = (1 − η)/(1 − α) and assume that there
exists ρ ∈ (0, r] such that

(i) there exists a measurable function mρ : [a, b] → R+ such that

f(s, u) � mρ(s) for all u ∈ [cρ, ρ] and almost all s ∈ [a, b];

and

(ii) sup
t∈[a,b]

∫ b

a

k(t, s)mρ(s) ds > 0.

Then the BVP (5.1), (5.2) has a positive eigenvalue and a corresponding eigenfunction
that is positive on [a, b].

The case 0 < α < 1

In [13] Webb proved that we can take

Φ(s) =
1 − s

1 − α
,

[a, b] ⊂ [0, 1] and c = α(1 − η). Thus we can state a result similar to Theorem 5.1. We
omit the obvious statement.
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The case α > 1

For these BCs the kernel k is negative on an interval, so we apply Remark 2.5 and
consider −k in place of k. In [5] it has been shown that we may take

Φ(s) =
α

α − 1
(1 − s)

and then −k(t, s) > cΦ(s) for t ∈ [a, b] and s ∈ [0, 1], where a = η, b ∈ (η, 1] and
c = (1−η)/α. Therefore, we have the following result related to the existence of negative
eigenvalues.

Theorem 5.2. Let α > 1, [a, b] and c be as above and assume that there exists
ρ ∈ (0, r] such that

(i) there exists a measurable function mρ : [a, b] → R+ such that

f(s, u) � mρ(s) for all u ∈ [cρ, ρ] and almost all s ∈ [a, b];

and

(ii) sup
t∈[a,b]

∫ b

a

−k(t, s)mρ(s) ds > 0.

Then the BVP (5.1), (5.2) has a negative eigenvalue and a corresponding eigenfunction
that is negative on [a, b].

We illustrate the theorem with the following example.

Example 5.3. Take [a, b] = [η, 1], c = (1 − η)/α and let f(s, u(s)) be defined as

f(s, u) =

{
|u(s)|(s − η), η � s � 1,

1, 0 � s < η.

The function f is positive and discontinuous, but satisfies Carathéodory conditions, and
for u ∈ [−r, r], f(s, u) satisfies the condition (C1) with gr = max{1, r}. Also f(s, u) �
cρ(s − η) for u ∈ [cρ, ρ] and s ∈ [η, 1]. Clearly,

∫ 1
η

−k(t, s)(s − η) ds > 0. By Theorem 5.2
the BVP (5.1), (5.2) has a negative eigenvalue.

6. Eigenvalues of Problem (1.3 d)

We now investigate the BVP

λu′′(t) + f(t, u(t)) = 0 (0 < t < 1), (6.1)

with BCs
u(0) = 0, αu(η) = u(1), 0 < η < 1. (6.2)

The kernel in this case is

k(t, s) =
1

1 − αη
t(1 − s) −




αt

1 − αη
(η − s), s � η,

0, s > η,
−

{
t − s, s � t,

0, s > t.

We shall study the cases αη < 0, 0 < αη < 1 and αη > 1 separately. The case α = 0 is
covered by results of Lan [9].
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The case αη < 0

In [5] it has been shown that we can take

Φ(s) = (1 − α)
s(1 − s)
1 − αη

,

[a, b] ⊂ (0, η] and c = min{a, 1 − η}/(1 − α). Now it is clear that a theorem the same as
Theorem 5.1 holds; we leave the statement to the reader.

The case 0 < αη < 1

In [13] Webb proved that we can take

Φ(s) = max{1, α} 1 − s

1 − αη
,

[a, b] ⊂ (0, 1], and that for α < 1 we may take c = min{a, αη, 4a(1− η), α(1− η)} and for
α � 1 we may take c = min{aη, 4a(1−αη)η, η(1−αη)}. A result similar to Theorem 5.1
holds. We omit the obvious statement.

The case αη > 1

For these BCs the kernel k is negative on an interval so we apply Remark 2.5 and
consider −k in place of k. In [5] it has been shown that we may take

Φ(s) = α
s(1 − s)
αη − 1

.

Indeed, −k(t, s) > cΦ(s) for t ∈ [a, b] and s ∈ [0, 1], where [a, b] ⊂ [η, 1] and c =
min{a, 1 − η}/α. A theorem the same as Theorem 5.2 holds; we leave the statement to
the reader.

Acknowledgements. The author thanks Professor J. R. L. Webb for valuable com-
ments and suggestions.
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