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We develop a generalised unsteady plume theory and compare it with a new direct
numerical simulation (DNS) dataset for an ensemble of statistically unsteady turbulent
plumes. The theoretical framework described in this paper generalises previous models
and exposes several fundamental aspects of the physics of unsteady plumes. The
framework allows one to understand how the structure of the governing integral
equations depends on the assumptions one makes about the radial dependence of
the longitudinal velocity, turbulence and pressure. Consequently, the ill-posed models
identified by Scase & Hewitt (J. Fluid Mech., vol. 697, 2012, pp. 455–480) are
shown to be the result of a non-physical assumption regarding the velocity profile.
The framework reveals that these ill-posed unsteady plume models are degenerate
cases amongst a comparatively large set of well-posed models that can be derived
from the generalised unsteady plume equations that we obtain. Drawing on the results
of DNS of a plume subjected to an instantaneous step change in its source buoyancy
flux, we use the framework in a diagnostic capacity to investigate the properties of the
resulting travelling wave. In general, the governing integral equations are hyperbolic,
becoming parabolic in the limiting case of a ‘top-hat’ model, and the travelling wave
can be classified as lazy, pure or forced according to the particular assumptions that
are invoked to close the integral equations. Guided by observations from the DNS
data, we use the framework in a prognostic capacity to develop a relatively simple,
accurate and well-posed model of unsteady plumes that is based on the assumption of
a Gaussian velocity profile. An analytical solution is presented for a pure straight-sided
plume that is consistent with the key features observed from the DNS.

Key words: plumes/thermals, turbulence modelling, turbulence simulation

1. Introduction
A number of models for statistically unsteady plumes have been developed (see e.g.

Turner 1962; Middleton 1975; Delichatsios 1979; Yu 1990; Vul’fson & Borodin 2001;
Scase et al. 2006b) as extensions of the popular steady-state plume model of Morton,
Taylor & Turner (1956). In contrast to steady plumes, unsteady plumes have mean
source fluxes of volume, momentum and buoyancy that vary in time. Natural and man-
made variability in source conditions such as diurnal heating, transient fires (Heskestad
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1998) and heating and cooling systems in buildings (Hunt 1991; Linden 1999), ensure
that almost all plumes found in practice are statistically unsteady. In this work, we
will demonstrate that the dynamics of unsteady plumes depend sensitively on aspects
of the flow that are typically neglected in models of steady plumes.

Models of unsteady plumes can be traced back to Turner (1962), who conceived
of a starting plume as a steady plume (see, e.g. Morton et al. 1956) capped with a
thermal (Turner 1957). Middleton (1975) provided a more detailed description of a
starting plume, calculating the distribution of buoyancy and vorticity in the thermal.
However, the first model comprising a system of partial differential equations, with
independent variables describing time and the longitudinal coordinate, appears to
be that of Delichatsios (1979). There, the equations were ostensibly based on the
assumption of Gaussian velocity profiles and the starting plume models of Turner
(1962) and Middleton (1975), although a derivation of the equations was not provided.
A variety of other unsteady plume models have appeared subsequently, including Yu
(1990, based on Gaussian velocity profiles) and Vul’fson & Borodin (2001, based on
a ‘straight-sided’ plume). Perhaps the most rigorous and comprehensively investigated
unsteady plume model is that of Scase et al. (2006b, referred to hereafter as TPM for
Top-hat Plume Model), which was based on a ‘top-hat’ description of the variables
within the plume. TPM has subsequently been used to investigate the rise height and
stall time of Boussinesq plumes subjected to a reduction in their source buoyancy
flux (Scase, Caulfield & Dalziel 2006a) and, for unstratified environments, has been
compared to laboratory observations (Scase, Caulfield & Dalziel 2008). In Scase,
Aspden & Caulfield (2009) TPM was used to predict the behaviour of a plume whose
source buoyancy flux undergoes a rapid increase, a comparison with an implicit large
eddy simulation revealing that TPM correctly predicted the scaling associated with
the longitudinal position of a self-similar pulse structure in the plume.

Recently, the physics and mathematical properties of unsteady plume models have
been reappraised, due to the discovery of Scase & Hewitt (2012) that the models of
Delichatsios (1979), Yu (1990) and Scase et al. (2006b) are ill posed. Each of these
ill-posed models admits the arbitrarily large unbounded growth of short-wave modes,
which prevents one from obtaining convergence in numerical approximations. While
Scase & Hewitt (2012) cited the likely cause of this behaviour as the absence of
longitudinal diffusion, Craske & van Reeuwijk (2015b) have shown that, in the case
of jets, it is the assumption of a top-hat velocity profile that is chiefly responsible for
the problems. Likewise, by considering a generalised framework for their derivation,
this paper shows that unsteady plume models are well posed for a large class of
non-uniform velocity profiles.

Aside from issues relating to the well posedness of the governing equations, little
attention has been given to longitudinal mixing in unsteady plumes. Yet, in simulations
and experiments of unsteady jets (see, e.g. Landel, Caulfield & Woods 2012; Craske
& van Reeuwijk 2015a), one observes that sharp fronts in the flow are smoothed by
some form of longitudinal transport. It is well known that self-similarity, on which
steady-state models of jets and plumes are based, implies a particular power-law
scaling for the evolution of the flow in the longitudinal direction. However, in the
vicinity of a step change in the longitudinal direction, the scaling that is consistent
with self-similarity is violated, and the radial dependence of the quantity in question is
perturbed. Craske, Debugne & van Reeuwijk (2015) demonstrated that a perturbation
of this kind in the concentration of a passive scalar can lead to a local increase,
or decrease, in the integral scalar flux, analogous to the dispersion in pipe flow
identified by Taylor (1953). Similarly, a perturbation in the radial dependence of the
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Generalised unsteady plume theory 1015

velocity profile results in a local increase or decrease in the mean integral energy flux
(Craske & van Reeuwijk 2015b). Consequently, in conjunction with the leading-order
contribution from the shape of the underlying velocity profile, Craske & van Reeuwijk
(2015b) proposed a model for unsteady jets that incorporated longitudinal energy
dispersion. The model exhibits a good agreement with simulation data and, in the
absence of temporal variation, coincides with the well-established steady-state model
of Morton et al. (1956).

The aim of this work is to describe a framework for modelling the bulk properties
of unsteady plumes using a generalised system of equations. We will show how
the framework can be used to understand the physics of unsteady plumes and to
develop a robust model of their behaviour. All previous models of unsteady plumes
are encompassed by the generalised equations, which therefore allow the particular
properties of a given model to be compared with other models and with empirical
data. The work makes distinct contributions to observation (§§ 3 and 4), theory (§ 5)
and modelling (§ 6), and these are reflected in the structure of the paper. At its
foundation is a framework that clarifies the connection between the Navier–Stokes
equations and the integral equations that are used to model unsteady plumes. This
framework is explained in § 2 and allows us to understand the physical implications
of various modelling assumptions in later sections. In § 3 we describe the direct
numerical simulations that were undertaken to investigate unsteady plumes, before
reporting results in § 4. Prior to making model-specific assumptions, § 5 demonstrates
how the integral equations’ characteristic curves and stability properties depend on
dimensionless profile coefficients that characterise the radial dependence of various
quantities in the plume. Existing unsteady plume models are special cases of the
generalised theory that is discussed in § 5. Our emphasis is on the way in which
assumptions used in integral models affect the structure of the governing equations
and their physical interpretation. Not until § 6 do we use the framework to develop
a model ourselves, closing the integral equations to develop a consistent Gaussian
unsteady plume model in § 6. In § 6.3 we propose a simplified version of the Gaussian
unsteady plume model, which we envisage will be useful to practitioners, and in § 6.4
show that it has an analytical solution.

2. Governing equations
2.1. Reynolds equations

The flow with which we are concerned is a round turbulent plume that is swirl free
and statistically axisymmetric. The plume is comprised of fluid that is of lower density
than its surroundings, which are assumed to be of uniform density ρ0, and therefore
has positive buoyancy

b≡ ρ0 − ρ
ρ0

g, (2.1)

where ρ is the fluid density. Using the Boussinesq approximation, the equations
governing the transport of volume, longitudinal specific momentum and buoyancy
are

∇ · u= 0, (2.2)
∂w
∂t
+ u · ∇w=−∂p

∂z
+ b+ ν∇2w, (2.3)

∂b
∂t
+ u · ∇b= κ∇2b, (2.4)
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1016 J. Craske and M. van Reeuwijk

where u ≡ (u, v, w) is the velocity, with components in the radial, azimuthal
and longitudinal directions, respectively, p is the kinematic pressure relative to a
hydrostatic balance and ν and κ are the kinematic viscosity and buoyancy diffusion
coefficient, respectively. Noting the statistical axisymmetry of the flow, an ensemble
and azimuthal average of (2.2)–(2.4) in the limit of high Reynolds and Péclet numbers
yields

1
r
∂(ru)
∂r
+ ∂w
∂z
= 0, (2.5)

∂w
∂t
+ 1

r
∂

∂r
(ru w+ ru′w′)+ ∂

∂z
(w2 +w′2)=−∂p

∂z
+ b, (2.6)

∂b
∂t
+ 1

r
∂

∂r
(ru b+ ru′b′)+ ∂

∂z
(wb+w′b′)= 0. (2.7)

Here χ denotes the ensemble average of the variable χ , so that χ ≡ χ + χ ′, where
χ ′ = 0. Multiplication of (2.6) by 2w yields an equation for the mean longitudinal
kinetic energy:

∂w2

∂t
+ 1

r
∂(ru w2)

∂r
+ ∂w3

∂z
+ 2

∂(p w)
∂z
+ 2

r
∂(ru′w′w)

∂r
+ 2

∂(w′2w)
∂z

= 2p
∂w
∂z
+ 2 w′2

∂w
∂z
+ 2 u′w′

∂w
∂r
+ 2bw. (2.8)

Due to the fact that w� u, v we will omit ‘longitudinal’ in describing (2.8) hereafter,
referring to it instead as the equation for the mean kinetic energy. For further details
pertaining to the derivation of (2.5)–(2.8) the reader is referred to Craske & van
Reeuwijk (2015a).

Having been obtained via invertible manipulations, the momentum–energy system
(2.6) and (2.8), is equivalent to the volume–momentum system, (2.5) and (2.6). Both
satisfy local volume and momentum conservation, but whereas (2.5) is a diagnostic
relation or constraint, (2.8) is a prognostic equation. In the following section we will
show that the momentum–energy system constitutes the natural choice for developing
and understanding integral models of unsteady plumes.

2.2. Integral equations
Integration of (2.6)–(2.8) with respect to r from zero to the radial extent of the plume
rd, yields the integral equations

∂Q
∂t
+ ∂(βgM)

∂z
= B, (2.9)

∂M
∂t
+ ∂

∂z

(
γg

M2

Q

)
= δg

M5/2

Q2
+ 2θm

MB
Q
, (2.10)

∂B
∂t
+ ∂

∂z

(
θg

MB
Q

)
= 0, (2.11)

where the dependent variables are the longitudinal volume flux Q, the longitudinal
specific momentum flux M (hereafter referred to as the momentum flux for brevity)
and the integral buoyancy B:

Q≡ 2
∫ rd

0
wr dr, M ≡ 2

∫ rd

0
w2r dr, B≡ 2

∫ rd

0
br dr. (2.12a−c)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

72
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.72


Generalised unsteady plume theory 1017

The Greek letters in (2.9)–(2.11) are dimensionless profile coefficients that allow us
to express unknown integrals in terms of the dependent variables Q, M and B, and
are defined as

βg ≡ 2
M

∫ rd

0
w2r dr︸ ︷︷ ︸

βm

+ 2
M

∫ rd

0
w′2r dr︸ ︷︷ ︸

βf

+ 2
M

∫ rd

0
pr dr︸ ︷︷ ︸

βp

, (2.13)

γg ≡ 2Q
M2

∫ rd

0
rw3r dr︸ ︷︷ ︸

γm

+ 4Q
M2

∫ rd

0
rww′2r dr︸ ︷︷ ︸
γf

+ 4Q
M2

∫ rd

0
p wr dr︸ ︷︷ ︸

γp

, (2.14)

θg ≡ 2Q
BM

∫ rd

0
wbr dr︸ ︷︷ ︸

θm

+ 2Q
BM

∫ rd

0
w′b′r dr︸ ︷︷ ︸

θf

, (2.15)

δg ≡ 4Q2

M5/2

∫ rd

0
u′w′

∂w
∂r

r dr︸ ︷︷ ︸
δm

+ 4Q2

M5/2

∫ rd

0
w′2
∂w
∂z

r dr︸ ︷︷ ︸
δf

+ 4Q2

M5/2

∫ rd

0
p
∂w
∂z

r dr︸ ︷︷ ︸
δp

. (2.16)

We refer to (2.9)–(2.11) as generalised unsteady plume equations, because we have not
yet made an assumption about the way in which the dimensionless profile coefficients
might depend on z, t, Q, M or B. Physically, the profile coefficients βg, γg, θg and
δg correspond to gross dimensionless fluxes of momentum, energy and buoyancy,
and the gross dimensionless production of turbulence kinetic energy (including the
redistribution of energy via pressure), respectively. Note that θg is used in (2.11)
because it accounts for the total transport of buoyancy, whereas θm is used in (2.10)
because the forcing of the mean flow energy by buoyancy does not include turbulent
transport θf . In addition, note that βm in (2.13), which we include for completeness,
is unity by definition. In obtaining (2.9)–(2.11) it was assumed that the ensemble and
azimuthally averaged velocity w and buoyancy b are equal to zero at r= rd.

