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Abstract. We analyze quasi-2-dimensional slices of the SDSS EDR. Gaussian smoothing with
weighting by the inverse of the selection function provides 2D density fields across the full
survey depth. Superclusters (SC) are characterized by a percolation algorithm in the large-
scale smoothed field. Group candidates are identified with density maxima in the small-scale
smoothed field. The group mass function depends on the SC environmental density. We derive
the shape-dependent 3-point correlation function and the void size distribution. These are well
reproduced by the galaxies identified in high-resolution ACDM simulations.

1. Cosmic density fields

Establishing large-scale cosmic density fields from the observed galaxy distribution
was an early aim of analyzing galaxy redshift surveys (Saunders et al. 1991). Averaging
over local random inhomogeneities, the density field provides genuine measures of the
complex pattern of sheets and filaments in the universe comprising the ‘cosmic web’
(Bond, Kofman, & Pogosyan 1996). Our analysis is based on the ongoing SLOAN Redshift
Survey intended to derive one million galaxy redshifts within one quarter of the sky. Here
we analyze the first preliminary data release of 34 000 galaxies in two 2.5° thick stripes
along the celestial equator in the Northern (top) and Southern (bottom) hemispheres.
This part of the survey is 95% complete for red magnitudes 13.0 < r* < 17.7. We
constrain the analysis to a depth of z = 0.2 that corresponds to a limiting distance of
570 h~*Mpc (h ~ 0.7).

The cosmic density field in Figure 1 was Gaussian smoothed with the galaxy selection
function as inverse weight to get an approximately uniform coverage of the survey volume
(Einasto et al. 2003). We identify 43 superclusters as the largest nonlinear structures in
the survey. The most massive system in the North is the Supercluster 126 containing 7
Abell clusters and 6 X-ray clusters from the ROSAT bright survey (Schwope et al. 2000).
Most superclusters form complex multi-branching filaments with one or two strong central
concentrations. The richest system in the South is the Pegasus-Pisces supercluster 3 with
9 Abell clusters.

The high-resolution density field provides a detailed insight into the cosmic web. All
supercluster concentrations are subdivided into interconnected filamentary branches with
galaxies like pearls on a string. We identify about 5000 galaxy groups, for which we derive
harmonic radii and the velocity dispersions to estimate the virial mass for gravitationally
bound systems. We find that the upper limit of the group masses is about 5 times higher
in the central supercluster regions. Furthermore, we find that the group masses scatter
over a larger range in overdense regions due to a further evolution of the mass hierarchy.
The environmental dependence of group and cluster properties was established in high-
resolution numerical simulations of galaxy formation.
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Figure 1. SDSS EDR density field with 10 A~ *Mpc (left panel) and 0.8 h~*Mpc (right panel)
smoothing. North is on top. Numbers correspond to superclusters from Einasto et al. (2001).

2. The 3-point correlation function and void size distribution

We quantify the filamentarity of the galaxy distribution in deriving the reduced 3-point
correlation function @ shown in Figure 2, left panel. It is a reliable measure of hierarchi-
cal clustering, sensitive to the morphology of structures and accessible to gravitational
perturbation theory. The four panels show the redshift space correlation function for
galaxies sitting on the edges of triangles with sides s, us, and (u+wv)s (v > 1,0 <v < 1).
The increase with v is characteristic for filaments. The solid lines show theoretical fits
derived empirically for LCRS galaxies (Jing & Borner 1998) that are in agreement with
our data (cf. also Kayo et al. 2004 for a recent analysis of the SDSS first data release).
We compare our results with high-resolution DM-simulations (2563 particles with spatial
resolution of a few kpc) in a 60 h~'Mpc box size for a concordance ACDM-model. There
is a strong influence of redshift space corrections that remove almost all u-dependence of
the reduced 3-point amplitude @ but well preserves the increase of () with v (anisotropy
of filamentarity of the clustering) predicted from gravitational perturbation theory. We
find a weak but significant increase of this filamentarity effect for blue versus red galaxies.
In the simulations we find a stronger anisotropy of @ for halos identified at high redshifts
(z = 3...1) than at the present epoch. Our results indicate that the amplitude of the
3-point function @ can be reproduced in high-resolution ACDM-simulations and is not
overpredicted by a factor of two as claimed by Jing & Borner (1998).

We identify a sample of voids covering most of the survey area in seven volume-limited
data sets from the SDSS-EDR with the 2D-void finder of Arbabi-Bidgoli & Miiller (2002).
The size distribution weighted with the void area is shown in Figure 2 as function of the
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Figure 2. Left: The reduced redshift space correlation function in the strongly clustered regime.
Right: Cumulative (histograms) and fitted differential (solid line) void size distribution. The
lower panel shows the scaling of median and quartile void sizes for randomly diluted data.

ratio of the diameter D to the mean galaxy separation A\, x = D/, i.e. dF/dInD
[/(x + a)]? exp[—(z/a)*], where a ~ 9. The broad size distribution with a cut-off is in
agreement with recent excursion set modeling by Sheth & van de Weygaert (2003), but
it shows no abundance peak at that scale. The high abundance of small voids is typical
for the galaxy void hierarchy. Voids among red galaxies (preferentially in clusters) are
15% larger than among blue galaxies. The lower panel of Figure 2 shows that the void
sizes (median and quartiles) have a characteristic linear scaling with the mean galaxy
separation \ if the galaxies are randomly diluted. This scaling law (cf. Miiller et al. 2000)
characterizes the void hierarchy in the universe and in simulations.
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