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MULTIPLIERS FOR WEIGHTED HARDY SPACES ON
LOCALLY COMPACT VILENKIN GROUPS

TOSHIYUKI KlTADA

Let G be a locally compact Vilenkin group. We study multipliers which satisfy
a generalised Hormander condition from power-weighted Hardy space H^(G) to
ff«,(G) with 0 < p $ q < oo, 0 < p ^ 1, - 1 < P, p'.

1. INTRODUCTION AND PRELIMINARY RESULTS

In [5] Kurtz gave weighted norm inequalities for kernel operators which map an
Z/P(R") space into an Z'(Rn) space with 1 < p < q < oo. Applying them to multiplier
operators which satisfy a generalised Hormander multiplier condition, he obtained a
multiplier theorem between weighted Lp(Rn) spaces and weighted i*(R") spaces. In
[11] Vinogradova considered a multiplier condition which is stronger than that of Kurtz,
and gave a multiplier theorem from weighted Zp(Rn) space to weighted Zp(Rn) space
with different power-weights.

In this note we consider the case 0 < p Sj 1, p ^ q < oo under the setting of the
locally compact Vilenkin groups G, instead of Rn . Let HZ ( 0 < p < o o , /3 > — 1) be a
power-weighted Hardy space on G. We give a sufficient condition for a function ip on
F (the dual group of G) to be a multiplier from H% to Hi,, 0 < p < 1, p ^ q < oo.
Our main result is Theorem 2, which is showed by combining multiplier theorems on
Hp (0 < P < °°> P > — 1) °f the present author [2, 4 and 3] with a weighted norm
inequality for the fractional integral operator on G (Theorem 1).

Throughout this note G will denote a locally compact Vilenkin group, that is to
say, G is a locally compact abelian topological group containing a strictly decreasing
sequence of compact open subgroups (G, ,)^ , such that

(i) U Gn =
— oo —oo

(ii) sup{ order (Gn/Gn+i) : n £ Z} := B < oo.
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442 T. Kitada [2]

Examples of such groups are described in [1, Section 4.1.2]. Additional examples
are the additive group of a local field (see [10]).

Let F be the dual group of G and let Fn be the annihilator of Gn for each n G Z.
Then (Fr,)^^ is a strictly increasing sequence of compact open subgroups of F such that

(i) U Tn = T and n Tn = {1}, and (ii) order (F n + 1 / r n ) = order (GJGn+1). We
— oo —oo

choose Haar measures dx on G and dr/ on F so that |Go| = |Fo| = 1, where |.A| denotes
the Haar measure of a measurable subset A of G, or F. Then |Gn|~ = |Fn | := mn for
each n £ Z . For x G G, we set |z| = (n^)"1 if x G Gn \ Gn+i and |z| = 0 if x = 0.
Similarly, we set \-y\ = mn+1 if 7 G F n + 1 \ F n and j-y| = 0 if 7 = 1. Since 2mn ^ mn +i

0 0 Jt
for each n G Z, it follows that £) (mn)~a ^ C(mk)~

a and £ (mn)a ^ C(mk)
a

n=k n= — oo

for any a > 0, k G Z.
The symbols A and v will denote the Fourier transform and inverse Fourier

transform, respectively. We have (&jn)
A = jr*™!"1 Cr» := Fn a nd, hence, (£rn)V =

IGnl"1 £G« := An for each n 6 Z, where £A denote the indicator function of a set A.
The Lebesgue space on G with respect to the weight measure |z|ac£s; will

be denoted by ££(G) or L?a, 0 < p < oo, a G R, and we set ||/||PiCt =
(JG l / («)r \x\adx)1/p. When a = 0, we write V and ||/||p instead of Lp

0 and | | / | | p 0 ,
respectively. We set |A|Q = JA \x\a dx (hence, \A\0 = |A|).