Before proceeding, we note that the integral buoyancy B is not used in steady plume
theory, in which the effects of buoyancy are typically expressed in terms of the mean
buoyancy flux F ≡ θmMB/Q (see, e.g. Hunt & van den Bremer 2011, and references
therein):

F≡ 2
∫ rd

0
w br dr. (2.17)

However, in the unsteady integral equations (2.9)–(2.11), the use of B is convenient
from both a mathematical and a conceptual perspective. With B as a dependent
variable, the temporal derivatives in (2.9)–(2.11) are decoupled and each obeys a
classical conservation equation. Moreover, it is natural to view the buoyancy flux F
as an unknown quantity requiring assumptions because it depends on the correlation
of w and b. In this regard, we also note that while we do not advocate using the
continuity equation (2.5) directly, the behaviour of the volume flux Q nevertheless
plays a crucial role in the system (2.9)–(2.11) as a dependent variable.

2.3. Modelling assumptions
The central message of this paper is that each of the dimensionless profile coefficients
appearing in (2.9)–(2.11) play an independent and non-trivial role in determining the
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Energy flux

r r r

(a) (b) (c)

FIGURE 1. (Colour online) The mean dimensionless energy flux γm associated with
different radial profiles of the longitudinal velocity. The top-hat profile (a) is a limiting
case for which the dimensionless energy flux is minimal, while in the case of a Gaussian
profile (c) γm = 4/3.

structure of the governing equations. In a steady state, for which ∂t=0, the situation is
different because the profile coefficients no longer play an independent role. Therefore,
the form of the classical steady-state power-law solutions, which will be discussed in
§ 2.5, are essentially independent of the values of the profile coefficients. In a steady
state the influence that the profile coefficients have on the behaviour of the system is
hidden.

By definition, the assumed shape of the mean velocity profile does not affect
the volume flux or the momentum flux in the plume, i.e. the volume flux and the
momentum flux are equal to Q and M, respectively, regardless of the behaviour of
w. Similarly the shape of the buoyancy profile does not, by definition, affect the
integral buoyancy B. In self-similar steady-state models of jets and plumes it is
therefore conventional (Turner 1973), and entails no loss of generality, to regard w
as having a uniform distribution of amplitude wm for r 6 rm, which is known as
a top-hat distribution, as illustrated in figure 1(a). However, the assumed velocity
profile does affect the mean energy flux γmM2/Q in the plume, because γm depends
on the radial dependence of the velocity field. In unsteady jets and plumes, unlike
their statistically steady counterparts, the energy flux plays an independent role in
the governing equations and therefore, the assumption of a particular velocity profile
does entail a loss of generality. A useful result in this regard is that for a Gaussian
mean velocity profile w(r), illustrated in figure 1(c), the dimensionless energy flux
γm can be determined exactly (Craske & van Reeuwijk 2015a) as

γm = 16
r2

m

lim
rd→∞

∫ rd

0
exp

(
−6

r2

r2
m

)
r dr= 4

3
. (2.18)

The mean energy flux associated with top-hat velocity profiles, on the other hand, is
minimal (assuming that w > 0), such that γm = 1. It is evident from (2.14) that any
variation in the radial dependence of the velocity profile will result in γm > 1, as
illustrated schematically in figure 1. Although Hewitt & Bonnebaigt (2014) remark
that integral models of turbulent plumes remove information pertaining to radial
dependence, we find that this is not necessarily the case. Use of the mean kinetic
energy equation exposes the fact that γm appears as an independent parameter,
determining the response of the plume to source perturbations and the trajectories of
its characteristic curves.
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2.4. Volume conservation
The motivation for working with the mean kinetic energy equation (2.8) rather than
the continuity equation (2.2) is that the radial integral of (2.2),

∂Q
∂z
=−2ru|∞, (2.19)

does not provide an explicit prognostic equation (for definiteness and consistency
with the classical approach, here we have assumed that rd →∞ in (2.12)). Instead,
(2.19), which is ostensibly identical to the steady-state volume flux equation given
by Morton et al. (1956), relates the volume flux in the plume to the induced radial
velocity in the environment. Indeed, (2.19) can be used in place of the integral
energy equation (2.10), but the modeller is then faced with the task of providing
a closure for ru|∞. In the steady state, Morton et al. (1956) replace the right-hand
side of (2.19) with 2α0M1/2, thereby defining the classical entrainment coefficient α0,
to obtain a closed system of equations. In the unsteady case, however, an induced
radial flow in the environment does not necessarily correspond to entrainment into
the plume, because the radius of the plume might change with respect to time (cf.
the temporal jet studied by van Reeuwijk & Holzner 2014, for example). Conversely,
efforts to obtain a prognostic equation for the area r2

m ≡ Q2/M of the plume rely
on particular assumptions regarding its velocity profile. In all but the simplest cases
(e.g. the rigorously derived top-hat model of Scase et al. (2006b)), such models have
questionable foundations, because typically, ensemble-averaged quantities in plumes
do not have a well-defined edge and depend continuously on the radial coordinate.
The use of a generalised plume theory, resulting in (2.9)–(2.11), circumvents these
issues altogether and allows one to understand unsteady plume models in a broader
context. Consequently, the theory provides a physics-based means of understanding
and remedying the problems associated with existing unsteady plume models (for
details of these problems see Scase & Hewitt (2012)).

From the integral equations for momentum (2.9) and mean energy (2.10), one
can obtain a prognostic equation for the area of the plume without assumption.
To appreciate this, note that the continuity equation (2.2) was used to obtain the
mean energy equation (2.8) from the mean momentum equation (2.6). Together, (2.6)
and (2.8) therefore imply the continuity equation (2.2). Similarly, one can recover an
integral volume conservation equation by combining integral equations for momentum
(2.9) and mean energy (2.10). A consistent equation for the area of the plume is
therefore obtained by expanding ∂t(Q2/M) and substituting for ∂tQ and ∂tM using
(2.9) and (2.10) respectively:

1
γg

∂

∂t

(
Q2

M

)
+ ∂Q
∂z
= 2αM1/2, (2.20)

where

α ≡− δg

2γg
+ Q

2γgM5/2

∂

∂z
[(γg − 2βg + 1)M2] + Q

γgM3/2
(βg − 1)

∂M
∂z
+
(

1
γg
− θm

γg

)
QB

M3/2
.

(2.21)

The advantage of (2.20) and (2.21) in comparison with (2.19) is that not only do
they account explicitly for the temporal change of the area of the jet, they account
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1020 J. Craske and M. van Reeuwijk

for the process of entrainment in terms of known physical processes such as the
production of turbulence kinetic energy and the transport of mean kinetic energy.
As described in van Reeuwijk & Craske (2015), (2.21) is an entrainment relation
that ensures consistency between equations for volume, momentum and energy
conservation. Equation (2.21) is not an entrainment model because we have not
assigned values/functions to the profile coefficients βg, γg, θg and δg by invoking
assumptions.

There are two significant features of (2.20). First is the factor 1/γg preceding
∂t(Q2/M), which, by implying an effective area Q2/(Mγg), provides a definition of
the plume edge for continuous velocity profiles. Reassuringly, for top-hat profiles
γg = 1, which makes the left-hand side of (2.20) consistent with the top-hat model
of Scase et al. (2006b). Second, is the entrainment coefficient α, which is not
necessarily constant. The first contribution on the right-hand side of (2.21) accounts
for the production of turbulence kinetic energy and typically dominates the remaining
terms. When the profile coefficients are constant, it is useful to regard the second
and third terms on the right-hand side of (2.21) as relating to the integral advective
acceleration of the plume ∂zM. Note, however, that due to entrainment ∂zM > 0 does
not always imply a local advective acceleration ∂zwm > 0, but nevertheless accounts
for the way in which the plume is forced in an integral sense. How entrainment is
affected by the plume’s integral acceleration depends on the radial dependence of the
velocity, turbulence and pressure. For top-hat profiles γg = βg = 1, the entrainment
coefficient is insensitive to the integral acceleration of the plume and the second and
third terms on the right-hand side of (2.21) are equal to zero. For further details
regarding the physical interpretation of the first three terms on the right-hand side
of (2.21), the reader is referred to Craske & van Reeuwijk (2015a), as they also
appear in the equations describing an unsteady jet. The final contribution in (2.21)
is only found in plumes and is proportional to the flux-balance parameter Γ of
Morton (1959). If θm > 1, the buoyancy provides slightly more forcing in the energy
equation (2.10) than one would expect from identically distributed b and w. Noting
that the area Q2/M is inversely proportional to the momentum flux M, the effect of
θm > 1 is to reduce the entrainment coefficient. Conversely, when θm < 1 the buoyancy
provides slightly less forcing in the energy equation than one might expect, and the
entrainment coefficient increases.

In appendix A we derive generalised time-dependent similarity solutions of
(2.9)–(2.11) involving an algebraic decrease in the plume’s source buoyancy flux.
The solutions show that for Gaussian plumes the entrainment coefficient increases,
relative to its steady-state value α0, in such a way that the plume’s radius retains
its steady-state dependence on z and is independent of time. Conversely, in plumes
with a top-hat velocity profile, the solutions predict that the entrainment coefficient is
always equal to α0 and that the spreading rate of the plume decreases relative to that
associated with the steady state due to the time dependence of the source conditions,
the latter result being first obtained by Scase et al. (2006b).

2.5. The steady state

Using the momentum–energy formulation (2.9)–(2.11), it is interesting to see how the
profile coefficients can be incorporated into the classical steady-state plume solutions.
For constant source buoyancy flux Fs and constant profile coefficients, the latter
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assumption being consistent with far-field self-similarity, a steady-state solution to
(2.9)–(2.11), which we denote (Q0,M0, B0), is

Q=Q0(z)≡ 6α0

5

(
9α0

10

)1/3 ( Fs

βgθg

)1/3

z5/3,

M =M0(z)≡
(

9α0

10

)2/3 ( Fs

βgθg

)2/3

z4/3,

 (2.22)

where the constant steady-state entrainment coefficient, which follows from substitution
of (2.22) into (2.10), is

α0 ≡− δg

2γg

(
8βgθm

5γg
− 3

5

)−1

. (2.23)

Noting that the steady-state mean buoyancy flux F is related to Fs according to F=
θmFs/θg, and that B=FQ/(θmM), the solution to the steady-state integral buoyancy B0
is

B= B0(z)≡ 6α0

5

(
10
9α0

)1/3
(

F2
sβg

θ 2
g

)1/3

z1/3. (2.24)

The effects of θg and βg are felt only via α0 and an effective buoyancy flux FE ≡
Fs/(βgθg) (van Reeuwijk & Craske 2015), and do not affect the classical power-law
scaling of the steady-state solutions. Due to the fact that Fs = θgF/θm, (2.22) can
also be expressed in terms of the mean buoyancy flux F. Noting that the use of
the total source buoyancy flux Fs, rather than the effective source buoyancy flux FE,
would lead to an over-estimation of Q and M, the solutions (2.22) might be useful to
experimentalists who wish to compare data to theory using a known source buoyancy
flux Fs. Comparison of the system (2.22) to the classical plume solutions of Morton
et al. (1956) shows that the flux-balance parameter of Morton (1959) is

Γ ≡ 5QB
8βgα0M3/2

= 5Q2F
8θmβgα0M5/2

, (2.25)

which characterises the relative importance of buoyancy compared with inertia in the
flow. When 0 < Γ < 1, the plume is dominated by inertia and referred to as being
‘forced’; when 1<Γ the plume is dominated by buoyancy and is referred to as being
‘lazy’. Jets and pure plumes correspond to the special cases for which Γ = 0 or Γ = 1,
respectively. Thus, for the far-field similarity solutions (2.22), describing a pure plume,
the fluxes of volume, momentum and buoyancy are balanced such that Γ = 1. In
general θm ≈ 1 and βg > 1, hence one would expect the classical definition of Γ ,
namely (5Q2F)/(8α0M5/2), to be slightly greater than unity, based on observations of
Q, M and F from a pure plume.