Following Taibleson's development of a distribution theory on local fields [10], we
define S(G) or S to be the set of all functions <p on G such that <p has compact
support and is constant on the cosets of some Gn, n G Z. A sequence (<pn)^° in $(,G)
converges to tp in S(G) if there are integers r, s so that each tpn and <p are constant
on the cosets of G, and are supported on G> and (y>n)i° tends to tp uniformly on
G. The set of all continuous linear functionals on S(G) will be denoted by S'(G) or
5 ' . A sequence ( / n )~ in S'(G) converges to / in S'(G) if for all tp G S(G) we have
l i m n - ^ / n , ? ) = (/,¥>)•

Similarly, S(T) and S'(T) are defined. For more details, see [10].
For / G <S' we define its maximal function /* by f*{x) = supn \f * An(z)|. The

power-weighted Hardy spaces H* := H*(G) are defined as the space of all / G S' for
which | | / | | H P := 11/* ||p>e, < 00, where 0 < p < 00, a G R.

Let 0 < p < 00 and a > —1. A function a on G is called a (p, oo)Q atom if there
exists an interval(coset) / := xo + Gn such that (i) supp a C I, (ii) Halloo ^ |i |̂~ ,
and (iii) Ja a(x)dx = 0 . The atomic characterisation of H£ spaces are given as follows,
see [6, Theorem 3.5], [3, Theorem 3.2].

LEMMA 1. Let 0 < p ^ 1 and -1 < a ^ 0. Tien / G Hg if and only if
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[3] Locally compact Vilenkin groups 443

f = J2 ^«°» m S' > w i e r e each Xi > 0, Oi is a (p, oo)Q atom and E A? < oo.
t=i «=i

furthermore, ||/||Hr ~ inf {(£ A? )1/p; / = E W -
LEMMA 2 . Let 1 < p < oo and - 1 < a < p - 1. Then HI** 1%.

PROOF: One direction of JD£ C ITJ follows from Hardy-Littlewood maximal in-
equality. The other direction is seen by a routine argument. We omit the details. U

LEMMA 3 . Let 0 < p < 1 and - 1 < a < 0. Then So := {/ G S, JG f(x)dx = 0}
is dense in H£.

PROOF: Let / £ Hg and e > 0. Then, by Lemma 1, there is a function g, which

is a finite linear combination of (p,oo)a atoms, such that \\f — g\\^p < £• Since supp

g is compact and Jg(x)dx = 0, it is easily seen that g * A n E So for all n £ Z.

So if we show that (g — g * An)* —» 0 in 2i£ as n —» oo, we have \\f — g * Anll^p ^

11/ ~ 9\\FUP + \\9 ~ 9 * Anll^rp < 2e for large enough n , and this completes the proof of

the lemma.

Since g £ L1 ,g * A n (x) —» g(x), for almost all x as n —» oo. Therefore we have

(5 - ff * An)*(x) = sup \(g - g * A n ) * Am(a;)|
mez

= sup Iff * A m (x) - ^ * A n (« ) | -» 0(n -» oo),

for ahnost all z . Since (g — g * An)* ^ 2ff* and g* G i ' , the Lebesgue dominated
convergence theorem implies that (g — g * An)* —» 0 in Z ^ . D

LEMMA 4 . Let a > 0, 0 < p , g < o o and /?,/?' > - 1 . Then there is a constant

C > 0 such that

l-f |J|Ji* ^ C" \I\]lr for any intervai /,

if and only if
0 0' 1 1
- - — = + - + a ^ 0 .
P 9 P 9

PROOF: For /? > - 1 , it is easy to see that \I\p ~ ( m , , ) ^ " 1 if / = Gn, n G Z

and \I\p = (mt)~
P(mny

l if / = x + Gn, x £ Gt\ Gt+i, I < n. The proof of the

lemma follows from this fact at once. D

2. FRACTIONAL INTEGRALS AND MULTIPLIERS

The fractional integral operator 7 a on G is defined by ( / Q / ) A (7) = \"f\~a f(t), f G

So, a > 0 ( see [10, 7]). We set ka(x) = Ix]"'1 for a ^ 1, and jfc^a;) = log \x\. Then,

unlike the case R n , ka(y) is not a constant times |-y| a in general.
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LEMMA 5 . Let a > 0. Then, in the sense of distributions, ka is a radial function

on F and ka(y) ~ |-y| a , that is, there exist constants C\,Cz > 0 such that

C2 |7l"a *S |M7)| < <?i | 7 r a for 7 G r.

PROOF: Consider first a ^ 1. Since |a5|Q~ is locally integrable, we have, for each
e5(r),

= E (m«)1

where s G Z is an integer such that ip is constant on each cosets of T,, but not on a

coset of T.+1 in T. We set F - Y, (™nf~
a(.Fn ~ Fn+i) and define

n = — o o

Then j£[ = F in 5 ' . And if 7 € T/+ 1 \ T ,̂ £ G Z, then

n=/+l

\ 1 — a / \ 1 — a

= M ° Ct>a, say ,

where the second equality follows from the fact that (mn)
 a —» 0 (n —> oo). It is easy

to see that

1 - 2 Q " 1 1 - B a - 1

-, sz^- ^ ^,a ^ -.—=zr-. if « < 1

1 — B " " 1 l - 2a~1

a n d
 1 _ 2 - a < C'/.a ^ 1 _ g _ n , i f« > 1.

When a = 1, a similar argument for fci(z) = log \x\ holds and we have the conclusion
of lemma. D
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REMARK 1. When m n = p n , n G Z (p ^ 2 is a prime integer), we have ka(y) =

((1 -pO-^/il-p-)) | 7 | - , a ^ 1 and &(7) = ((Iogp)/(l - p " 1 ) ) M"1 •
We consider the (generalised fractional integral) operator Ta as follows:

DEFINITION 1: Let a > 0 and r(-y) be a radial function on T such that r ( 7 ) ~
| 7 r Q . We define the operator Ta by (Ta/)

A(7) = T ( 7 ) / ( 7 ) , / G So- We set rn :=
T(7) , 7 € Tn+i \ r n , for each n G Z.

Note that if a > 0 and / € 50 then TQ/ G5 0 . If 0 < « < l a n d / G 5 then To/
is well defined and locally integrable. For either case, we have

Taf= 2 rn(An+1 - An) */.
n=—00

In what follows, we assume that 0 < p < 1 and — 1 < 0 ^ 0.

THEOREM 1 . Let a > 0, 0 < p < g < 00 and /3' > - 1 . TAen the following

conditions are equivalent;

(1) llTa/ll,,*, < C H/Haj for all / G 50,

(2) ^±l=^±i+a M d0^-^«.
P 9 P 9

This theorem is similar to Theorem(1.5) in [8] for the fractional integral operator
on R n . Since our weights are power-weights, a necessary and sufficient condition for the
inequality (1) is given precisely as (2). By Lemma 3, the inequality (1) has a continuous
extension to all of Hp.

PROOF: For simplicity of notation, we write T for Ta.
(1) =» (2): For any interval I := x0 + G^ , XQ G G, no G Z, we define a G So by

a(x) =(B + I )"1 \I\ | / | - 1 / p (A^+x - Ano)(* - *„).

Then a is a (p,00)« atom and (|a||Hp ^ 1. And for x G / ,

\Ta(x)\ = - An) * a(x)

Since (Ta)* ^ | ro | on / , we have
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Hence, Lemma 4 implies (2).
(2) => (1): We first show that for (p,oo)a atom a, Ta is a (g, oo)^, atom up to a
constant which is independent of a. Let a be a (p, ooK atom such that supp a C / :=
xo + Gno, *o € G, n0 e Z . If a; £ I, then x — x0 € G/ \ G/+i for some I € Z, £ < n 0 .
Then (x + Gn) f~l / = 0 for n > £, and z + Gn D 7 for n < ^. So A n * a(x) = 0 for all
n G Z . This shows Ta(x) = 0. Hence, supp Ta C I.