3. Simulation description
Data from the DNS of the Navier–Stokes equations were obtained using a domain

of size 32 × 32 × 48 source radii rs, uniformly discretised using 1024 × 1024 ×
1536 computational control volumes. For a detailed description of the finite volume
method used to discretise the governing equations, the reader is referred to Craske &
van Reeuwijk (2015a). On the vertical faces of the domain we use open boundary
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(Lx × Ly × Lz)/rs Nx ×Ny ×Nz Res trun/τs FA
s /F

B
s

L 322 × 48 10242 × 1536 1320 380 —
H 322 × 48 10242 × 1536 1670 180 —
LH1–24 322 × 48 10242 × 1536 1670 28 2

TABLE 1. Simulation details. Here FB
s and FA

s denote the source buoyancy fluxes before
and after the step change, respectively, and Res ≡ 2F1/3

s r2/3
s /ν is the source Reynolds

number. The symbols L and H refer to simulations at a source Reynolds number of 1320
and 1670, corresponding to FB

s and FA
s , respectively.

conditions that allow fluid to enter and leave the finite computational domain in a
manner that is consistent with a semi-infinite unbounded domain. The formulation,
testing and implementation of these boundary conditions is described in Craske & van
Reeuwijk (2013). The plumes we simulate are driven by an isolated circular source,
of buoyancy flux Fs, located at the centre of the base of the domain at z= 0. Fluxes
of volume and momentum at the source are equal to zero; hence the plumes are lazy
in the near field, with Γ (z)→∞ as z→ 0. The Prandtl number Pr≡ ν/κ (see (2.3)
and (2.4)) used in the simulations is equal to 0.7, which corresponds to air. To initiate
the turbulence we apply uncorrelated perturbations of amplitude 1 % to the velocities
in the first cell above the source.

Our ultimate aim was to obtain simulations of a plume whose source buoyancy
flux undergoes a step change from FB

s to FA
s , where FB

s < FA
s . Therefore, we began

by running two simulations L and H of steady-state plumes, with source buoyancy
fluxes of FB

s and FA
s , respectively, in order to validate the results and, in the case

of L, to provide a set of initial conditions for the unsteady simulations. The Reynolds
number Res ≡ 2F1/3

s r2/3
s /ν was equal to 1320 and 1670 in L and H, respectively. The

steady-state simulation L was run for a duration of approximately 380τs, where τs

is the source turnover time, τs ≡ r4/3
s F−1/3

s . During simulation L we saved complete
three-dimensional information of the flow field to disk at time intervals much larger
than the turnover time. This information provided independent initial conditions for
each unsteady simulation.

Using the three-dimensional field data obtained from L, unsteady plumes were
created by imposing a step change in the source buoyancy flux from FB

s to FA
s . With

the 24 statistically independent initial conditions, we repeated the process to obtain an
ensemble of 24 unsteady plumes. The unsteady plume data was subsequently averaged
over the ensemble and over the statistically homogeneous azimuthal dimension of
the flow. To compute integrals over the radius of the plume we defined the upper
limit of integration rd (see (2.12), for example) such that w(rd, z, t)= w(0, z, t)/100,
which ensures that the longitudinal ambient velocity is small relative to that of the
plume. Details of the simulations are summarised in table 1, and validation of the
steady-state data is provided in appendix B.

4. Simulation results
4.1. Steady plumes

Before discussing the simulations of unsteady plumes we discuss those of steady
plumes, focusing on the values of the dimensionless profile coefficients that were
introduced in § 2. The profile coefficients, defined by (2.13)–(2.16), determine
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TH G H L

α α0 α0 0.11 0.11

βf 0.00 0.00 0.19 0.19
βu 0.00 0.00 0.11 0.11
βv 0.00 0.00 0.11 0.11
βp 0.00 0.00 −0.09 −0.08
βg 1.00 1.00 1.10 1.11

γm 1.00 1.33 1.28 1.29
γf 0.00 0.00 0.34 0.33
γp 0.00 0.00 −0.17 −0.16
γg 1.00 1.33 1.44 1.46

δm −2α0 −8α0/3 −0.21 −0.21
δf 0.00 0.00 0.04 0.04
δp 0.00 0.00 −0.02 −0.02
δg 0.00 0.00 −0.19 −0.19

θm 0.00 0.00 1.01 1.02
θf 0.00 0.00 0.17 0.17
θg 0.00 0.00 1.18 1.19

TABLE 2. The dimensionless parameters of a steady plume. Here TH = top-hat, G =
Gaussian and H and L refer to direct numerical simulation at a Reynolds number of 1670
and 1320, respectively (see § 3 for further details). The entrainment coefficient in a plume
is denoted α (α0 denoting the value of α in a steady state) and is discussed at length in
§ 2.4. For the definitions of the remaining dimensionless profile coefficients (Greek letters),
the reader is referred to § 2.2.

the relative importance of each term in the governing integral equations (2.9)–
(2.11). Physically, they can be viewed as dimensionless flux and turbulence
production/redistribution terms. As explained in §§ 2.3 and 2.5, while the profile
coefficients play a passive role in a steady state, we will demonstrate in § 5 that in
an unsteady state they play an active role in determining the structure of the governing
equations. In order to make predictions about unsteady plumes, it is therefore useful
to establish the values of the profile coefficients to leading order by inspecting the
steady-state plume data. Whether the profile coefficients are themselves affected by
unsteadiness is a higher-order question that we defer until § 6.1.

Table 2 displays the values of the profile coefficients evaluated from the steady-state
data provided by simulations L and H. The values were obtained by averaging
over the interval z/rs ∈ [20, 40], in which the profile coefficients were observed to
have reached an approximately constant value. The near field, in which the profile
coefficients exhibit appreciable variation, is not investigated in this work. To begin,
it is useful to recall that βm, γm and θm are the leading-order dimensionless mean
fluxes of momentum, energy and buoyancy. The dimensionless production δm is
also of leading order but, due to the difference between the longitudinal and radial
length scale of the plume, is smaller than βm, γm and θm by a factor O(α). The
approximate equality between the profile coefficients in L and H supports the view
that the simulations are well resolved and independent of Reynolds number. The
validity of the simulations is further supported by the close agreement of the radial
profiles of velocity, buoyancy and turbulent transport that we discuss in appendix B.
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1024 J. Craske and M. van Reeuwijk

FIGURE 2. (Colour online) Isoregions of the ensemble and azimuthally averaged buoyancy
(red) and threshold of the instantaneous enstrophy (blue) in an unsteady turbulent plume
at times tn≈ 1.95τsn, n= 3, . . . , 9, where τs≡ r4/3

s (FA
s )
−1/3. The buoyancy displayed in the

figure has been non-dimensionalised using the local characteristic buoyancy scale bm0 ≡
B0M0/Q2

0 of a steady plume with buoyancy flux FB.

Were the Reynolds number smaller, one might expect to see a difference between the
data obtained from L and H, due to a possible dependence on the Reynolds number.
We note that the observed entrainment coefficient α ≈ 0.11 (inferred by evaluating
dQ/dz/(2M1/2)) is at the low end of the values that are reported from laboratory
experiments, which typically range from 0.12 to 0.17 (Carazzo, Kaminski & Tait
2006).

Noteworthy for the present study is the fact that γm ≈ 1.28 is close to the value
4/3, associated with Gaussian velocity profiles (2.18), rather than 1, which is the
value associated with top-hat velocity profiles. We remind readers that γm = 4/3 is
an exact result for the dimensionless energy flux associated with a Gaussian velocity
profile, and is due to the cubic term w3 appearing in the integrand of (2.18). In
contrast, one would expect the dimensionless mean buoyancy flux θm for Gaussian
plumes to be equal to unity, which is consistent with what we observe in the DNS
data. As expected, the gross dimensionless buoyancy flux exceeds that arising solely
from the mean flow, resulting in θg > θm. Indeed, contributions to momentum, energy
and buoyancy transport from turbulence (see βf , γf and θf , respectively) are of the
order of 20 % and are therefore not insignificant.

4.2. Unsteady plumes
Following a step change in the buoyancy flux at the source of an otherwise steady
plume a disturbance, or wave, propagates in the direction of the mean flow. In
referring to this disturbance as a wave, we follow Whitham (1974) and regard it as a
recognisable signal propagating with a certain velocity. Here the notion of a wave is
perhaps more appropriate than the notion of a front, which was employed in Craske
& van Reeuwijk (2015a), as it encompasses a wider variety of possible disturbances,
which can be comprised of several fronts. More precisely, in § 5.1 we will see that
the wave is comprised of characteristic surfaces along which wave fronts travel.

The unsteady plume is illustrated in figure 2, which displays the azimuthal and
ensemble-averaged normalised buoyancy field at several time instances, in addition
to the instantaneous boundary of the plume, corresponding to a single member of
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FIGURE 3. (Colour online) (a) Dimensionless buoyancy flux, (b) dimensionless
momentum flux and (c) dimensionless volume flux, corresponding to individual members
of the ensemble (thin lines) and their ensemble average (thick line) at t/τs = 16. The
width of the line denoting the ensemble average is equal to twice the standard deviation
of the sample, divided by

√
n, where n= 24 is the number of members of the ensemble.

The dashed lines correspond to steady-state data before and after the step change in the
source buoyancy flux.

the ensemble. The normalised buoyancy field was obtained by dividing b by a
characteristic steady-state buoyancy bm0(z)≡ B0M0/Q2

0, based on observations from L
(i.e. a steady plume with source buoyancy flux FB). The boundary of the plume
is defined by an isoline associated with a relatively small value of enstrophy, and
therefore separates turbulent and non-turbulent parts of the flow. In the averaged
buoyancy field one observes a smoothly defined cigar-shaped region penetrating
progressively further into the domain. Although the size of the region increases with
respect to time, its shape is approximately invariant over the range of times displayed
in figure 2. Looking at the buoyancy field and the boundary of the plume in figure 2,
one does not get the impression that the width or radial extent of the plume is
strongly affected by the step change in the buoyancy flux. In this regard, we note
that experimental observations of a plume, whose source buoyancy flux was suddenly
reduced at the source, suggested that such plumes become narrower in the vicinity
of the step change (Scase et al. 2008). However, consistent with our interpretation of
figure 2, the change in plume width is not readily discernible from the radial extent
of the passive scalar field presented in figures 3 and 4 of Scase et al. (2008). Only by
quantifying the width of the plume with a top-hat width based on the concentration
of the passive scalar do Scase et al. (2008) find that the plume becomes narrower
(figure 6 of their study). The interpretation and observed behaviour of the plume
radius will be discussed in further detail below.

The primary focus of this study is the behaviour of integral quantities such as the
volume flux, mean momentum flux and the mean buoyancy flux. Figure 3 displays
the longitudinal dependence of these quantities some time after the step change in the
buoyancy flux at the source. To begin, we choose to display the mean buoyancy flux
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FIGURE 4. DNS data and model prediction of the volume flux Q (a,b); the momentum
flux M (c,d); and the integral buoyancy B (e, f ). (a,c,e) Display the initial conditions, while
(b,d, f ) display the data/predictions at times tn ≈ 1.95τsn. The thick solid line corresponds
to the DNS data. GPM refers to the Gaussian plume model described in § 6 of this paper,
while TPM refers to the top-hat plume model described by Scase & Hewitt (2012).

F, rather than the integral buoyancy B, in figure 3. Being equal to the constants FA and
FB upstream and downstream of the travelling wave respectively, the behaviour of the
mean buoyancy flux is easier to interpret than that of the integral buoyancy. Integrals
from each member of the ensemble show significant variation in comparison with the
relatively smooth profile that is obtained from their ensemble average. In the mean
buoyancy flux F the step change has propagated to approximately z/rs = 30. Since F
appears as a forcing term in the governing differential equation for the momentum flux
M, which is an integral of w2 rather than w, one observes that the behaviour of Q is
generally smoother than F and M, making the step change in figure 3(c) comparatively
difficult to discern.

In figure 4 we examine the volume flux Q, the momentum flux M and the integral
buoyancy B, which are the dependent variables of the system (2.9)–(2.11). The thick
black lines correspond to data obtained from the simulation at a given time. Figure 4
also includes model predictions, which will be discussed in § 6. In each variable, one
can observe a wave that travels in the direction of positive z for increasing t. As
one would expect, knowing that the plume is driven by buoyancy, the position of the
wave is approximately the same in each of the dependent variables. At a given time,
upstream and downstream of the wave, the integrals Q, M and B satisfy a quasi-steady
balance, and therefore the classical power-law solutions B ∼ z1/3, M ∼ z4/3 and Q ∼
z5/3 are valid (cf. the dashed lines in figure 3), Fs in (2.22) being given by either
FA

s (upstream) or FB
s (downstream) accordingly. In figure 4(b) and ( f ) for z/rs > 42

one can discern a small increase in Q and B, respectively. The outflow boundary
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FIGURE 5. (a) Normalised buoyancy flux at the times tn ≈ 1.95τsn. The black circle
denotes z∗(t), which corresponds to the location of the wave. Profiles t2, . . . , t5 appear to
be influenced by near-field effects and are therefore excluded from the plot in (b), which
illustrates the self-similarity of the normalised buoyancy flux.

condition we employ results in an increase in rd just beneath the top of the domain,
and therefore a corresponding increase in Q and B (note that, being proportional to
w2, rather than w, the momentum flux M is not affected). In the case of B, it is
evident that the effects of the outflow are small in comparison with the amplitude
of the travelling wave.

The wave is perhaps most clearly seen in the integral buoyancy B, which
typically has a relatively weak power-law dependence on z. To within a constant
rescaling factor, the longitudinal dependence of the integrals does not appear to
alter significantly with respect to time. For example, the z-dependence of B(z, t10) is
qualitatively similar to that of B(z, t4), if a suitable rescaling is applied. Although
the main focus of this study is on the integrals Q, M and B, we note for future
reference that the pressure integral βpM warrants further attention. As one might
expect, the dimensionless pressure integral βp increases at the leading edge of the
travelling wave and is therefore expected to influence the dynamics of the wave.
Further understanding of this aspect of the flow would require a detailed analysis of
the lateral components of the turbulence kinetic energy and are beyond the scope of
this paper.

Based on the behaviour of the dependent variables evident in figure 4, one wishes
to understand the scaling associated with the travelling wave. To this end, we consider
the buoyancy flux F in figure 5(a) at several time instances. Being constant upstream
and downstream of the wave, the buoyancy flux is a convenient variable to analyse
in this regard. We now turn our attention to the scaling of the position of the step
change z∗(t), leading eventually to the collapsed data from several time instances that
is plotted with respect to the similarity variable z/z∗ in figure 5(b).

Using the integrals (2.12), it is useful to define the following characteristic length,
velocity and buoyancy scales respectively:

rm ≡ Q
M1/2

, wm ≡ M
Q
, bm ≡ BM

Q2
. (4.1a−c)
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Thus, according to classical plume theory (2.22), when θm= βg= 1, the characteristic
velocity in a steady plume, whose physical source is located at z= 0, is

wm = 3
4

(
10
9α0

)2/3 ( F
z− zv

)1/3

, (4.2)

where zv is the location of an asymptotic virtual source. One therefore presumes that,
sufficiently far from the finite source, the location z∗ of the propagating wave obeys

dz∗

dt
= λ∗wm = 3λ∗

4

(
10
9α0

)2/3 ( F∗

z∗ − zv

)1/3

, (4.3)

where λ∗ is a constant of proportionality and F∗ is a characteristic buoyancy flux
such that FB 6 F∗ 6 FA. We define the characteristic buoyancy flux by imposing
buoyancy conservation in the wave and solving the corresponding Rankine–Hugoniot
jump conditions, as outlined in appendix C:

F∗ ≡ 8
27

(
FA − FB

(FA)2/3 − (FB)2/3

)3

. (4.4)

As one would expect, (4.4) implies that for infinitesimal changes in F, F∗∼ FA∼ FB.
One can integrate equation (4.3) to find that

(z∗ − zv)4/3 = λ∗
(

10
9α0

)2/3

F∗ 1/3(t− tv), (4.5)

where tv is the time for which z∗(tv)= zv.
We determine z∗(t) from the DNS data in a simple and reliable manner according

to
F(z∗(t), t)= F∗. (4.6)

Consequently, if F is monotonic, according to (4.6) z∗ is single-valued function of
time. To ensure a unique definition of z∗ in situations in which F is not monotonic,
we take the maximum value of z∗ satisfying (4.6). With the exception of a small
region in the near field (see t2 and t3 in figure 5), we find that (4.6) is sufficient in
defining a unique value of z∗. The position z∗(t), determined according to (4.6), is
displayed in figure 5(a) with respect to the buoyancy flux at several time instances
and evidently provides a useful indication of the wave’s position. In figure 5(b) we
rescale the longitudinal coordinate z using the observed front position z∗(t). Plotting
the mean buoyancy flux F at times t > t6 with respect to z/z∗, we observe an
approximate collapse of the data and therefore self-similarity. Here, self-similarity
implies that sufficiently far from the source (or, equivalently, at sufficiently large
times) the process reaches a state of ‘equilibrium’ in which z and t cease to play
independent roles. We also note that if z∗ ∼ t3/4 then self-similarity implies that the
longitudinal extent (i.e. the spreading rate) of the front also scales according to t3/4.
For small times (see t2, t3 and t4 in figure 5(a)) we observe that the disturbance
in the buoyancy flux is oscillatory and that the local peak in the buoyancy flux at
approximately z/rs= 9 breaks down before t4 and results in a significant reduction in
the steepness of the wave. Consequently, between t3 and t6 the wave front appears to
become steeper as it adjusts to a far-field equilibrium.
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FIGURE 6. (Colour online) Dimensionless buoyancy bm(z, t)/bm0(z) in the plume, where
bm0 is the steady-state buoyancy corresponding to simulation L with buoyancy flux FB, in
addition to points denoting the location of the travelling wave. The crosses correspond to
the observed position of the front, while the line denotes a best fit to the front position,
of the form z∗ − zv ∝ (t− tv)3/4.

In figure 6 we test the hypothesis that z∗ ∼ t3/4 and determine the constant of
proportionality λ∗ from the observed location of the front z∗(t). Evident from the
normalised characteristic buoyancy bm/bm0 displayed in figure 6 is that in the far
field the wave’s propagation adheres to the predicted z∗ ∼ t3/4 scaling. In addition,
we find that the constant of proportionality λ∗ ≈ 1.9 in (4.5). In other words, with
reference to (4.3), we observe that the front propagates at nearly twice the local
top-hat velocity wm. This behaviour is consistent with unsteady turbulent jets (Craske
& van Reeuwijk 2015a), and will be explained in § 5 in terms of the dimensionless
profile coefficients.

Compared with Q, M and B, it is perhaps the derived quantities rm ≡ Q/M1/2

and Γ ∝ QB/M3/2 that reveal more about the dynamics of the system, because,
unlike Q, M and B, the characteristic plume radius rm and flux-balance parameter Γ
are independent of F. Without scrutinising the governing equations, it is therefore
difficult to predict whether rm and Γ will increase or decrease in the vicinity of
the propagating wave. Figure 7 demonstrates that to leading-order, the behaviour of
rm and Γ is practically unaffected by the step change in the buoyancy flux. One is
inclined to conclude that rm and Γ are slightly reduced in the vicinity of the wave
although the observed change, being not more than 15 % of their steady-state values,
is relatively small. We will discuss the physics determining the behaviour of rm and
Γ in §§ 5.2–5.3 and demonstrate why they are only weakly sensitive to changes in
the plume’s buoyancy flux.

5. Unsteady plume properties
To understand the leading-order role played by the profile coefficients in the

unsteady plume equations (2.9)–(2.11), we will start by assuming that they are
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(a)
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FIGURE 7. DNS data and model prediction of the plume radius rm (a) and the
flux-balance parameter Γ (b) at times tn ≈ 1.95τsn. The thick solid line corresponds to
the DNS data. GPM refers to the Gaussian plume model described in § 6 of this paper
and TPM refers to the top-hat plume model described by Scase & Hewitt (2012). Note
that the profiles in (b) are separated by a distance of 1 unit, as indicated by the scale in
the bottom left corner.

constants. Consideration of the possibility that, for example, the dimensionless
buoyancy flux changes in the vicinity of the front is addressed in § 6.1. In § 2 we
described a framework that postpones making assumptions about unknown quantities
such as turbulent fluxes, pressure and the radial dependence of the velocity profile.
The framework therefore allows one to investigate and understand how assumptions
about the flow from an integral perspective affect the structure of a generalised system
of governing equations.

5.1. The hyperbolic system
A logical starting point to understand the leading-order physics associated with the
system (2.9)–(2.11) is to analyse its characteristic curves. Without assigning a value
to the profile coefficients βg, γg and θg, which correspond to dimensionless fluxes of
momentum, energy and buoyancy, respectively, the unsteady plume equations can be
expressed as 

∂

∂t
+


0 βg 0

−γg
M2

Q2
γg

2M
Q

0

−θg
BM
Q2

θg
B
Q

θg
M
Q


∂

∂z


Q

M
B

= R, (5.1)
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where R consists of the right-hand side sink or source terms appearing in (2.9)–(2.11).
Characteristic curves of this system satisfy the following relation

det


−λ∗ βg

Q
M

0

−γg
M
Q

2γg − λ∗ 0

−θg
B
Q

θg
B
M

θg − λ∗


= 0, (5.2)

where λ∗ is a dimensionless velocity defined by

λ∗ ≡ dz
dt

Q
M
. (5.3)

The relation (5.2) implies that

λ∗ =


λ1 = γg +

√
γ 2

g − γgβg,

λ2 = θg,

λ3 = γg −
√
γ 2

g − γgβg.

(5.4)

To date, the assumption of top-hat velocity profiles and the omission of turbulence
has resulted in the unsteady plume equations being regarded as a parabolic system
(Scase et al. 2009). However, use of the generalised framework described in § 2
reveals that, in general, the unsteady plume equations comprise a hyperbolic system,
even when higher-order turbulent transport terms are neglected from (2.6) and (2.8)
(resulting in βg = βm and γg = γm). Evident from (5.4) is that in the ‘top-hat’
limit, γg, βg, θg → 1, λ∗ = 1, the characteristic curves collapse onto a single family
propagating at the local characteristic velocity. In that case, the system cannot be
decomposed using linearly independent eigenvectors and should indeed be regarded as
parabolic (see Whitham 1974). The top-hat unsteady plume formulation is therefore
a degenerate case amongst a wide variety of possible alternatives, each possessing
quite different dynamical properties and underlying physics. In fact, top-hat models
represent a non-physical limit in the sense that a discontinuous mean velocity field
is not realisable in a real turbulent plume. However, we would like to point out
that in comparing the radial dependence of different velocity profiles in the light of
(5.4) one is not interested in whether they possess compact support per se, but in
the extent to which they are non-uniform and/or account for turbulence and pressure.
As described in § 2.3, a non-uniform radial dependence of longitudinal velocity
always results in a higher dimensionless energy flux γm, and therefore a separation of
characteristic curves, and an unsteady equation for the area of the plume (2.19) that
is fundamentally different from that which is associated with top-hat velocity profiles.