Let x £ I. If n < n 0 , then x + Gn+i D I and A n + i * a(x) = 0. Hence, by
Lemma 4,

|rn(An+1-An)*a(x)|

C f; (mn)-a ||a|L

The cancellation property of Ta follows from that of a. Therefore Ta is a (g, oo)^,
atom up to a constant such that

(3) | |Ta| |H, ( < C,

where C is independent of a (we note that under the condition (2), /3' ^ g( l /p — a) —
1 < 0, so by Lemma 2, | |Ta| |H , ( ~ | | T a | | ^ , , if q > 1).

The inequality (3) also holds for the modified operator TN (N € Z) defined by

(TN/) — T£r\rNf. This is checked easily and we emphasise that the constant C in

(3) for TN is the same as the one in (3) for T.

Let us go on to prove (1). We consider the case q ^ 1 and q > 1 separately. In
oo

either case, for f € So, let / ( x ) = ^3 ^»a» ^ e a possible atomic decomposition of / (as
t=i

an element of Hp). Since f € So, there is an N G Z such that / = 0 on Tff- Then

we have Tf = TNf.
If q ^ 1, then it follows from (3) that

since p < g. This means that ^ XiTNai converges in Hi,. Hence, for any ij> € S(T),
i=i p

we have
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because T£r\rv is locally constant on T,

Therefore we have T / = £ AfT^a; and

By taking the infimum on the right hand side above, we have the inequality (1).
If q > 1, then by using Minkowsky's inequality,

, \1/q °° / r i \1/q

\xf dx\ < £ A; \Jg \TN
ai(x)\9 \xf dx)

i / p

i = i

because p ̂  1. Hence, £) AiT^aj converges in Lt,. The remainder of the proof is the

same as the case </ ^ 1. This completes the proof of theorem. D

REMARK 2. Compared with the proof of Theorem(1.5) in [9], our proof of Theorem 1
is simple as above. It is due to the fact that S0(G) — {/ 6 S(G), supp / ^ 1}. In [9]
Stromberg and Wheeden also deal with the case p > 1, and obtain [9, Theorem (1.1)].
For the groups G, by using other methods as in [8], we can get the following result:

Let l < p < 9 < o o , 0 < a < l and - 1 < /? < p - 1, - 1 < /?'. Then

lira/H^.^CH/ll^ forall/ES
if and only if

Before stating Theorem 2, we need to introduce a generalised Hormander class of
multipliers space, Af(a,A,a) (see [5]).
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DEFINITION 2: Let A > 0 , l ^ a < o o and a G R. For a function JJ on T, we set
fi : = v £ r + 1 \ r > J G Z. A function tp on T belongs to M(s, A, a) if there is a constant
C such that

M7)l < C\y\-a and sup
iez

. } < oo,

where D V i :
Af(s,A,0) is M(a,A) introduced in [2, and 3]. Notice that if we let f(-y) —

V»(7)l7ra. then ip £ M(«,A,a) if and only if V 6 M(s,X). Also, \-y\~a e M(s,X,a)
for all A > 0 and 1 ^ a ^ oo.

THEOREM 2 . Let a > 0 and 0 < 1/p - 1/g ^ a. Suppose that <p G M(«, A,a)
for 1 ^ s ^ oo, A > max(l, l /g) - l/max(2,s'). Tien

(4)

if -

< C | | / | | H P /oral/ / G 5 0 ,

0, max( - l , - and

r + i

PROOF: Let V>(7) := ¥>(7) 171° and / G <S0. Then V G M(s, A).
If g ^ 1, then, by Theorem 4.5 in [3] and Theorem 1, we have

If q > 1, then, by Theorem 1 in [2] or Theorem(3.6) in [4] and Theorem 1, we
have,

"'

This completes the proof of theorem. U

By Lemma 3, the inequality (4) in Theorem 2 has a continuous extension to all of
HZ. When 0 < a < 1, we can prove Theorem 2 directly by the method as in the proof
of [3, Theorem 4.4 and Theorem 4.5].

' For the case p > 1, we can also get a similar result to Theorem 2 by the same idea
as in the proof above (see Remark 2). This will appear elsewhere.
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