A leading-order representation of a Gaussian unsteady plume is obtained by
neglecting turbulent transport (hence βg = 1, θg = 1 and γg = γm), and using the
fact that γm = 4/3, as shown in (2.18). Consequently, (5.4) shows that for Gaussian
profiles λ1 = 2, which implies that the fastest characteristic propagates at twice the
local characteristic velocity. This prediction is in reasonably close agreement with the
observations reported in § 4 which suggest that λ∗ ≈ 1.9. We tentatively attribute the
fact that the observed propagation velocity is slightly less than one would expect to
find in a Gaussian plume (λ∗≈ 2.0) to pressure, which typically being negative inside
the plume (see, e.g. βp and γp in table 2), leads to a reduction in both βg and γg.
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5.2. The behaviour of the plume radius and flux-balance parameter
As pointed out in § 4, it is difficult to predict the behaviour of the characteristic radius
rm ≡ Q/M1/2 and the flux-balance parameter Γ , which are derived quantities, in an
unsteady plume a priori. It is therefore useful to understand how their behaviour is
affected by the value of the profile coefficients.

Substitution of the relation Q= rmM1/2 into (2.20), reveals that

1
γgM1/2

∂r2
m

∂t
=− δg

γg
+ 2rm

M

(
3
4
− βg

γg

)
∂M
∂z
+ 16α0

5

(
βg

γg
− βgθm

γg

)
Γ − ∂rm

∂z
. (5.5)

If one assumes that at a particular time the plume is straight sided (conical), such that
∂zrm = 6α0/5 in the right-hand side of (5.5) then, using (2.23),

1
γgM1/2

∂r2
m

∂t
= 2rm

M

(
3
4
− βg

γg

)
∂M
∂z
+ 12α0

5

(
4βg

3γg
(θm + (1− θm)Γ )− 1

)
. (5.6)

Inspection of (5.6) implies that

∂r2
m

∂t
= 0 ∀

(
Γ,

rm

M
∂M
∂z

)
if

3γg

4βg
= 1, and θm = 1. (5.7a,b)

When the profile coefficients are such that (a) γg/βg = 4/3 and (b) θm = 1, the
plume remains straight sided for all time, provided that it has a constant source
area. Physically, these conditions correspond to (a) the gross dimensionless fluxes
of energy and momentum in the plume being in the ratio of 4/3 and (b) the mean
dimensionless flux of buoyancy in the plume being equal to unity. The latter condition
is satisfied if the mean buoyancy profile has the same shape and width as the mean
velocity profile.

The difference between straight sidedness in jets (see Craske & van Reeuwijk
2015b) and plumes is an additional, independent, condition on θm in the case of the
latter. Indeed, θm places further control on the behaviour of ∂tM relative to ∂tQ (see
(2.9)–(2.10)) and therefore affects the behaviour of Q2/M. The relations (5.7) are
useful because they allow one to relate the ‘internal’ properties of a plume, such as
γg, to an ‘external’ observable such as rm at the integral level. This contrasts with
steady-state plumes, for which it is not possible to distinguish between a Gaussian
or a top-hat distribution of velocity by observing Q,M and F.

If we assume that the conditions (5.7) for straight sidedness are satisfied, then, using
(2.25),

B= 4βgM
3z

Γ. (5.8)

Substitution of (5.8) into (2.11) and using (2.10), in addition to βg = 3γg/4, θm = 1
for straight sidedness, one obtains

∂Γ

∂t
= 0 ∀∂M

∂z
if θg = γg (5.9)

provided that Γ = 1∀z is an initial condition and that Γ = 1 at the source. Therefore,
only if the gross dimensionless buoyancy flux θg (i.e. inclusive of turbulent transport)
is equal to the gross dimensionless energy flux γg will the plume remain pure, such
that Γ = 1, regardless of the temporal dependence of M(z, t). Noting that θm = 1 for
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straight sidedness and that γg ≈ 4/3, it is only possible that θg = γg if approximately
1/4 of the total buoyancy flux is transported by turbulence. Table 2 suggests that
θg ≈ 1.2, while γg ≈ 1.4, and therefore we would not expect for the plume to remain
precisely pure. However, in situations for which the prediction of local changes in Γ
is not crucial, the assumption of equality between γg and θg will prove to be a useful
idealisation in the context of modelling, which we discuss in § 6.

5.3. The structure of waves in a plume
The way in which the properties of travelling waves in the plume depend on the
profile coefficients can be established by examining the behaviour of the invariants
associated with (5.1). The left eigenvectors corresponding to the eigenvalues (5.4) are

L=



− 1
(1+ φ)

M
Q

1 0

−−−−−−−−−−−−−−
c1B
Q

−c2B
M

1

−−−−−−−−−−−−−−
− 1
(1− φ)

M
Q

1 0


, (5.10)

where φ ≡√1− βg/γg,

c1 ≡ θg(γg − θg)

βgγg − 2γgθg + θ 2
g

, and c2 ≡ θg(βg − θg)

βgγg − 2γgθg + θ 2
g

. (5.11a,b)

In general, L is invertible, which means that the unsteady plume system (5.1) can
be decomposed into a system of ordinary differential equations. Each differential
equation corresponds to the derivative of a quasi-invariant quantity Y1, Y2 or Y3 along
a characteristic curve. In particular, introducing the integrating factor Qc1/Mc2 :

dY2 = c1
BQc1−1

Mc2
dQ− c2

BQc1

Mc2+1
dM + Qc1

Mc2
dB, (5.12)

one finds that

Y2 = BQc1

Mc2
. (5.13)

The remaining invariants are identical to those found in unsteady jets (Craske & van
Reeuwijk 2015a):

Y1 = M
Q1/(1+φ) , Y3 = M

Q1/(1−φ) . (5.14a,b)

When the system is forced due to buoyancy and the production of turbulence kinetic
energy, R 6= 0 in (5.1) and the ‘invariants’ need not be constant along characteristic
curves. It is nevertheless instructive to consider the homogeneous problem, for which
R = 0, such that Y1, Y2 and Y3 are constant along characteristics and therefore
determine the behaviour of the original dependent variables Q, M and B. The value
of Y1, Y2 and Y3 at a given point in the domain can be determined by tracing their
respective characteristic curves to the source at z= 0. We consider the case for which

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

72
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.72


1034 J. Craske and M. van Reeuwijk

S

t

z

F

B

A

FIGURE 8. The three distinct characteristic curves and associated eigenvalues λ1, λ2 and
λ3 in a generalised formulation of the unsteady plume equations. Regions A and B denote
points in (z, t) space upstream and downstream of a wave, while regions S1 and S2 denote
regions of the wave. The depicted behaviour of F in the wave is for schematic purposes
only.

λ3 < λ2 < λ1. We denote with S, S1 and S2 the regions [λ3, λ1], [λ2, λ1] and [λ3, λ2]
respectively, as indicated in figure 8. Hence

QS

QA
=
(

MA

MB

)(1/φ−φ)/2 (QB

QA

)1/(2φ)+1/2

, (5.15)

MS

MA
=
(

MA

MB

)(1−φ)/(2φ) (QB

QA

)1/(2φ)

, (5.16)

and
BS1

BB
=
(

QB

QS

)c1 (MS

MB

)c2

,
BS2

BA
=
(

QA

QS

)c1 (MS

MA

)c2

. (5.17a,b)

The values of M and Q in the wave are not affected by the location of the second
characteristic associated with λ2. The buoyancy B, however, takes distinct values in
S1 and S2 according to the position of the second characteristic. If it is assumed that
both the source Richardson number and the source radius are fixed, we may say that
QA ∝ FA 1/3, QB ∝ FB 1/3, MA ∝ FA 2/3 and MB ∝ FB 2/3. Hence (5.15) and (5.16) imply
that

MS

MA
=
(

FA

FB

)1/(6φ)−1/3

,
QS

QA
=
(

FA

FB

)1/(6φ)−φ/3−1/6

. (5.18a,b)

Therefore, following a step change in the source buoyancy flux FB
s 7→ FA

s , the
parameter φ, which depends on γg and βg, determines the behaviour of QS and
MS. In particular, for a given FA and FB, φ will determine the step change in
the plume velocity wm in S and therefore whether each characteristic is associated
with rarefaction or compression behaviour. A rarefaction wave occurs when the
characteristic velocity wm undergoes a positive step change in the positive z direction,
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whereas a compression wave occurs when wm undergoes a negative step change.
For Gaussian plumes or, more generally, when γg/βg = 4/3 (which implies that
φ = 1/2), the behaviour of the wave is particularly simple, because QS = QA and
MS = MA. In that case the leading characteristic associated with λ1 is a rarefaction
wave or a compression wave, according to whether FA < FB or FA > FB, respectively.
Furthermore, in agreement with the deductions made in the previous section, when
φ = 1/2 the plume radius rm does not deviate from its steady-state value in the
region S, although, as noted previously, for this to be the case it is necessary that
θm = 1. Since these properties are inherited from unsteady jets, the reader is referred
to Craske & van Reeuwijk (2015b) for further details. Here we will focus on the
additional properties resulting from buoyancy, as manifest in the characteristic curve
associated with λ2.

Using (5.17) one can determine how the flux-balance parameter Γ behaves in
regions S1 and S2:

Γ S1

Γ B
=
(

QB

QS

)c1−1 (MS

MB

)c2−3/2

=
(

FA

FB

)n1

,

Γ S2

Γ A
=
(

QA

QS

)c1−1 (MS

MA

)c2−3/2

=
(

FA

FB

)n2

,

 (5.19)

where

nk ≡
(

c2 − 3
2

)(
1

6φ
+ (−1)k−1

3

)
− (c1 − 1)

(
1

6φ
− φ

3
+ (−1)k−1

6

)
, k= 1, 2.

(5.20)
In Γ , unlike Q and M, the characteristic associated with λ2, which is determined by
the dimensionless buoyancy flux θg, can result in a discontinuity. In general, distinct
values of Γ are found in regions S1 and S2 and depend on γg, βg and θg.

When γg/βg = 4/3 the plume is straight sided, φ = 1/2 and

n1 = 2c2

3
− c1

3
− 2

3
, n2 = 0. (5.21a,b)

Therefore, substituting for c1 and c2 using (5.11) and assuming Γ A = Γ B = 1,

Γ S1

(
θg

γg

)
=
(

FA

FB

)q

, Γ S2(θg)= 1, (5.22)

where

q≡−12(θg/γg)
2 − 18(θg/γg)+ 6

12(θg/γg)2 − 24(θg/γg)+ 9
, (5.23)

such that the behaviour of Γ over the wave depends only on the ratio of the
dimensionless buoyancy flux θg to the dimensionless energy flux γg. While the plume
remains pure in S2 (note that Γ S2 = 1), Γ S1 depends on the location of the second
characteristic curve. If θg/γg < 1, there is a deficit of buoyancy in S1 and the plume
becomes ‘forced’ (Γ S1 < 1). Conversely, if θg/γg > 1 surplus buoyancy enters S1 and
the plume becomes ‘lazy’. These results are consistent with the condition established
in § 5.2 that θg/γg = 1 in order for the plume to remain pure, and are illustrated
in figure 9. For details about the behaviour of Γ when the fluxes in the plume are
reduced according to a self-similar scaling, the reader is referred to appendix A.
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1

FIGURE 9. (Colour online) Wave structure in a straight-sided plume (γg/βg= 4/3, θm= 1).
The special case for which Γ = 1 in the wave corresponds to θg = γg. The variable λ is
a scaled z coordinate, which is defined rigorously in (6.21).

5.4. Response to source perturbations

The final property of the generalised unsteady plume equations that we consider
is their response to harmonic perturbations. From a modelling perspective it is
necessary to understand whether an unsteady plume model is stable with respect to
source perturbations. Scase & Hewitt (2012) showed that top-hat unsteady plume
models are ill posed because they admit the unbounded (exponential) growth of
high-frequency source perturbations, making it impossible to obtain convergence
in numerical simulations of the governing integral equations. Using the framework
described in this paper, it is possible to adopt a more general approach and analyse
the response of the unsteady plume equations without making an assumption about
the velocity profile, turbulent transport or pressure. It is consequently possible to
establish whether a given plume model is well posed. More generally, one can
establish a relation between the dimensionless profile coefficients that ensures well
posedness and understand how this relates to the underlying physics of an unsteady
plume.

Using the dimensionless variables

ζ ≡ 3
4

zσ
wm0

, τ ≡ σ t, (5.24a,b)

with the characteristic steady-state velocity

wm0 ≡ 3
4

(
10
9α0

)2/3 ( F
βgθm

)1/3

z−1/3, (5.25)
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we consider a harmonic source perturbation of amplitude ε and seek solutions of the
form

Q=Q0(1+ εQ1 . . .),

M =M0(1+ εM1 . . .),

B= B0(1+ εB1 . . .).

 (5.26)

At O(ε) the unsteady plume equations can be expressed as ∂

∂τ
+
 0 βg 0
−γg 2γg 0
−θg θg θg

 ∂

∂ζ
− 1
ζ

 0 −βg βg

R21 R22 R23

0 0 0

Q1

M1

B1

= 0, (5.27)

where

R21 ≡− 3
4γg + 2βgθm, R22 ≡ 3

8γg − 3βgθm, R23 ≡ 2βgθm. (5.28a−c)

In (5.27) and (5.28) we have used (2.23), rearranged as

δg = α0(
6
5γg − 16

5 βgθm), (5.29)

to eliminate δg.
Here we restrict our attention to a plume with velocity and buoyancy profiles of

Gaussian form and equal width, and neglect the longitudinal turbulent transport of
momentum. Hence, we assume that θm = βg = 1 and γg = γm = 4/3 and focus our
attention on the way in which θg affects the downstream development of source
perturbations, complementing the predictions pertaining to Γ that were obtained in
§ 5.3. There are several reasons for focusing on straight-sided unsteady plumes at
this point. First, theoretical and observational evidence suggests that if one has to
choose a value of γm, then 4/3 is the most appropriate choice. Second, straight
sidedness is a distinguished case and therefore worthy of investigation in its own
right. In the absence of compelling evidence to the contrary, we feel that it would be
unhelpful and less general to restrict the parameter space in an alternative way. Third,
source perturbation analysis for jets, for which straight sidedness was not assumed,
was conducted in Craske & van Reeuwijk (2015b). Therefore, by focusing on the
effects of buoyancy transport in the present section, we augment existing work on
the subject.

The assumed values of βg, θm and γg ensure that the plume remains straight
sided (see § 5.2) such that M1 = 2Q1 for the linearized perturbation, and thus (5.27)
simplifies to (

∂

∂τ
+
[

2 0
θg/2 θg

]
∂

∂ζ
− 1
ζ

[−2 2
0 0

])(
M1
B1

)
= 0. (5.30)

We assume an oscillatory solution of the form(
M1
B1

)
=
(

M̂1(ζ )

B̂1(ζ )

)
exp(i τ). (5.31)

Substitution of (5.31) into (5.30) and elimination of B̂1 results in

d2M̂1

dζ 2
+
(

5
2ζ
+ i
(

1
2
+ 1
θg

))
dM̂1

dζ
−
(

1
2θg
− i
(

1
θgζ
+ 1

2ζ

))
M̂1 = 0. (5.32)
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Transformation of the coordinate system according to ζ∗ ≡ i(θg − 2)ζ/(2θg), and
defining the dependent variable M̂∗ ≡ M̂1 exp(iζ/2), results in

ζ∗
d2M̂∗
dζ 2∗

+
(

5
2
− ζ∗

)
dM̂∗
dζ∗
− aM̂∗ = 0, (5.33)

where

a≡ 3θg − 4
2θg − 4

. (5.34)

Equation (5.33) is a confluent hypergeometric equation (Abramowitz & Stegun 1970,
§ 13, p. 504), whose solution can be expressed as

M̂1(ζ )=
(

c1M
(

a,
5
2
, i
θg − 2

2θg
ζ

)
+ c2U

(
a,

5
2
, i
θg − 2

2θg
ζ

))
exp

(
−i
ζ

2

)
, (5.35)

where the independent solutions M and U are Kummer functions. At the source, (5.35)
implies that B1(0)=M1(0) ∀c1, c2, which means that to leading order Γ (0)= 1. To
ensure finite M̂1(0), we set c2 = 0 and assume that c1 = 1, without loss of generality.
The asymptotic expansion of (5.35), for ζ→∞ and 0 6 θg < 2, is

M̂1(ζ )∼ 3
√

π

4Γ(5/2− a)

(
2θg

θg − 2

)a

exp
(
−i
ζ

2

)
ζ−a, (5.36)

where Γ is the Gamma function. The exponent a(θg) therefore determines the growth
rate of the perturbations, as illustrated in figure 10. When 16 θg < 4/3 (forced waves,
according to § 5.3), the growth rate is negative, but when 4/3< θg < 2 (lazy waves),
the growth rate is positive. Between growth and decay of source perturbations lies the
special behaviour associated with θg = 4/3, for which the plume is pure and exhibits
a neutral response to source perturbations. We note that θg ≡ θm + θf is not likely
to exceed 4/3 in practice (see e.g. table 2) because θm ≈ 1 and the dimensionless
turbulent buoyancy flux θf ≈ 0.2. Therefore, this analysis demonstrates that the
generalised unsteady plume equations are well posed for physically realistic values
of the dimensionless profile coefficients.

6. A Gaussian unsteady plume model

In this section we propose a series of progressively simpler models for unsteady
plumes, derived from the generalised unsteady plume theory developed in §§ 2
and 5. The aim is to invoke assumptions about the dimensionless profile coefficients
appearing in the integral equations (2.9)–(2.11) to close the system. All of the models
we propose are based on the assumption that in the steady state the plume has a
Gaussian velocity profile. In § 6.1 we argue that in unsteady situations the profile
coefficients are not strictly constant but functions of the dependent variables, or, more
precisely, their longitudinal gradients. In § 6.2 we compare the full model to the DNS
results and in § 6.3 we propose a simpler form of the model by invoking additional
assumptions based on the findings of § 5.
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FIGURE 10. Stability of the system when γm = 4/3 in response to source perturbations
with respect to the dimensionless longitudinal coordinate ζ ∝ z4/3σ for (a) θg= 1; (b) θg=
5/4; (c) θg = 4/3 and (d) θg = 5/3. The thin solid lines correspond to the exact solution
of the linearized problem (5.35) and the thin dashed lines to the asymptotic solution
(5.36). The thick lines denote the envelope of the asymptotic solution. The dimensionless
buoyancy flux θg = 4/3 is the special case for which perturbations exhibit neutral growth.
For models employing realistic values θg 6 4/3, the system is well posed in the sense
that source perturbations are bounded and it is possible to obtain convergent numerical
approximations.

6.1. Shear-flow dispersion
In the previous section we established the response of a plume when the profile
coefficients are constant. In that case the plume integrals are, in general, discontinuous
along characteristic curves, as illustrated schematically in figure 8. However, it is
readily apparent from figure 4 that the plume integrals are continuous, varying
smoothly from their value upstream of the disturbance to their value downstream of
the disturbance. The longitudinal gradients that are produced by unsteady changes in
the plume are capable of inducing a local departure from self-similarity. Noting that
constant profile coefficients are a necessary condition for self-similarity, one would
expect the profile coefficients to deviate from their steady-state value in the vicinity
of a sudden change in the plume’s integral quantities. Taylor (1953) analysed an
equivalent situation in pipe flow, showing that in the vicinity of a step increase in
the radially averaged scalar concentration there exists a deformation in the otherwise
radially uniform concentration field. In correlation with a non-uniform velocity field,
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the deformation results in a local increase in the scalar flux, which, to leading order,
satisfies a dispersive analogue of Fick’s law. Similarly, in Craske & van Reeuwijk
(2015b), a dispersion closure was developed for energy transport in jets, which
we will apply here to model the higher-order transport of buoyancy and energy in
unsteady plumes.

In order to focus on longitudinal changes that constitute a departure from a steady
state, it is convenient to examine dimensionless quantities. For a given quantity
fm(z, t), we define F ≡ fm/fm0, where fm0 is the steady-state value of fm. To quantify
the departure from the steady state, we can compute the longitudinal gradient of F :

rm

F

∂F

∂z
= rm

fm

∂fm

∂z
− rm

fm0

∂fm0

∂z
. (6.1)

Noting that rm= 6α0z/5 in the steady state, it is convenient to define the steady-state
function fm0 locally:

∂fm0

∂z
= 6α0n

5
fm0

rm
, (6.2)

where fm0 ∝ zn, which means that the second term on the right-hand side of (6.1)
is equal to −6α0n/5. This is a sensible choice in general, because it means that
departures from a steady state are defined relative to the local (in z) size of the plume
rather than the size it should have with respect to a fixed virtual source. Of course, if
the plume is straight sided, such that rm ∝ z ∀t, the definitions coincide. In particular,
we define the dimensionless velocity and buoyancy:

U ≡ wm

wm0
, B ≡ bm

bm0
, (6.3a,b)

where wm0 ∝ z−1/3 and bm0 ∝ z−5/3 are the steady-state power-law solutions for the
velocity and buoyancy respectively. Using (6.1), with F replaced with either U
or B, we follow Craske & van Reeuwijk (2015b) and propose a closure for the
dimensionless energy flux γm and the dimensionless buoyancy flux θm:

γm = γ0 − 5
α0

rm

U

∂U

∂z
γ1 = γ0 − 6

(
1
3
+ 5Q2

6α0M3/2

∂

∂z

(
M
Q

))
γ1, (6.4)

θm = θ0 − 5
α0

rm

B

∂B

∂z
θ1 = θ0 − 6

(
5
3
+ 5Q3

6α0M3/2B
∂

∂z

(
MB
Q2

))
θ1. (6.5)

Note that the fractions 1/3 and 5/3 in (6.4) and (6.5), respectively, result from the
fact that wm0 ∼ z−1/3 and bm0 ∼ z−5/3, respectively. Although the terms inside the
parenthesis in the definition of γm appear to differ from those presented in Craske
& van Reeuwijk (2015b), the difference is superficial, as γ1 can be redefined to
render the expressions equivalent. A notable virtue of the dispersion closure is that
the incorporation of (6.5) does not affect the steady-state solutions. In contrast,
the diffusive mixing term for momentum proposed by Scase & Hewitt (2012) was
not extended to buoyancy transport, because it would have modified the exponents
associated with the steady-state solutions.
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6.2. Unsteady plume model
For the purposes of establishing a relatively simple representation of an unsteady
plume, we neglect turbulent transport and assume γg = γm, θg = θm and βg = βm,
resulting in the following model

∂Q
∂t
+ ∂M
∂z
= B, (6.6)

∂M
∂t
+ γ0

∂

∂z

(
M2

Q

)
= δm

M5/2

Q2
+ 5γ1

α0

∂

∂z

(
M3/2

U

∂U

∂z

)
+ 2θm

MB
Q
, (6.7)

∂B
∂t
+ θ0

∂

∂z

(
MB
Q

)
= 5θ1

α0

∂

∂z

(
M1/2B

B

∂B

∂z

)
. (6.8)

In the interest of brevity, θm on the right-hand side of (6.7) has not been expanded
and for consistency should therefore be replaced with (6.5).

We solve the system (6.6)–(6.8) using fourth-order accurate central differences
and a fourth-order Runge–Kutta method for integration with respect to t. To
adequately describe both near- and far-field scales in the plume we employ a stretched
computational grid in space, for which the ratio of the first and last computational
cells is approximately equal to 0.1. At the first and last computational cells the values
of the dependent variables are held constant (i.e. independent of time), and by letting
the height of the domain be equal to 64rs we ensure that the outflow condition has
a negligible influence in those parts of the domain with which we are primarily
concerned. As indicated in figure 4(a,c,e), smooth initial conditions for Q, M and
B were obtained by fitting an error function to the observed buoyancy flux F at
t= t1 and by substituting F(z, t1) into the steady-state solutions (2.22). Although this
method of determining initial conditions is approximate, at t= t1 the unsteady part of
the flow is very close to the source and a precise description of the rapid change in
F from FB to FA makes little difference to predictions at later times. For t> t1, Q,M
and B are held constant at the source.

We compare our model’s predictions, which we refer to as the Gaussian plume
model (GPM), to those of the adjusted top-hat plume model (TPM) proposed by Scase
& Hewitt (2012). For the parameters of GPM we assume Gaussian profiles and neglect
turbulence transport, setting γ0=4/3 and θ0=1. For the higher-order mixing terms we
use γ1 = θ1 = 0.0017. For the parameter ε that appears in the regularisation proposed
by Scase & Hewitt (2012) we set ε = 5γ1, which ensures that the diffusive flux of
energy in TPM is equal to the dispersive flux of energy in GPM (see Craske &
van Reeuwijk 2015b). To obtain predictions from TPM it was necessary to employ
a flux-limiting scheme, and to this end we followed Kurganov & Tadmor (2000). For
TPM it was also necessary to use 4000 computational points to obtain a converged
prediction, which was verified by halving the number of points to 2000. In contrast,
a converged prediction was obtained from GPM using only 400 computational points,
and therefore took significantly less time to compute than TPM.

Figures 4 and 7 compare the predictions of (6.6)–(6.8) to those of the regularised
top-hat model described by Scase & Hewitt (2012). The predictions of Q and M using
GPM displayed in figure 4 are in reasonably good agreement with the DNS data. In
particular, GPM correctly represents the position and the spreading rate of the wave
front in M. In the volume flux Q it appears that GPM predicts that the wave front
travels slightly faster than the DNS observations suggest. Nevertheless, despite using
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FIGURE 11. Wave structure for different values of θg. The dashed lines are normalised
integral quantities Q ≡ Q/Q0, M ≡M/M0 and the solid line is B ≡ B/B0. The shaded
region denotes the extent to which Γ (z, t) is different from unity. For θg ≈ 4/3, Γ = 1
and the wave is pure.

an order of magnitude fewer computational points, GPM provides a better overall
agreement with the DNS observations than TPM, which predicts a large overshoot
in Q,M and B.

In figure 7 the predictions from GPM exhibit a good agreement with both the radius
of the plume and the flux-balance parameter. TPM predicts a local increase in both rm
and Γ , which we do not observe in the DNS simulations. Consistent with the analysis
of the hyperbolic problem in § 5.1, for θg < 4/3, GPM predicts a small reduction
in Γ in the vicinity of the wave. Due to statistical uncertainty, it is not possible
to say whether this prediction of a very small reduction in Γ agrees with the DNS
observations, which to leading order suggest that Γ is approximately constant.

There is a noticeable difference between the GPM predictions and the DNS
observations of the integral buoyancy B in the vicinity of the wave front (see
figure 4( f )). The observations suggest that the propagating front in B is steeper and
faster than that which is predicted by GPM. While the purpose of this paper is not
to investigate the fine tuning of the various profile coefficients to give an optimised
agreement with the DNS data, for physical insight and to relate our observations to the
theory discussed in § 5.3, it is useful to understand the way in which unsteady plume
models depend on the assumed amount of turbulent buoyancy flux. Figure 11 displays
the quantities Q(z, t), M(z, t) and B(z, t) normalised by the scalings associated with
the steady state, namely Q0(z)∼ z5/3, M0(z)∼ z4/3 and B0(z)∼ z1/3, at a fixed time. In
addition, the shaded region in figure 11 indicates the extent to which the flux-balance
parameter Γ (2.25) deviates from unity. Each of the predictions displayed in figure 11
corresponds to a different choice of the dimensionless parameter θg ∼ θ0 + θf , and
therefore, since θ0 = 0 is fixed, to a different amount of turbulent buoyancy transport
θf in the plume. More precisely, we add a constant θf ∈ [0.5, 2.0] to θ0 in (6.8) to
account for the turbulent transport of buoyancy. Values of θg much less or greater
than unity, although physically unrealistic, have been included in figure 11 to provide
a more complete picture of the system’s response.

The wave in the dimensionless buoyancy integral B in figure 11 appears to
propagate faster for large values of θg than for small values of θg, due to the
distribution of buoyancy within the wave. In agreement with the analysis of § 5.3, it
is also clear that the wave is lazy when θg > 4/3 and forced when θg < 4/3. As θg
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increases, one observes that the front in the integral buoyancy B becomes steeper, in
spite of the fact that the longitudinal mixing (dispersion) parameter θ1 is identical
in each case. Hence, the reason for the disparity between the GPM prediction of
B and the DNS results in figure 4 is not the higher-order term on the right-hand
side of (6.8), but that by setting θ0 = 1 we neglected the turbulent buoyancy flux.
As indicated in figure 11, when the turbulent transport of buoyancy is included (e.g.
θg ∼ θ0 = 1.2), the wave front in B predicted by GPM becomes steeper and exhibits
a better agreement with the features of B observed in figure 4.

6.3. Pure straight-sided unsteady plume model
Motivated by the observations reported in § 4 and the theory developed in § 5, the
model we derive in this section is based on two main assumptions; (1) the plume
is straight sided (rm = 6α0z/5 ∀t), hence γg/βg = 4/3 and θm = 1 (see § 5.2); (2) the
plume remains pure (Γ = 1 ∀t), hence θg = γg (see § 5.2). For definiteness, we will
neglect the turbulent transport of momentum and set βg = 1, which implies that
γg = 4/3. Under these conditions the structure of the wave described in § 5.3 is
particularly simple because it consists of a single front propagating along the fastest
characteristic curve. Behind the front the plume behaves in accordance with a steady
state. Noting from (5.4) that when γg = 4/3 and βg = 1 the dimensionless velocity
of the fastest characteristic is λ∗ = λ1 = 3γg/2, we find that θg = γg = 2λ∗/3 for
consistency.

In the light of our observations from steady plumes (see table 2), the validity of
assuming that θg = γg is questionable. Thus, for situations in which the prediction
of changes in Γ in an unsteady plume are crucial, we recommend use of the full
Gaussian model described in § 6.1. However, the model we describe below is valuable
in its own right as a simple analytical means of obtaining a first approximation to
the behaviour of an unsteady plume and for providing physical intuition. It is also
of theoretical value as a distinguished case, illustrating that under the aforementioned
assumptions the behaviour of an unsteady plume is similar to that of an unsteady jet
(cf. Craske & van Reeuwijk 2015b).

We start by considering the transport equation for buoyancy:

∂B
∂t
+ ∂

∂z

(
θg

MB
Q

)
= 0. (6.9)

Since we are assuming that the plume remains pure and straight sided,

Q
M1/2
= 6α0

5
z,

M3/2

Q
= 5B

8α0
, (6.10a,b)

hence
M
Q
=
(

25
48α2

0

B
z

)1/2

, (6.11)

and thus
∂B
∂t
+ 5
√

3
12α0

∂

∂z

(
θgB3/2

z1/2

)
= 0. (6.12)

To include longitudinal spreading of the wave due to dispersion, we employ (6.5),
which in this case reduces to

θg = θ0︸︷︷︸
2λ∗/3

−6θ1

(
5
3
+ z3

B
∂

∂z

(
B
z2

))
. (6.13)
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Note that θ1 � θ0, implying that, for smoothly varying B, the effect of θ1 on θg
is extremely small and therefore does not significantly violate our assumption that
θg = 2λ∗/3, which is required for pure-plume behaviour. The transport equation for
the buoyancy integral becomes

∂B
∂t
+ 5
√

3λ∗

18α0

∂

∂z

(
B3/2

z1/2

)
= 5
√

3θ1

6α0

∂

∂z

(
3B3/2

z1/2
+ 2z5/2 ∂

∂z

(
B3/2

z2

))
. (6.14)

For a given solution of (6.14) one can derive the volume flux and momentum flux by
inverting (6.10):

Q= 3α0

5

√
3Bz3, M = 3

4
Bz. (6.15a,b)

In order to use (6.14) in practice, one needs to specify the dispersion parameter
θ1, in addition to the steady-state entrainment coefficient α0. The remaining parameter
λ∗ = 3γg/2= 2 is determined from the assumption that γg = 4/3.

6.4. Linearized similarity solution
Guided by the observations of § 4.2 (in particular, see figure 5), one expects unsteady
disturbances in a plume to evolve in self-similar fashion sufficiently far from the
source; hence we seek a similarity solution to (6.14). To simplify the analysis we will
assume that the imposed change in the buoyancy flux is relatively small and consider
a perturbation expansion for B, where the small parameter ε depends on the magnitude
of the imposed step change in the source buoyancy flux:

B= B∗(1+ εB1 + ε2B2 + · · ·), (6.16)

where

B∗ = 6α0

5

(
10
9α0

)1/3

z1/3F∗ 2/3, (6.17)

and F∗ was defined in (4.4). To first order, the conditions of straight sidedness and
constant Γ can be expressed as

M1 =B1, Q1 =B1/2. (6.18a,b)

At O(ε) we find that

∂B1

∂t
+ 3

4
(λ∗ − 6θ1)

(
10
9α0

)2/3(F∗

z

)1/3
∂B1

∂z
= 9θ1

2

(
10
9α0

)2/3 (
F∗z2

)1/3 ∂
2B1

∂z2
. (6.19)

Recalling that
dz∗

dt
= 3λ∗

4

(
10
9α0

)2/3 F∗ 1/3

z∗ 1/3
, (6.20)

along the leading characteristic curves of the original hyperbolic system, it is natural
to define a similarity variable

λ≡
(

9α0

10

)2/3 z4/3

F∗ 1/3t
, (6.21)
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FIGURE 12. Predictions using a linearized, straight-sided, constant-Γ model, for which
λ∗ = 2. The circles denote the prediction that is obtained by solving (6.22) numerically
and the solid black line denotes the solution for Pe� 1. The grey lines correspond to
observed values of the normalised buoyancy integral from the DNS at times in the interval
[t6, t12] (cf. figure 5).

such that λ(t, z∗)= λ∗. Assuming that the process is indeed self-similar, (6.19) can be
significantly simplified. Using (6.21),

d2B1

dλ2
= 1

2λ

(
Pe
(

1− λ
λ∗

)
− 2
)

dB1

dλ
, (6.22)

where λ∗ is the dimensionless velocity of the front and Pe≡ λ∗/(4θ1)= 300 for θ1 =
0.0017 and λ∗ = 2. Equation (6.22) has an analytical solution that can be expressed
in terms of a hypergeometric function. In practice however θ1� 1, therefore Pe� 1,
and it is appropriate to use the asymptotic form of the solution to (6.22):

lim
Pe→∞

B1 =BA
1 +

BB
1 −BA

1√
πPe

exp
(

Pe
2

(
1− λ
λ∗

))(
λ

λ∗

)Pe/2+1

G
(

1,
Pe
2
+ 2,

Peλ
2λ∗

)
,

(6.23)
where G is the hypergeometric function and BB

1 and BA
1 are the values of B1 before

and after the step change, respectively. Figure 12 displays the solution to (6.22) in
addition to the asymptotic solution (6.23). Evident from figure 12 is that the similarity
solution (6.23) exhibits a reasonably good agreement with both the observed behaviour
of B1 and the full differential equation (6.22). The actual front propagates slightly
slower than our predictions using λ∗ = 2 would suggest, which is consistent with the
observation that λ∗≈ 1.9, as reported in § 4.2. Note that the observed behaviour of the
integral buoyancy is approximately self-similar, albeit over the limited sample that we
were able to provide in the far field. The similarity scaling employed to derive (6.22),
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and the observation of self-similarity in figure 12, support the view that the length
scales in the plume vary according to t3/4. This scaling applies to both the position
of a disturbance and its longitudinal extent and therefore provides some resolution of
the open question debated in Scase et al. (2009), as to the longitudinal scaling of a
propagating pulse structure in a plume. However, we note that our observations are
based on results from a domain of relatively limited longitudinal extent.

7. Conclusions

We have investigated the physics and modelling of unsteady turbulent plumes
using a generalised energy-based framework and DNS. The framework postpones
assumptions about the relative magnitude and radial dependence of quantities such as
the mean velocity, pressure and turbulent transport. Existing unsteady plume models
are a subset of the models that can be derived from the generalised unsteady plume
equations (2.9)–(2.11), and their individual properties can be understood and related
to the physics of the flow. In particular, we demonstrated that the structure of the
governing integral equations depends on the assumptions one makes about features of
the flow that are typically lost upon integration. The structure, for example, determines
how the radius of the plume responds to changes in the buoyancy flux, whether the
plume is stable to infinitesimal perturbations and whether propagating waves are lazy,
forced or pure.

We conducted direct numerical simulation of an ensemble of 24 statistically
independent realisations of a plume, whose source buoyancy flux was subjected
to an instantaneous increase. Our observations support the theoretical prediction that
unsteady Gaussian plumes are approximately straight sided and, following relatively
small changes in the source buoyancy flux, admit waves that travel at twice the
local characteristic velocity. We hope that the work will aid the understanding and
development of models for starting plumes, which are characterised by infinitely large
changes in the source buoyancy flux. It is anticipated, however, that in such cases
additional terms in the generalised unsteady plume equations, such as those relating
to pressure, will play a more active role than in the case considered here.

While Scase & Hewitt (2012) introduced an eddy-diffusion regularisation to obtain a
well-posed top-hat model of an unsteady plume, we find that unsteady plume models
do not require regularisation in general and can be derived from first principles.
The top-hat unsteady plume model (see, e.g. Scase et al. 2006b) is a degenerate
case of the generalised unsteady plume equations, which, in general, describe a
hyperbolic system with three distinct characteristic curves. For physically realistic
assumptions about the underlying velocity field, buoyancy distribution and turbulence,
the generalised unsteady plume equations are well posed. The top-hat model is a
singular case because it is a parabolic system and admits the exponential growth,
rather than algebraic growth or decay, of source perturbations.

The practitioner making use of these results can choose between several models of
varying complexity depending on the task at hand. The model we present in § 6.2 is
the largest, in the sense that it comprises three coupled partial differential equations. It
can therefore be used to model plumes with source fluxes of volume, momentum and
buoyancy that vary independently. It is important to note that the model (6.6)–(6.8) is
not more complex than the model of Scase & Hewitt (2012). Most of the parameters
in (6.6)–(6.8) can be determined from the steady state and it also has the advantage of
being relatively straightforward to implement numerically using a central differencing
scheme. Motivated by observations in § 4.2 and the properties of the generalised
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unsteady plume equations reported in § 5, § 6.3 describes a significantly simpler
model, based on the assumption that the unsteady plume is pure and straight sided.
The resulting model (6.14) consists of a single partial differential equation for the
integral buoyancy, from which the volume flux and momentum flux can be readily
determined. We would expect that this model is of sufficient complexity for most
practical prediction purposes. Finally, for problems involving disturbances that have
propagated far from the source of a plume, we recommend use of the similarity
equation and analytical solution described in § 6.4.

Straight sidedness is a conspicuous feature of steady-state plumes in the far field
and, being closely related to self-similarity, has facilitated elegant and accurate
mathematical models. For example, Kaye & Scase (2010) rely on straight sidedness
to derive and unite many properties of steady-state plumes. It is therefore of interest
that the present paper provides theoretical and observational evidence for the existence
of straight-sided behaviour in statistically unsteady plumes, which was invoked as
an assumption by Vul’fson & Borodin (2001) in order to develop their unsteady
plume model. As further work, it would be interesting to consider why plumes might
contrive to preserve straight sidedness by having Gaussian profiles and particular
distributions of turbulence, and what this implies about their local dynamics.

An interesting feature of unsteady plumes is that they expose ‘internal’ properties of
the flow that are hidden in a steady state. Specifically, whether one assumes Gaussian
or top-hat velocity profiles does not influence the form of the classical steady-state
power-law solutions (see the discussion in §§ 2.3 and 2.5). In problems with more
complicated dynamics, such as unsteady plumes, the assumed velocity profile plays
a crucial role in determining the response of the system. The reason for this is the
presence of a temporal derivative in the mean energy equation, which results in the
energy flux, the production of turbulence kinetic energy and the buoyancy flux making
independent contributions to the overall balance.
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Appendix A. Time-dependent similarity solutions

Scase et al. (2006b) identified time-dependent similarity solutions of the unsteady
plume equations under the assumption of a top-hat velocity profile. The work was
motivated by the fact that, in the absence of a conserved quantity, such solutions
provide the most natural scaling for unsteady plumes. Using the framework described
in § 2, it is useful to re-derive the similarity solutions without making an assumption
about the velocity or buoyancy profile of the plume. We will demonstrate that the
solutions support the findings reported in §§ 5.2–5.3 of the present paper and reduce
to the solutions identified by Scase et al. (2006b) as a special case.

For simplicity, we will neglect the turbulent transport of momentum and energy,
setting βg = 1 and γg = γm and use only the leading-order contribution to turbulence
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production, i.e. δg= δm. Therefore, we seek a similarity solution to unsteady transport
equations for momentum (2.9), mean energy (2.10) and mean buoyancy (2.11):

∂Q
∂t
+ ∂M
∂z
= B, (A 1)

∂M
∂t
+ ∂

∂z

(
γm

M2

Q

)
= α0

(
6γm

5
− 16θm

5

)
M5/2

Q2
+ 2θm

MB
Q
, (A 2)

∂B
∂t
+ ∂

∂z

(
θg

MB
Q

)
= 0, (A 3)

in which we have expressed δm in terms of α0 using (5.29) to facilitate comparison
with the findings of Scase et al. (2006b). Power-law similarity solutions of (A 1)–(A 3)
have the form

Q(z, t)= c1
z3

t
, M(z, t)= c2

z4

t2
, B(z, t)= c3

z3

t2
. (A 4a−c)

Solutions with c3 = 0 correspond to a jet and were presented in Craske & van
Reeuwijk (2015b, appendix A). Here we focus on solutions for which the buoyancy
B is non-zero andc1

c2
c3

= α2
0(8θm − 3γm)

2

25θ 2
g (4θg(1− θm)+ 8θm − 5γm)2

 2θg
1

4− 2θg

 . (A 5)

Noting that the radius rm ≡Q/M1/2 and velocity wm ≡M/Q, one finds

rm(z)=
(

8θm − 3γm

12θg(1− θm)+ 24θm − 15γm

)
6α0z

5
, wm(z, t)= z

2θgt
. (A 6a,b)

The velocity wm is independent of both the entrainment coefficient and the assumed
radial dependence of the longitudinal velocity, depending instead on the total
dimensionless buoyancy flux θg, in addition to z and t. In contrast, the radius rm
is independent of t but is affected by the entrainment coefficient and the assumed
radial dependencies of the mean velocity and buoyancy, which determine γm and θm,
respectively. In particular, the radius is given by

rm(z, t | γm = 1, θm = 1)= 2α0z
3
, (A 7)

rm(z, t | γm = 4/3, θm = 1)= 6α0z
5
, (A 8)

for top-hat and Gaussian profiles, respectively. Note that the radius of the plume is
independent of the dimensionless buoyancy flux θg (inclusive of turbulent transport)
when θm = 1. When θg = 1 (A 6b) and (A 7) are identical to the ‘top-hat’ solutions
obtained by Scase et al. (2006b). Consistent with the analysis of § 5.2, (A 8) indicates
that the spreading rate of the unsteady Gaussian plume is identical to that associated
with the steady state. Moreover, when βg = 1, the flux-balance parameter

Γ ≡ 5QB
8α0M3/2

= (2− θg)
5rm

4α0z


= 5/6, (top-hat)> 1 if 0< θg < 4/3,
= 1 if θg = 4/3,
< 1 if 4/3< θg < 2.

(Gaussian)
. . .
. . .

(A 9)
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As discovered by Scase et al. (2006b), time-dependent self-similar top-hat plumes
are forced (Γ = 5/6< 1). Gaussian plumes that account for the turbulent transport of
buoyancy, on the other hand, admit forced, pure and lazy behaviour according to the
value of θg.

As suggested by Craske & van Reeuwijk (2015b), given (A 6a), the difference
between (A 7) and (A 8) can be accounted for with an entrainment coefficient of the
form

α ≡
(

8θm − 3γm

12θg(1− θm)+ 24θm − 15γm

)
9α0

5
, (A 10)

and therefore

rm = 2αz
3
. (A 11)

In fact, (A 10) is identical to the generalised entrainment coefficient (2.21) when
Q= c1z3/t,M= c2z4/t2 and B= c3z3/t2. In time-dependent similarity solutions for the
top-hat plume α = α0. For the Gaussian plume, however, the entrainment coefficient
α = 9α0/5 increases relative to the steady state in such a way that the radius of the
plume rm = 6α0z/5 retains its steady-state dependence on z.

Appendix B. Validation

To validate the steady plume data we compare the simulation results to the
experimental results of Wang & Law (2002) in figure 13. In the leading-order
quantities, i.e. dimensionless w, b, u′w′ and u′b′ (note that the radial transport terms
are an operand of ∂r in the governing equations and therefore make a leading-order
contribution) the simulations and experiments are in good agreement. In particular,
the normalised simulation results comprise self-similar profiles which, consistent with
the assumption of high Re, do not exhibit a dependence on the buoyancy flux. There
is, however, an observable discrepancy between the experimental data for w′ and the
simulation data for w′, although it should be noted that this discrepancy is made more
pronounced by the fact that we have normalised the data using integral quantities
rather than centreline values. Indeed, while there is a noticeable difference in the
normalised centreline values of w′ between the experiments and the simulations,
they share similar values of the normalised integral of w′2 over the area of the
plume. Furthermore, the profiles in Wang & Law (2002) were obtained over the
range 62 < z/rs < 110, which is significantly further from the source than the range
20< z/rs < 40 used in the present study. Since w′2 is a relatively high-order quantity,
it is reasonable to expect that it converges to a universal behaviour at greater distances
from the source than leading-order quantities such as w. Whether, however, quantities
such as w′2 ever converge to a universal form is matter of debate (George 1989).

Since the primary focus of this study are the integrals Q,M and B, we consider their
steady-state behaviour in comparison with classical plume theory in figure 14. The
DNS results for both L and H are in good agreement with the classical power-law
solutions, with the exception of small deviations in the behaviour of B at the very
bottom and top of the domain. It is worth noting that the theoretical predictions shown
in figure 14 were based on the steady-state system (2.22), that accounts for θm and
βg via an effective buoyancy flux F/(βgθm) (see § 2.5).
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FIGURE 13. (Colour online) Normalised radial profiles of quantities in a steady-state
plume. DNS data from simulations L and H are compared with the experimental data
of Wang & Law (2002), which comprise a best fit to data obtained over the range
62< z/rs < 110. The DNS data were obtained over the range 20< z/rs < 40.
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FIGURE 14. (Colour online) Comparison of the steady-state DNS results with classical
plume theory.

Appendix C. Rankine–Hugoniot jump conditions

Consider a single step change in the mean buoyancy flux F of magnitude [F] ≡
FA − FB, propagating at velocity w∗m. Assuming that the integral buoyancy B and
the buoyancy flux F are continuously differentiable either side of the jump at z∗(t),
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buoyancy conservation (2.11) in the region containing the step change is satisfied if∫ z∗

zA

∂B
∂t

dz+
∫ zB

z∗

∂B
∂t

dz− θg[F] = 0, (C 1)

where zA < z∗ < zB. Letting zA→ z∗ from below and zB→ z∗ from above,

w∗m ≡
dz∗

dt
= θg
[F]
[B] , (C 2)

where [B] ≡ BA − BB is the step change in B at the front. Using the steady-state
solutions (2.22), valid either side of the step change, to express B in terms of F, one
finds

w∗m =
9θg

8

(
θ 2

m

βg

)1/3 ( 10
9α0

)2/3 (F∗

z

)1/3

, (C 3)

where

F∗ ≡ 8
27

(
FA − FB

(FA)2/3 − (FB)2/3

)3

. (C 4)

For further details regarding the determination of jump conditions, we refer the reader
to Whitham (1974).
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